New Insights Into the Molecular Evolution of Metazoan Peroxiredoxins

Total Page:16

File Type:pdf, Size:1020Kb

New Insights Into the Molecular Evolution of Metazoan Peroxiredoxins View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio istituzionale della ricerca - Università di Padova Invited Review ACTA ZOOLOGICA BULGARICA Acta zool. bulg., 67 (2), 2015: 305-317 New Insights into the Molecular Evolution of Metazoan Peroxiredoxins RIGE R S BAKIU 1*, GIANF R ANCO SANTOVITO 2 1 Department of Aquaculture and Fisheries, Agricultural University of Tirana, Koder Kamez, 1029 Tirana, Albania; E-mail: [email protected] 2 Department of Biology, University of Padova, 35121 Padova, Italy Abstract: Peroxiredoxins (Prx) are enzymes present in all biological kingdoms, from bacteria to animals. The oxi- dised active site cysteine of Prx can be reduced by a cellular thiol, thus enabling Prx to function as a peroxidase. Peroxiredoxins have been object of an increasing interest for its pivotal role in cell defence and as conserved markers for circadian rhythms in metabolism across all three phylogenetic domains (Eukarya, Bacteria and Archaea). Metazoan cells express six Prx isoforms that are localised in various cellular compartments. Using bioinformatics tools, based on Bayesian approach, we analysed the phylo- genetic relationships among metazoan Prxs, with the aim to acquire new data on the molecular evolution of these proteins. Peroxiredoxin molecular evolution analyses were performed by the application of Mr. Bayes and HyPhy software to the coding and protein sequences of deuterostomes and protostomes. The obtained results confirmed that the molecular evolution of metazoan Prx was peculiar and suggested that the positive selection may had operated for the evolution of these proteins and a purifying selection was present during this process. Keywords: peroxiredoxin; metazoans; molecular evolution. Introduction An unusual antioxidant protein, now called perox- is specifically oxidised by H2O2 to cysteine sulfenic iredoxin (Prx, EC 1.11.1.15), was initially identified acid (Cys–SOH), which is resolved by reaction with on the basis of its capacity to protect proteins from Cys170–SH of the adjacent monomer. Theseis results oxidative damage caused by reactive oxygen species in the formation of a disulfide link, Cys47–S-S–Cys170 (ROS), catalysing the reduction of H2O2, to water (CHAE et al. 1994). The conserved Cys residue cor- and alcohol in the presence of dithiotreitol (DTT). responding to Cys47 of yeast Prx was later referred Analysis of Prx purified from yeast revealed that to as the peroxidatic Cys (CP) to reflect its sensitiv- it did not contain conventional redox centres such ity to oxidation by peroxides, and the conserved Cys as metals, heme, flavin, or selenocysteine, being residue corresponding to Cys170 was designated the OOD very different with respect to other known antioxi- resolving Cys (CR) (W et al. 2003). dant (KIM et al. 1988; CHAE et al. 1994). Later, it On the basis of the presence or absence of the has been found that (i) Prxs are present in all bio- CR residue, Prxs are classified into typical 2-Cys, logical kingdoms, from bacteria to animals; (ii) two atypical 2-Cys, and 1-Cys Prx subfamilies (RHEE cysteine residues, corresponding to Cys47 and Cys170 & WOO , 2011). Animal cells express six isoforms of yeast Prx, are highly conserved among Prx fam- of Prxs: isoforms from 1 to 4 belong to the typical ily members; (iii) Prxs are homodimers arranged in 2-Cys Prx group; Prx5 belongs to the class of 2-Cys a head-to-tail orientation; and (iv) Cys47–SH of Prx enzymes. Isoform 6 is the only one belonging to *Corresponding author 305 Bakiu R., G. Santovito 1-Cys Prxs (Fisher, 2011). Prx1 is mainly localised Metazoa is one of great eukaryote kingdoms. in the cytosol, nucleus and peroxisomes, but it has An increasingly well resolved Proterozoic fossil been found also in serum (IMMENS C HUH et al. 2003). record documents the presence of most of the major Prx2 is present in cytosol and nucleus and it has been taxa of eukaryotes, including the rhodophytes, stra- shown to bond the cell membrane (CHA et al. 2000). menopiles, alveolates and green plants during the late Prx3 is located exclusively in the mitochondria (CAO Mesoproterozoic to early Neoproterozoic (about one et al. 2007). Prx4 has been found in both cytosol and billion years ago). A coincident rise in acritarch diver- endoplasmic reticulum and contains a leader peptide sity, combined with molecular phylogeny evidence that is believed to be essential for protein secretion for rapid cladogenesis, points to a major radiation of (OK ADO -MATSUMOTO et al. 2000). Prx5 is localised in eukaryote groups at this time, sometimes referred to cytosol, mitochondria and peroxisomes (CAO et al. as the “big bang” of eukaryotic evolution (CON W AY 2007). Prx6 is located in cytosol, vesicles and lyso- MO rr IS et al. 1987). The most fundamental division somes (SO R O K INA et al. 2011). Prx localisation is mul- within the bilateral metazoans is the protostome- tifarious, being dependent on the cell type but also on deuterostome branch. Protostomes include at least the environmental conditions (RHEE et al. 2012). annelids, arthropods, molluscs and platyhelminths. Many studies suggest that Prxs are more than They have spiral cleavage and usually mosaic de- just simple antioxidant enzymes. For example Prx6 velopment, are schizocelic, form the mouth at (or also acts as phospholipase A2 (CHEN et al. 2000). near) the site of the blastopore and mesoderm from Other evidences suggest that Prx oxidation also al- a mesentoblast that is usually 4d. Deuterostomes in- lows them to function as molecular chaperones (JANG clude at least echinoderms and chordates, the latter et al. 2004) and regulates the cell cycle (PHALEN et group including the back-boned animals. They have al. 2006). A very interesting proposed role is en- radial cleavage and usually regulative development, compassed by the floodgate hypothesis (WOOD et al. are enterocelic, form the mouth away from the blas- 2003; WOO et al. 2010), in which active Prxs normal- topore and mesoderm from endodermal cells along ALENTINE ly keep H2O2 low (i.e. a closed floodgate) but, under the archeneteron (V et al. 1997). signalling conditions that causes loss of function via Approximately 2.5 billion years ago, photo- overoxidation in a localised region of the cell, allow- synthetic bacteria acquired the capacity to photodis- ing H2O2 to build up locally (i.e, be released by an sociate water, leading to the geologically rapid ac- open floodgate) for signalling purposes (HALL et al. cumulation of molecular oxygen during the Great 2009, HANS C HMANN et al. 2013). Oxidation Event (GOE), when anaerobic life un- The abundance of Prx is high: it can account derwent a catastrophic decline (EDGA R et al. 2012). for up to 1% of all soluble cellular proteins (WOOD Organisms that survived the transition to an aerobic et al. 2003). Furthermore, typical 2-Cys Prxs are the environment were those that respired and/or evolved largest and most widely distributed subfamily (SOITO oxygen. All oxygen-utiliszing organisms acquired et al. 2011). These Prxs are moonlighting proteins: constitutive antioxidant defensesdefences (both at high H2O2 concentrations they act as holdases, small molecules and enzymes), detoxifying and whereas when the rate of ROS formation is low they scavenging the ROS that are continuously produced are thioredoxin-dependent peroxidases (JANG et al. as a by-product of aerobic metabolism (Acw O R TH et 2004). The dual functions of typical 2-Cys Prxs, al. 1997, HALLI W ELL & GUTTE R IDGE 1999). Among modulating ROS concentrations and preventing pro- them, Prx has been object of an increasing inter- tein aggregation, may play pivotal roles in cellular est for its pivotal role in cell defensedefence and as response to pathogens and external stress (JANG et conserved marker for circadian rhythms in metabo- al. 2004). The importance of Prxs is unarguable, as lism. EDGA R and colleagues (2012) studied the cy- transgenic/knockout mouse models overexpressing cles of Prx oxidation-reduction in Eukarya, Bacteria or deficient in most highly expressed Prxs has dem- and Archaea and proposed that all these organisms onstrated a decrease in genome stability and acceler- have cellular rhythms sharing a common molecular ated aging, and an overexpression of these proteins origin. In fact, it has been proposed that the ability is associated with various problems related to can- to survive cycles of oxidative stress may have con- cers treatment (HAMILTON et al. 2012). Recent stud- tributed a selective advantage from the beginnings ies show Prxs expressed in tumortumour cells play of aerobic life. Twenty-four hours cycles of Prx positive roles in their progression and/or metastasis oxidation–reduction in all domains were observed in transplanted animals. Different functions of Prxs in both Archaea, Bacteria and Eukaryota supporting are required for their progression/metastasis in vivo the hypothesis that cellular rhythms share a common depending on tumortumour types (ISHII et al. 2012). molecular origin (EDGA R et al. 2012). However, only 306 New Insights into the Molecular Evolution of Metazoan Peroxiredoxins a few studies have been dedicated to the evolution of tion criterion (Akaike Information Criterion-AIC Prxs (CO P LEY et al. 2004; KNOO P S et al. 2007; PÉ R EZ - and Corrected Akaike Information Criterion-cAIC). SÁN C HEZ et al. 2011). Our study aims and we decided Models of nucleotide substitution allow for the cal- to extend the research on Prx evolution performing culation of probabilities of change between nucle- phylogenetic analysis on the most studied group of otides along the branches of a phylogenetic tree. The eucariotic organisms (Eukarya), the animals, using use of a particular substitution model may change Bayesian approach. Fortunately, there is sufficient the outcome of the phylogenetic analysis (LEMMON information about many characterised nucleotide and MO R IA R TY , 2004).
Recommended publications
  • Peroxiredoxins in Neurodegenerative Diseases
    antioxidants Review Peroxiredoxins in Neurodegenerative Diseases Monika Szeliga Mossakowski Medical Research Centre, Department of Neurotoxicology, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; [email protected]; Tel.: +48-(22)-6086416 Received: 31 October 2020; Accepted: 27 November 2020; Published: 30 November 2020 Abstract: Substantial evidence indicates that oxidative/nitrosative stress contributes to the neurodegenerative diseases. Peroxiredoxins (PRDXs) are one of the enzymatic antioxidant mechanisms neutralizing reactive oxygen/nitrogen species. Since mammalian PRDXs were identified 30 years ago, their significance was long overshadowed by the other well-studied ROS/RNS defense systems. An increasing number of studies suggests that these enzymes may be involved in the neurodegenerative process. This article reviews the current knowledge on the expression and putative roles of PRDXs in neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease and dementia with Lewy bodies, multiple sclerosis, amyotrophic lateral sclerosis and Huntington’s disease. Keywords: peroxiredoxin (PRDX); oxidative stress; nitrosative stress; neurodegenerative disease 1. Introduction Under physiological conditions, reactive oxygen species (ROS, e.g., superoxide anion, O2 -; · hydrogen peroxide, H O ; hydroxyl radical, OH; organic hydroperoxide, ROOH) and reactive nitrogen 2 2 · species (RNS, e.g., nitric oxide, NO ; peroxynitrite, ONOO-) are constantly produced as a result of normal · cellular metabolism and play a crucial role in signal transduction, enzyme activation, gene expression, and regulation of immune response [1]. The cells are endowed with several enzymatic (e.g., glutathione peroxidase (GPx); peroxiredoxin (PRDX); thioredoxin (TRX); catalase (CAT); superoxide dismutase (SOD)), and non-enzymatic (e.g., glutathione (GSH); quinones; flavonoids) antioxidant systems that minimize the levels of ROS and RNS.
    [Show full text]
  • Morphological Development of Embryo, Larvae and Juvenile in Yellowtail Kingfish, Seriola Lalandi
    Dev. Reprod. Vol. 20, No. 2, 131~140, June, 2016 http://dx.doi.org/10.12717/DR.2016.20.2.131 ISSN 2465-9525 (Print) ISSN 2465-9541 (Online) Morphological Development of Embryo, Larvae and Juvenile in Yellowtail Kingfish, Seriola lalandi Sang Geun Yang1, Sang Woo Hur2, Seung Cheol Ji1, Sang Gu Lim1, Bong Seok Kim1, Minhwan Jeong1, Chi Hoon Lee2 and †Young-Don Lee2 1Jeju Fisheries Research Institute, National Institute of Fisheries Science, Jeju 63610, Korea 2Marine Science Institute, Jeju National University, Jeju 63333, Korea ABSTRACT : This study monitored the morphological development of embryo, larvae and juvenile yellowtail kingfish, Seriola lalandi, for their aquaculture. The fertilized eggs obtained by natural spawning were spherical shape and buoyant. Fertilized eggs were transparent and had one oil globule in the yolk, with an egg diameter of 1.35 ± 0.04 mm and an oil globule diameter of 0.32 ± 0.02 mm. The fertilized eggs hatched 67–75 h after fertilization in water at 20 ± 0.5°C. The total length (TL) of the hatched larvae was 3.62 ± 0.16 mm. During hatching, the larvae, with their mouth and anus not yet opened. The yolk was completely absorbed 3 days after hatching (DAH), while the TL of post-larvae was 4.72 ± 0.07 mm. At 40 DAH, the juveniles had grown to 30.44 ± 4.07 mm in TL, body depth increased, the body color changed to a black, yellow, and light gray-blue color, and 3–4 vertical stripes appeared. At 45 DAH, the juveniles were 38.67 ± 5.65 mm in TL and 10.10 ± 0.94 mm in body depth.
    [Show full text]
  • Surface Phenotype Changes and Increased Response to Oxidative Stress in CD4+Cd25high T Cells
    biomedicines Article Surface Phenotype Changes and Increased Response to Oxidative Stress in CD4+CD25high T Cells Yoshiki Yamamoto 1,*, Takaharu Negoro 2, Rui Tada 3 , Michiaki Narushima 4, Akane Hoshi 2, Yoichi Negishi 3,* and Yasuko Nakano 2 1 Department of Paediatrics, Tokyo Metropolitan Ebara Hospital, Tokyo 145-0065, Japan 2 Department of Pharmacogenomics, School of Pharmacy, Showa University, Tokyo 142-8555, Japan; [email protected] (T.N.); [email protected] (A.H.); [email protected] (Y.N.) 3 Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; [email protected] 4 Department of Internal Medicine, Showa University Northern Yokohama Hospital, Kanagawa 224-8503, Japan; [email protected] * Correspondence: [email protected] (Y.Y.); [email protected] (Y.N.); Tel.: +81-3-5734-8000 (Y.Y.); +81-42-676-3182 (Y.N.) + + + + Abstract: Conversion of CD4 CD25 FOXP3 T regulatory cells (Tregs) from the immature (CD45RA ) to mature (CD45RO+) phenotype has been shown during development and allergic reactions. The relative frequencies of these Treg phenotypes and their responses to oxidative stress during devel- opment and allergic inflammation were analysed in samples from paediatric and adult subjects. The FOXP3lowCD45RA+ population was dominant in early childhood, while the percentage of high + FOXP3 CD45RO cells began increasing in the first year of life. These phenotypic changes were observed in subjects with and without asthma. Further, there was a significant increase in phospho- Citation: Yamamoto, Y.; Negoro, T.; + high rylated ERK1/2 (pERK1/2) protein in hydrogen peroxide (H2O2)-treated CD4 CD25 cells in Tada, R.; Narushima, M.; Hoshi, A.; adults with asthma compared with those without asthma.
    [Show full text]
  • Oxidative Stress Modulates the Expression Pattern of Peroxiredoxin-6 in Peripheral Blood Mononuclear Cells of Asthmatic Patients and Bronchial Epithelial Cells
    Allergy Asthma Immunol Res. 2020 May;12(3):523-536 https://doi.org/10.4168/aair.2020.12.3.523 pISSN 2092-7355·eISSN 2092-7363 Original Article Oxidative Stress Modulates the Expression Pattern of Peroxiredoxin-6 in Peripheral Blood Mononuclear Cells of Asthmatic Patients and Bronchial Epithelial Cells Hyun Jae Shim ,1 So-Young Park ,2 Hyouk-Soo Kwon ,1 Woo-Jung Song ,1 Tae-Bum Kim ,1 Keun-Ai Moon ,1 Jun-Pyo Choi ,1 Sin-Jeong Kim ,1 You Sook Cho 1* 1Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea 2Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Konkuk University Medical Center, Seoul, Korea Received: Jul 8, 2019 ABSTRACT Revised: Nov 29, 2019 Accepted: Dec 23, 2019 Purpose: Reduction-oxidation reaction homeostasis is vital for regulating inflammatory Correspondence to conditions and its dysregulation may affect the pathogenesis of chronic airway inflammatory You Sook Cho, MD, PhD diseases such as asthma. Peroxiredoxin-6, an important intracellular anti-oxidant molecule, Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan is reported to be highly expressed in the airways and lungs. The aim of this study was to Medical Center, University of Ulsan College of analyze the expression pattern of peroxiredoxin-6 in the peripheral blood mononuclear cells Medicine, 88 Olympic-ro 43-gil, Songpa-gu, (PBMCs) of asthmatic patients and in bronchial epithelial cells (BECs). Seoul 05505, Korea. Methods: The expression levels and modifications of peroxiredoxin-6 were evaluated in Tel: +82-2-3010-3285 PBMCs from 22 asthmatic patients.
    [Show full text]
  • Overview on Peroxiredoxin
    Mol. Cells 2016; 39(1): 1-5 http://dx.doi.org/10.14348/molcells.2016.2368 Molecules and Cells http://molcells.org Overview Established in 1990 Overview on Peroxiredoxin Sue Goo Rhee* Peroxiredoxins (Prxs) are a very large and highly con- 2-Cys Prxs Tsa1 and Tsa2, two atypical 2-Cys Prxs Ahp1 and served family of peroxidases that reduce peroxides, with a nTpx (where n stands for nucleus), and one 1-Cys mTpx conserved cysteine residue, designated the “peroxidatic” (where m stands for mitochondria) [see the review by by Tole- Cys (CP) serving as the site of oxidation by peroxides (Hall dano and Huang (2016)]. et al., 2011; Rhee et al., 2012). Peroxides oxidize the CP-SH to cysteine sulfenic acid (CP–SOH), which then reacts with CLASSIFICATION another cysteine residue, named the “resolving” Cys (CR) to form a disulfide that is subsequently reduced by an The CP residue is conserved in all Prx enzymes. On the basis appropriate electron donor to complete a catalytic cycle. of the location or absence of the CR, Prxs are classified into 2- This overview summarizes the status of studies on Prxs Cys, atypical 2-Cys, and 1-Cys Prx subfamilies (Chae et al., and relates the following 10 minireviews. 1994b; Rhee et al., 2001; Wood et al., 2003b). 2-Cys Prx en- 1 zymes are homodimeric and contain two conserved (CP and CR) cysteine residues per subunit. The CP–SOH reacts with the NOMENCLATURE CR–SH of the other subunit to form an intersubunit disulfide. In atypical 2-Cys PrxV, the CP–SOH reacts with the CR–SH of the As in all biology, acronyms are overwhelming in Prx literature.
    [Show full text]
  • Long-Distance Transoceanic Rafting Communities on Tsunami Marine Debris 東日本大震災による津波にともなう漂着瓦礫がもたらした 海洋無脊椎動物の越境移動について
    Long-Distance Transoceanic Rafting Communities on Tsunami Marine Debris 東日本大震災による津波にともなう漂着瓦礫がもたらした 海洋無脊椎動物の越境移動について TUMSAT, Shinagawa Campus May 18, 2017 James T. Carlton (Williams College) John Chapman Oregon State University Jonathan Geller Moss Landing Marine Laboratories Jessica Miller Oregon State University Gregory Ruiz Smithsonian Environmental Research Center Our first “meeting” (encounter) in North America with Japanese Tsunami Marine Debris (JTMD): June 5, 2012, in Oregon • On the morning of Tuesday, June 5, 2012 • 451 days (14.5 months) after March 11, 2011 …….. • Morning beach walkers reported that a “large dock” had floated ashore just north of, Newport, Oregon Port of Misawa, built 2008 7,000 km journey across the Pacific Ocean 2.2 meters 20 meters 5.8 meters Mediterranean mussel Wakame Mytilus galloprovincialis Undaria pinnatifida Inside the dock: Seastar Asterias amurensis Examples of coastal organisms on “Misawa 1”: Landed Agate Beach, Oregon, June 4, 2012 Sea urchin Temnotrema sculptum Sea cucumber Havelockia Seastar Asterias Shore crab versicolor Semibalanus amurensis Hemigrapsus Megabalanus ECHINODERMS sanguineus cariosus rosa Crab BARNACLES Sea squirts Oedignathus Styela sp. inermis Oyster Crassostrea Jassa marmorata, Jingle shell Kelp Ampithoe valida, gigas128 species arrived Anomia Undaria Halichondria Caprella spp. Cytaeum on Misawpinan a1tifida and 3 other AMPHIPODS (chinensis) and 29 species other species SPONGES BRYOZOANS: of algae Chiton Clam Tricellaria, Mopalia Hiatella orientalis Cryptosula HYDROIDS spp.
    [Show full text]
  • SIRT2 Deacetylates and Inhibits the Peroxidase Activity of Peroxiredoxin
    Published OnlineFirst August 8, 2016; DOI: 10.1158/0008-5472.CAN-16-0126 Cancer Therapeutics, Targets, and Chemical Biology Research SIRT2 Deacetylates and Inhibits the Peroxidase Activity of Peroxiredoxin-1 to Sensitize Breast Cancer Cells to Oxidant Stress-Inducing Agents Warren Fiskus1, Veena Coothankandaswamy2, Jianguang Chen3, Hongwei Ma4, Kyungsoo Ha5, Dyana T. Saenz1, Stephanie S. Krieger1, Christopher P. Mill1, Baohua Sun1, Peng Huang6, Jeffrey S. Mumm7, Ari M. Melnick8, and Kapil N. Bhalla1 Abstract SIRT2 is a protein deacetylase with tumor suppressor activ- induced by oxidative stress, as associated with increased levels ity in breast and liver tumors where it is mutated; however, the of nuclear FOXO3A and the proapoptotic BIM protein. In critical substrates mediating its antitumor activity are not fully addition, elevated levels of SIRT2 sensitized breast cancer cells defined. Here we demonstrate that SIRT2 binds, deacetylates, to arsenic trioxide, an approved therapeutic agent, along and inhibits the peroxidase activity of the antioxidant protein with other intracellular ROS-inducing agents. Conversely, anti- peroxiredoxin (Prdx-1) in breast cancer cells. Ectopic over- sense RNA-mediated attenuation of SIRT2 reversed ROS- expression of SIRT2, but not its catalytically dead mutant, induced toxicity as demonstrated in a zebrafish embryo model increased intracellular levels of reactive oxygen species (ROS) system. Collectively, our findings suggest that the tumor induced by hydrogen peroxide, which led to increased levels of suppressor activity of SIRT2 requires its ability to restrict the an overoxidized and multimeric form of Prdx-1 with activity as antioxidant activity of Prdx-1, thereby sensitizing breast a molecular chaperone. Elevated levels of SIRT2 sensitized cancer cells to ROS-induced DNA damage and cell cytotoxicity.
    [Show full text]
  • Anti-Oxidant Pathogenesis of High-Grade Glioma DISSERTATION
    Anti-Oxidant Pathogenesis of High-Grade Glioma DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ji Eun Song, M.S. Graduate Program in Molecular, Cellular and Developmental Biology The Ohio State University 2015 Dissertation Committee: Dr. Chang-Hyuk Kwon, Advisor Dr. Balveen Kaur, Co-advisor Dr. Vincenzo Coppola Dr. Thomas Ludwig Copyright by Ji Eun Song 2015 Abstract High-grade glioma (HGG) is the most aggressive primary brain malignancies, and is incurable despite the best combination of current cancer therapies. A median patient survival of glioblastoma (GBM, the most aggressive grade 4 glioma) is only 14.6 months (Stupp et al., 2005). Therefore, innovative and more effective therapy for HGG is urgently needed. It has been known that dysregulated reactive oxygen species (ROS) signaling is associated with many human diseases, including cancers. Oxidative stress by excessive accumulation of ROS has been known to promote carcinogenesis through both genetic and epigenetic modifications (Ziech, Franco, Pappa, & Panayiotidis, 2011). Expressions of anti-oxidant proteins are reportedly increased by ROS- induced oxidative stress (Polytarchou, Pfau, Hatziapostolou, & Tsichlis, 2008). Because excessive oxidative stress can cause cellular senescence and apoptosis, it appears that tumor cells overexpress anti-oxidant proteins as a defense mechanism against elevated ROS. Therefore, targeting a predominant anti-oxidant protein could be an effective strategy for treating tumors. Peroxiredoxin 4 (PRDX4) is an ROS-scavenging enzyme and facilitates proper protein folding in the endoplasmic reticulum (ER). We reported that PRDX4 levels ii were highly increased in a majority of human HGGs as well as in a mouse model of HGG.
    [Show full text]
  • Peroxiredoxins: Guardians Against Oxidative Stress and Modulators of Peroxide Signaling
    Peroxiredoxins: Guardians Against Oxidative Stress and Modulators of Peroxide Signaling Perkins, A., Nelson, K. J., Parsonage, D., Poole, L. B., & Karplus, P. A. (2015). Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends in Biochemical Sciences, 40(8), 435-445. doi:10.1016/j.tibs.2015.05.001 10.1016/j.tibs.2015.05.001 Elsevier Accepted Manuscript http://cdss.library.oregonstate.edu/sa-termsofuse Revised Manuscript clean Click here to download Manuscript: Peroxiredoxin-TiBS-revised-4-25-15-clean.docx 1 2 3 4 5 6 7 8 9 Peroxiredoxins: Guardians Against Oxidative Stress and Modulators of 10 11 12 Peroxide Signaling 13 14 15 16 17 18 19 1 2 2 2 20 Arden Perkins, Kimberly J. Nelson, Derek Parsonage, Leslie B. Poole * 21 22 23 and P. Andrew Karplus1* 24 25 26 27 28 29 30 31 1 Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97333 32 33 34 2 Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 35 36 37 38 39 40 41 *To whom correspondence should be addressed: 42 43 44 L.B. Poole, ph: 336-716-6711, fax: 336-713-1283, email: [email protected] 45 46 47 P.A. Karplus, ph: 541-737-3200, fax: 541- 737-0481, email: [email protected] 48 49 50 51 52 53 54 55 Keywords: antioxidant enzyme, peroxidase, redox signaling, antioxidant defense 56 57 58 59 60 61 62 63 64 65 1 2 3 4 5 6 7 8 9 Abstract 10 11 12 13 Peroxiredoxins (Prxs) are a ubiquitous family of cysteine-dependent peroxidase enzymes that play dominant 14 15 16 roles in regulating peroxide levels within cells.
    [Show full text]
  • Ecological Consequences of Marine Debris: Understanding Large-Scale Species Transport on Tsunami Debris and Research Priorities in Oregon
    AN ABSTRACT OF THE THESIS OF Reva Gillman for the degree of Master of Science in Marine Resource Management presented on September 5, 2018. Title: Ecological Consequences of Marine DeBris: Understanding Large-Scale Species Transport on Tsunami DeBris and Research Priorities in Oregon Abstract approved: ______________________________________________________ Jessica A. Miller The release of marine deBris into the oceans and seas is a global issue of growing concern. These materials are harmful to marine environments and can also transport non-native species to novel habitats. Non-native species floating on marine litter is one of the lesser known impacts associated with marine deBris. In fact, nearly 300 living coastal marine species traveled thousands of kilometers on debris items from the 2011 Great East Japan Earthquake and tsunami and reached the Hawaiian Archipelago and North American coast. It is unclear if marine deBris provides a novel transport vector that transports additional species or simply an assemblage similar to one transported on other known vectors, such as hull fouling, ballast water, and aquaculture. Therefore, I characterized the distributional, environmental, and life history traits of the species identified on Japanese tsunami debris with (n=36) and without (n=61) prior transport on known anthropogenic vectors to determine if there are distinct traits associated with species that are transported on anthropogenic vectors. A more detailed comparison of species traits was then completed among the four, most commonly reported prior vectors ballast water, hull fouling, aquaculture, and natural rafting and secondary spread (defined as the transport of organisms through drifting currents, where the species are directly in the water column, or traveling on floating natural rafts), to characterize traits that may make species more amenaBle to transport on specific vectors.
    [Show full text]
  • Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols Focus Review †,‡ †,‡ ‡,§ ‡,§ ∥ Ari Zeida, Madia Trujillo, Gerardo Ferrer-Sueta, Ana Denicola, Darío A
    Review Cite This: Chem. Rev. 2019, 119, 10829−10855 pubs.acs.org/CR Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols Focus Review †,‡ †,‡ ‡,§ ‡,§ ∥ Ari Zeida, Madia Trujillo, Gerardo Ferrer-Sueta, Ana Denicola, Darío A. Estrin, and Rafael Radi*,†,‡ † ‡ § Departamento de Bioquímica, Centro de Investigaciones Biomedicaś (CEINBIO), Facultad de Medicina, and Laboratorio de Fisicoquímica Biologica,́ Facultad de Ciencias, Universidad de la Republica,́ 11800 Montevideo, Uruguay ∥ Departamento de Química Inorganica,́ Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2160 Buenos Aires, Argentina ABSTRACT: Life on Earth evolved in the presence of hydrogen peroxide, and other peroxides also emerged before and with the rise of aerobic metabolism. They were considered only as toxic byproducts for many years. Nowadays, peroxides are also regarded as metabolic products that play essential physiological cellular roles. Organisms have developed efficient mechanisms to metabolize peroxides, mostly based on two kinds of redox chemistry, catalases/peroxidases that depend on the heme prosthetic group to afford peroxide reduction and thiol-based peroxidases that support their redox activities on specialized fast reacting cysteine/selenocysteine (Cys/Sec) residues. Among the last group, glutathione peroxidases (GPxs) and peroxiredoxins (Prxs) are the most widespread and abundant families, and they are the leitmotif of this review. After presenting the properties and roles of different peroxides in biology, we discuss the chemical mechanisms of peroxide reduction by low molecular weight thiols, Prxs, GPxs, and other thiol-based peroxidases. Special attention is paid to the catalytic properties of Prxs and also to the importance and comparative outlook of the properties of Sec and its role in GPxs.
    [Show full text]
  • The Emerging Roles of Antioxidant Enzymes by Dietary Phytochemicals in Vascular Diseases
    life Review The Emerging Roles of Antioxidant Enzymes by Dietary Phytochemicals in Vascular Diseases Seung Eun Lee and Yong Seek Park * Department of Microbiology, School of Medicine, Kyung Hee University, Seoul 02447, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-02-961-0267 Abstract: Vascular diseases are major causes of death worldwide, causing pathologies including diabetes, atherosclerosis, and chronic obstructive pulmonary disease (COPD). Exposure of the vascular system to a variety of stressors and inducers has been implicated in the development of various human diseases, including chronic inflammatory diseases. In the vascular wall, antioxidant enzymes form the first line of defense against oxidative stress. Recently, extensive research into the beneficial effects of phytochemicals has been conducted; phytochemicals are found in commonly used spices, fruits, and herbs, and are used to prevent various pathologic conditions, including vascular diseases. The present review aims to highlight the effects of dietary phytochemicals role on antioxidant enzymes in vascular diseases. Keywords: vascular diseases; antioxidant enzymes; bioactive compounds 1. Introduction Citation: Lee, S.E.; Park, Y.S. The Vascular diseases are responsible for numerous deaths annually worldwide. The Emerging Roles of Antioxidant pathogenesis of vascular disease involves the activation of pro-inflammatory signaling Enzymes by Dietary Phytochemicals pathways, expression of cytokines/chemokines, and elevated oxidative stress. Exposure in Vascular Diseases. Life 2021, 11, 199. https://doi.org/10.3390/ to oxidative stress may directly injure the vasculature and induce vascular dysfunction life11030199 by producing dysregulation of the immune response. Oxidative stress is caused by an imbalance between the production and accumulation of reactive oxygen species (ROS) and Academic Editor: Payaningal the capacity of antioxidant defense mechanisms favoring oxidants [1].
    [Show full text]