Dam Thanh Son (University of Chicago) Les Houches, 09/06/2019

Total Page:16

File Type:pdf, Size:1020Kb

Dam Thanh Son (University of Chicago) Les Houches, 09/06/2019 Field theory of composite fermions Dam Thanh Son (University of Chicago) Les Houches, 09/06/2019 Part 1: FQHE and field theoretic duality, Dirac composite fermion Part 2: Hydrodynamics of the composite fermions, “emergent graviton” Fractional quantum Hall effect and field-theoretic dualities Plan • Fractional quantum Hall effect • Composite fermion • Duality The quantum Hall effect The microscopic theory of the quantum Hall effect 2D electrons in a magnetic field At the microscopic level: a known Hamiltonian (p + eA )2 e2 H = a a + 2m xa xb a a,b X hXi | − | + impurities Landau levels and IQHE • Ignore interactions between electrons • Energy levels of charged particle in magnetic field in 2D: Landau levels • When some Landau level fully occupied: integer quantum Hall effect (IQHE) von Klitzing et al 1980 Landau levels and IQHE • Ignore interactions between electrons • Energy levels of charged particle in magnetic field in 2D: Landau levels • When some Landau level fully occupied: integer quantum Hall effect (IQHE) von Klitzing et al 1980 n=2 B ∆ = n=1 m BA n=0 degeneracy 2⇡ The fractional quantum Hall effect (FQHE) n=2 n=1 n=0 The fractional quantum Hall effect (FQHE) filling factor number of electrons ⌫ = <latexit sha1_base64="Y48WDBW+Xx4eF9rf0IYihV+70Wg=">AAACPXicbZBLSxxBFIVvG42PaJwky2wKJeBq6M4mbkRRAlm4mEBmFKaHobrm9lhYj6bqtjg0Dfk/+RH5DS4TF5JFdiFbt1bPiPi6UHA45xS36ssKJT3F8a9o7sX8wsvFpeWVV6trr9dbb972vC2dwK6wyrrjjHtU0mCXJCk8LhxynSk8yk4PmvzoDJ2X1nyjSYEDzcdG5lJwCtaw9Tk15Q5Lc8dFlRKek9OVKXWGjtmcoUJBzhpf13fpCMdoMPQnTYOzw8O6HrY243Y8HXYnksdic2/36uI7AHSGrT/pyIpSoyGhuPf9JC5oUHFHUiisV9LSY8HFKR9jP0jDNfpBNf1uzT4EZ8Ry68IxxKbu/RsV195PdBaamtOJf5w15nNZv6R8e1BJU5SERswW5aViZFnDjo2kCzzUJAgunAxvZeKEBxQUCD/YkumGyRMCT0XvYzuJ28nXAGcfZrME72EDtiCBT7AHX6ADXRDwAy7gN1xGP6O/0b/o/6w6F93eeQcPJrq+AVyMs8U=</latexit>sha1_base64="RnD/0P8J+f+ENJA6SRREledA0Ps=">AAACPXicbZDNSxtBGMZn/TZ+RXv0MhgEL4ZdL+YiilLagweFJgayIcxO3o2D87HMvCuGZf8i/4j+DR7bHsRDb6XXXp1NilTtCwMPz/MM78wvyaRwGIbfgpnZufmFxaXl2srq2vpGfXOr40xuObS5kcZ2E+ZACg1tFCihm1lgKpFwldycVfnVLVgnjP6C4wz6io20SAVn6K1B/WOs8yMap5bxIka4Q6sKnasELDUpBQkcrdGuLF/SIYxAg++Pqwaj5+dlOag3wmY4GfoioreicXL8+HC33/p0Mag/xUPDcwUauWTO9aIww37BLAouoazFuYOM8Rs2gp6Xmilw/WLy3ZLuemdIU2P90Ugn7r83CqacG6vENxXDa/c2q8z/Zb0c01a/EDrLETSfLkpzSdHQih0dCut5yLEXjFvh30r5NfMo0BN+tSVRFZN3BN6LzkEzCpvRpYdzSqazRLbJDtkjETkkJ+QzuSBtwsk9eSDfyY/ga/Az+BX8nlZngr93PpBXE/x5BkEltGk=</latexit>sha1_base64="ye6i+Bdr028MoBEwHHB/D3tfM20=">AAACPXicbZA7SwQxFIUzvt+uWtoEF8FqmbHRRhBFsLBQcFXYWZZM9s4azGNI7ojLML/IH+FvsFQrCzuxtTWzLuLrQuBwzgk3+ZJMCodh+BCMjI6NT0xOTc/Mzs0vLNaWls+cyS2HJjfS2IuEOZBCQxMFSrjILDCVSDhPrvar/PwarBNGn2I/g7ZiPS1SwRl6q1M7iHW+Q+PUMl7ECDdoVaFzlYClJqUggaM12pXlV9qFHmjw/X7VYPToqCw7tXrYCAdDv0T0W9TJcI47tee4a3iuQCOXzLlWFGbYLphFwSWUM3HuIGP8ivWg5aVmCly7GHy3pOve6dLUWH800oH7/UbBlHN9lfimYnjpfmeV+V/WyjHdbhdCZzmC5p+L0lxSNLRiR7vCeh6y7wXjVvi3Un7JPAr0hH9sSVTF5A+Bv+JssxGFjegkrO/uDelMkVWyRjZIRLbILjkkx6RJOLkl9+SRPAV3wUvwGrx9VkeC4Z0V8mOC9w+Um7EW</latexit> degeneracy of a LL n=2 n=1 n=0 The fractional quantum Hall effect (FQHE) filling factor number of electrons ⌫ = <latexit sha1_base64="Y48WDBW+Xx4eF9rf0IYihV+70Wg=">AAACPXicbZBLSxxBFIVvG42PaJwky2wKJeBq6M4mbkRRAlm4mEBmFKaHobrm9lhYj6bqtjg0Dfk/+RH5DS4TF5JFdiFbt1bPiPi6UHA45xS36ssKJT3F8a9o7sX8wsvFpeWVV6trr9dbb972vC2dwK6wyrrjjHtU0mCXJCk8LhxynSk8yk4PmvzoDJ2X1nyjSYEDzcdG5lJwCtaw9Tk15Q5Lc8dFlRKek9OVKXWGjtmcoUJBzhpf13fpCMdoMPQnTYOzw8O6HrY243Y8HXYnksdic2/36uI7AHSGrT/pyIpSoyGhuPf9JC5oUHFHUiisV9LSY8HFKR9jP0jDNfpBNf1uzT4EZ8Ry68IxxKbu/RsV195PdBaamtOJf5w15nNZv6R8e1BJU5SERswW5aViZFnDjo2kCzzUJAgunAxvZeKEBxQUCD/YkumGyRMCT0XvYzuJ28nXAGcfZrME72EDtiCBT7AHX6ADXRDwAy7gN1xGP6O/0b/o/6w6F93eeQcPJrq+AVyMs8U=</latexit>sha1_base64="RnD/0P8J+f+ENJA6SRREledA0Ps=">AAACPXicbZDNSxtBGMZn/TZ+RXv0MhgEL4ZdL+YiilLagweFJgayIcxO3o2D87HMvCuGZf8i/4j+DR7bHsRDb6XXXp1NilTtCwMPz/MM78wvyaRwGIbfgpnZufmFxaXl2srq2vpGfXOr40xuObS5kcZ2E+ZACg1tFCihm1lgKpFwldycVfnVLVgnjP6C4wz6io20SAVn6K1B/WOs8yMap5bxIka4Q6sKnasELDUpBQkcrdGuLF/SIYxAg++Pqwaj5+dlOag3wmY4GfoioreicXL8+HC33/p0Mag/xUPDcwUauWTO9aIww37BLAouoazFuYOM8Rs2gp6Xmilw/WLy3ZLuemdIU2P90Ugn7r83CqacG6vENxXDa/c2q8z/Zb0c01a/EDrLETSfLkpzSdHQih0dCut5yLEXjFvh30r5NfMo0BN+tSVRFZN3BN6LzkEzCpvRpYdzSqazRLbJDtkjETkkJ+QzuSBtwsk9eSDfyY/ga/Az+BX8nlZngr93PpBXE/x5BkEltGk=</latexit>sha1_base64="ye6i+Bdr028MoBEwHHB/D3tfM20=">AAACPXicbZA7SwQxFIUzvt+uWtoEF8FqmbHRRhBFsLBQcFXYWZZM9s4azGNI7ojLML/IH+FvsFQrCzuxtTWzLuLrQuBwzgk3+ZJMCodh+BCMjI6NT0xOTc/Mzs0vLNaWls+cyS2HJjfS2IuEOZBCQxMFSrjILDCVSDhPrvar/PwarBNGn2I/g7ZiPS1SwRl6q1M7iHW+Q+PUMl7ECDdoVaFzlYClJqUggaM12pXlV9qFHmjw/X7VYPToqCw7tXrYCAdDv0T0W9TJcI47tee4a3iuQCOXzLlWFGbYLphFwSWUM3HuIGP8ivWg5aVmCly7GHy3pOve6dLUWH800oH7/UbBlHN9lfimYnjpfmeV+V/WyjHdbhdCZzmC5p+L0lxSNLRiR7vCeh6y7wXjVvi3Un7JPAr0hH9sSVTF5A+Bv+JssxGFjegkrO/uDelMkVWyRjZIRLbILjkkx6RJOLkl9+SRPAV3wUvwGrx9VkeC4Z0V8mOC9w+Um7EW</latexit> degeneracy of a LL n=2 n=1 n=0 ⌫<latexit sha1_base64="VsEgriGm/ZwWg/ckepm5BlGRjm4=">AAAB+3icbVA9SwNBEJ2LXzF+RS1tFoNgFe5sTCEYtLGM4CWB5Ih7m71kye7esbsnhON+g63WdmLrj7H0Z9i5+ShM4oOBx3szzMwLE860cd0vp7C2vrG5Vdwu7ezu7R+UD4+aOk4VoT6JeazaIdaUM0l9wwyn7URRLEJOW+HoduK3nqjSLJYPZpzQQOCBZBEj2FjJ78r0yuuVK27VnQKtEm9OKtc/UfQIAI1e+bvbj0kqqDSEY607npuYIMPKMMJpXuqmmiaYjPCAdiyVWFAdZNNjc3RmlT6KYmVLGjRV/05kWGg9FqHtFNgM9bI3Ef/zOqmJakHGZJIaKslsUZRyZGI0+Rz1maLE8LElmChmb0VkiBUmxuazsCUUuc3EW05glTQvqp5b9e7dSv0GZijCCZzCOXhwCXW4gwb4QIDBM7zAq5M7b8678zFrLTjzmWNYgPP5C2ZMl04=</latexit>sha1_base64="Y3OXJQg5XDLqHllaXg66BdSQAFs=">AAAB+3icbVA9SwNBEJ2LXzF+RS1tFoNgFe5stBAM2lhG8JJAcoS9zV6yZHfv2N0TwnG/wVZrO7H1x1j6M+zcXFKYxAcDj/dmmJkXJpxp47pfTmltfWNzq7xd2dnd2z+oHh61dJwqQn0S81h1QqwpZ5L6hhlOO4miWISctsPx3dRvP1GlWSwfzSShgcBDySJGsLGS35Pptdev1ty6WwCtEm9Oajc/UYFmv/rdG8QkFVQawrHWXc9NTJBhZRjhNK/0Uk0TTMZ4SLuWSiyoDrLi2BydWWWAoljZkgYV6t+JDAutJyK0nQKbkV72puJ/Xjc10VWQMZmkhkoyWxSlHJkYTT9HA6YoMXxiCSaK2VsRGWGFibH5LGwJRW4z8ZYTWCWti7rn1r0Ht9a4hRnKcAKncA4eXEID7qEJPhBg8Awv8Orkzpvz7nzMWkvOfOYYFuB8/gIZjpiG</latexit>sha1_base64="w+2djzQHowBJAyGU/JAQ9zYlBhE=">AAAB+3icbVA9T8MwEL2Ur1K+AowsFhUSU5WwwMBQwcJYJNJWaqPKcZ3Wqu1EtoNURfkNrDCzIVZ+DCP/BLfNQFuedNLTe3e6uxelnGnjed9OZWNza3unulvb2z84PHKPT9o6yRShAUl4oroR1pQzSQPDDKfdVFEsIk470eR+5neeqdIskU9mmtJQ4JFkMSPYWCnoy+zWH7h1r+HNgdaJX5I6lGgN3J/+MCGZoNIQjrXu+V5qwhwrwwinRa2faZpiMsEj2rNUYkF1mM+PLdCFVYYoTpQtadBc/TuRY6H1VES2U2Az1qveTPzP62UmvglzJtPMUEkWi+KMI5Og2edoyBQlhk8twUQxeysiY6wwMTafpS2RKGwm/moC66R91fC9hv/o1Zt3ZTpVOINzuAQfrqEJD9CCAAgweIFXeHMK5935cD4XrRWnnDmFJThfvwbKlOo=</latexit> < 1 The fractional quantum Hall effect (FQHE) filling factor number of electrons ⌫ = <latexit sha1_base64="Y48WDBW+Xx4eF9rf0IYihV+70Wg=">AAACPXicbZBLSxxBFIVvG42PaJwky2wKJeBq6M4mbkRRAlm4mEBmFKaHobrm9lhYj6bqtjg0Dfk/+RH5DS4TF5JFdiFbt1bPiPi6UHA45xS36ssKJT3F8a9o7sX8wsvFpeWVV6trr9dbb972vC2dwK6wyrrjjHtU0mCXJCk8LhxynSk8yk4PmvzoDJ2X1nyjSYEDzcdG5lJwCtaw9Tk15Q5Lc8dFlRKek9OVKXWGjtmcoUJBzhpf13fpCMdoMPQnTYOzw8O6HrY243Y8HXYnksdic2/36uI7AHSGrT/pyIpSoyGhuPf9JC5oUHFHUiisV9LSY8HFKR9jP0jDNfpBNf1uzT4EZ8Ry68IxxKbu/RsV195PdBaamtOJf5w15nNZv6R8e1BJU5SERswW5aViZFnDjo2kCzzUJAgunAxvZeKEBxQUCD/YkumGyRMCT0XvYzuJ28nXAGcfZrME72EDtiCBT7AHX6ADXRDwAy7gN1xGP6O/0b/o/6w6F93eeQcPJrq+AVyMs8U=</latexit>sha1_base64="RnD/0P8J+f+ENJA6SRREledA0Ps=">AAACPXicbZDNSxtBGMZn/TZ+RXv0MhgEL4ZdL+YiilLagweFJgayIcxO3o2D87HMvCuGZf8i/4j+DR7bHsRDb6XXXp1NilTtCwMPz/MM78wvyaRwGIbfgpnZufmFxaXl2srq2vpGfXOr40xuObS5kcZ2E+ZACg1tFCihm1lgKpFwldycVfnVLVgnjP6C4wz6io20SAVn6K1B/WOs8yMap5bxIka4Q6sKnasELDUpBQkcrdGuLF/SIYxAg++Pqwaj5+dlOag3wmY4GfoioreicXL8+HC33/p0Mag/xUPDcwUauWTO9aIww37BLAouoazFuYOM8Rs2gp6Xmilw/WLy3ZLuemdIU2P90Ugn7r83CqacG6vENxXDa/c2q8z/Zb0c01a/EDrLETSfLkpzSdHQih0dCut5yLEXjFvh30r5NfMo0BN+tSVRFZN3BN6LzkEzCpvRpYdzSqazRLbJDtkjETkkJ+QzuSBtwsk9eSDfyY/ga/Az+BX8nlZngr93PpBXE/x5BkEltGk=</latexit>sha1_base64="ye6i+Bdr028MoBEwHHB/D3tfM20=">AAACPXicbZA7SwQxFIUzvt+uWtoEF8FqmbHRRhBFsLBQcFXYWZZM9s4azGNI7ojLML/IH+FvsFQrCzuxtTWzLuLrQuBwzgk3+ZJMCodh+BCMjI6NT0xOTc/Mzs0vLNaWls+cyS2HJjfS2IuEOZBCQxMFSrjILDCVSDhPrvar/PwarBNGn2I/g7ZiPS1SwRl6q1M7iHW+Q+PUMl7ECDdoVaFzlYClJqUggaM12pXlV9qFHmjw/X7VYPToqCw7tXrYCAdDv0T0W9TJcI47tee4a3iuQCOXzLlWFGbYLphFwSWUM3HuIGP8ivWg5aVmCly7GHy3pOve6dLUWH800oH7/UbBlHN9lfimYnjpfmeV+V/WyjHdbhdCZzmC5p+L0lxSNLRiR7vCeh6y7wXjVvi3Un7JPAr0hH9sSVTF5A+Bv+JssxGFjegkrO/uDelMkVWyRjZIRLbILjkkx6RJOLkl9+SRPAV3wUvwGrx9VkeC4Z0V8mOC9w+Um7EW</latexit> degeneracy of a LL n=2 n=1 n=0 ⌫<latexit sha1_base64="VsEgriGm/ZwWg/ckepm5BlGRjm4=">AAAB+3icbVA9SwNBEJ2LXzF+RS1tFoNgFe5sTCEYtLGM4CWB5Ih7m71kye7esbsnhON+g63WdmLrj7H0Z9i5+ShM4oOBx3szzMwLE860cd0vp7C2vrG5Vdwu7ezu7R+UD4+aOk4VoT6JeazaIdaUM0l9wwyn7URRLEJOW+HoduK3nqjSLJYPZpzQQOCBZBEj2FjJ78r0yuuVK27VnQKtEm9OKtc/UfQIAI1e+bvbj0kqqDSEY607npuYIMPKMMJpXuqmmiaYjPCAdiyVWFAdZNNjc3RmlT6KYmVLGjRV/05kWGg9FqHtFNgM9bI3Ef/zOqmJakHGZJIaKslsUZRyZGI0+Rz1maLE8LElmChmb0VkiBUmxuazsCUUuc3EW05glTQvqp5b9e7dSv0GZijCCZzCOXhwCXW4gwb4QIDBM7zAq5M7b8678zFrLTjzmWNYgPP5C2ZMl04=</latexit>sha1_base64="Y3OXJQg5XDLqHllaXg66BdSQAFs=">AAAB+3icbVA9SwNBEJ2LXzF+RS1tFoNgFe5stBAM2lhG8JJAcoS9zV6yZHfv2N0TwnG/wVZrO7H1x1j6M+zcXFKYxAcDj/dmmJkXJpxp47pfTmltfWNzq7xd2dnd2z+oHh61dJwqQn0S81h1QqwpZ5L6hhlOO4miWISctsPx3dRvP1GlWSwfzSShgcBDySJGsLGS35Pptdev1ty6WwCtEm9Oajc/UYFmv/rdG8QkFVQawrHWXc9NTJBhZRjhNK/0Uk0TTMZ4SLuWSiyoDrLi2BydWWWAoljZkgYV6t+JDAutJyK0nQKbkV72puJ/Xjc10VWQMZmkhkoyWxSlHJkYTT9HA6YoMXxiCSaK2VsRGWGFibH5LGwJRW4z8ZYTWCWti7rn1r0Ht9a4hRnKcAKncA4eXEID7qEJPhBg8Awv8Orkzpvz7nzMWkvOfOYYFuB8/gIZjpiG</latexit>sha1_base64="w+2djzQHowBJAyGU/JAQ9zYlBhE=">AAAB+3icbVA9T8MwEL2Ur1K+AowsFhUSU5WwwMBQwcJYJNJWaqPKcZ3Wqu1EtoNURfkNrDCzIVZ+DCP/BLfNQFuedNLTe3e6uxelnGnjed9OZWNza3unulvb2z84PHKPT9o6yRShAUl4oroR1pQzSQPDDKfdVFEsIk470eR+5neeqdIskU9mmtJQ4JFkMSPYWCnoy+zWH7h1r+HNgdaJX5I6lGgN3J/+MCGZoNIQjrXu+V5qwhwrwwinRa2faZpiMsEj2rNUYkF1mM+PLdCFVYYoTpQtadBc/TuRY6H1VES2U2Az1qveTPzP62UmvglzJtPMUEkWi+KMI5Og2edoyBQlhk8twUQxeysiY6wwMTafpS2RKGwm/moC66R91fC9hv/o1Zt3ZTpVOINzuAQfrqEJD9CCAAgweIFXeHMK5935cD4XrRWnnDmFJThfvwbKlOo=</latexit>
Recommended publications
  • Composite Fermion Theory of Excitations in the Fractional Quantum Hall Effect
    Solid State Communications 135 (2005) 602–609 www.elsevier.com/locate/ssc Composite fermion theory of excitations in the fractional quantum Hall effect J.K. Jaina,*, K. Parkb, M.R. Petersona, V.W. Scarolab a104 Davey Laboratory, Physics Department, The Pennsylvania State University, University Park, PA 16802, USA bPhysics Department, Condensed Matter Theory Center, University of Maryland, College Park, MD 20742, USA Received 28 February 2005; accepted 1 May 2005 by the guest editors Available online 13 May 2005 Abstract Transport experiments are sensitive to charged ‘quasiparticle’ excitations of the fractional quantum Hall effect. Inelastic Raman scattering experiments have probed an amazing variety of other excitations: excitons, rotons, bi-rotons, trions, flavor altering excitons, spin waves, spin-flip excitons, and spin-flip rotons. This paper reviews the status of our theoretical understanding of these excitations. q 2005 Elsevier Ltd. All rights reserved. PACS: 71.10.Pm; 73.43.Kf Keywords: A. Composite fermion; D. Fractional quantum Hall effects 1. Introduction have revealed a strikingly rich structure with many kinds of excitations. Transport experiments told us quite early on that there is There has also been substantial theoretical progress on a gap to charged excitations in the fractional quantum Hall this issue, and an excellent description of the neutral effect (FQHE) [1]. The longitudinal resistance was seen to excitations has been achieved in terms of a particle hole pair behave like rxxZexp(KD/2kBT) in a range of temperature, of composite fermions (CFs), which dovetails nicely with and the quantity D is interpreted as the minimum energy our understanding of the incompressible ground states as an required to create a charged excitation.
    [Show full text]
  • Aspects of the Quantum Hall Effect
    Aspects of the Quantum Hall Effect S. A. Parameswaran Slightly edited version of the introductory chapter from Quixotic Order and Bro- ken Symmetry in the Quantum Hall Effect and its Analogs, S.A. Parameswaran, Princeton University Ph.D. Thesis, 2011. Contents I. A Brief History, 1879-1984 2 II. Samples and Probes 6 III. The Integer Effect 8 A. Single-particle physics: Landau levels 9 B. Semiclassical Percolation 10 IV. Why is the Quantization Robust? 12 A. Laughlin’s Argument 12 B. Hall Conductance as a Topological Invariant 15 V. The Fractional Effect 17 A. Trial Wavefunctions 18 B. Plasma Analogy 21 C. Neutral Excitations and the Single-Mode Approximation 22 D. Fractionally Charged Excitations 23 E. Life on the Edge 25 F. Hierarchies 27 1. Haldane-Halperin Hierarchy 28 2. Composite Fermions and the Jain Hierarchy 29 VI. Half-Filled Landau Levels 30 A. Composite Fermions and the Halperin-Lee-Read Theory 31 2 B. Paired States of Composite Fermions 36 VII. Landau-Ginzburg Theories of the Quantum Hall Effect 39 A. Composite Boson Chern-Simons theory 40 B. A Landau-Ginzburg Theory for Paired Quantum Hall States 41 C. Off-Diagonal Long Range Order in the lowest Landau level 44 VIII. Type I and Type II Quantum Hall Liquids 46 IX. ν =1 is a Fraction Too: Quantum Hall Ferromagnets 47 A. Spin Waves 49 B. Skyrmions 49 C. Low-energy Dynamics 50 D. Other Examples 53 X. Antiferromagnetic Analogs and AKLT States 53 References 56 I. A BRIEF HISTORY, 1879-1984 In 1879, Edwin Hall, a twenty-four-year-old graduate student at Johns Hopkins Univer- sity, was confounded by two dramatically different points of view on the behavior of a fixed, current-carrying wire placed in a magnetic field.
    [Show full text]
  • Is the Composite Fermion a Dirac Particle?
    PHYSICAL REVIEW X 5, 031027 (2015) Is the Composite Fermion a Dirac Particle? Dam Thanh Son Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, Illinois 60637, USA (Received 19 February 2015; published 2 September 2015) We propose a particle-hole symmetric theory of the Fermi-liquid ground state of a half-filled Landau level. This theory should be applicable for a Dirac fermion in the magnetic field at charge neutrality, as 1 well as for the ν ¼ 2 quantum Hall ground state of nonrelativistic fermions in the limit of negligible inter- Landau-level mixing. We argue that when particle-hole symmetry is exact, the composite fermion is a massless Dirac fermion, characterized by a Berry phase of π around the Fermi circle. We write down a tentative effective field theory of such a fermion and discuss the discrete symmetries, in particular, CP. The Dirac composite fermions interact through a gauge, but non-Chern-Simons, interaction. The particle-hole conjugate pair of Jain-sequence states at filling factors n=ð2n þ 1Þ and ðn þ 1Þ=ð2n þ 1Þ, which in the conventional composite fermion picture corresponds to integer quantum Hall states with different filling 1 factors, n and n þ 1, is now mapped to the same half-integer filling factor n þ 2 of the Dirac composite fermion. The Pfaffian and anti-Pfaffian states are interpreted as d-wave Bardeen-Cooper-Schrieffer paired states of the Dirac fermion with orbital angular momentum of opposite signs, while s-wave pairing would give rise to a particle-hole symmetric non-Abelian gapped phase.
    [Show full text]
  • Composite Fermions and the Fractional Quantum Hall Effect: A
    1 Composite Fermions And The Fractional Quantum Hall Effect: A Tutorial I. PRELIMINARIES The phenomenon of the fractional quantum Hall effect (FQHE) occurs when electrons are confined to two dimen- sions, cooled to near absolute zero temperature, and exposed to a strong magnetic field. It is one of the most important phenomena discovered during the last three decades. When one considers the scope and richness of phenomenology and the new physical principles required for its understanding, the FQHE rivals the phenomena of superconductivity and superfluidity. These lecture notes present an introduction to the essential aspects of the composite fermion (CF) theory of the FQHE, based on a set of lectures at a 2011 summer school in Bangalore, India, which, in turn, borrowed heavily from Ref. 1. The books1{3 and review articles4{9 listed at the end should be consulted for further details, more advanced topics, and references to the original papers. II. BACKGROUND This section contains some standard results. The missing derivations can be found in the literature. A. Definitions We collect here certain relevant units that will be useful below: hc flux quantum = φ = (1) 0 e c 1=2 25 magnetic length = ` = ~ nm ; (2) eB ≈ pB[T] eB cyclotron energy = ~!c = ~ 20B[T] K ; (3) mbc ≈ e2 p Coulomb scale = VC 50 B[T] K ; (4) ≡ ` ≈ g mb Zeeman splitting = EZ = 2gµBB S = ~!c 0:3B[T] K: (5) · 2 me ≈ The last term in Eq. (2) quotes the magnetic length in nm. The last terms in Eqs. (3), (4), and (5) give the energy (in Kelvin) for parameters appropriate for GaAs (which has produced the best data so far).
    [Show full text]
  • Coulomb Energy of Quasiparticle Excitations in Chern±Simons Composite Fermion States
    PERGAMON Solid State Communications 122 (2002) 401±406 www.elsevier.com/locate/ssc Coulomb energy of quasiparticle excitations in Chern±Simons composite fermion states Orion Ciftja*, Carlos Wexler Department of Physics and Astronomy, University of Missouri±Columbia, Columbia, MO 65211, USA Received 5March 2002; accepted 23 March 2002 by A.H. MacDonald Abstract The attachment of ¯ux tubes to electrons by a Chern±Simons (CS) singular gauge transformation of the wavefunction opened up the ®eld theoretical description of the fractional quantum Hall effect (FQHE). Nevertheless, in Jain's composite fermion (CF) theory, quasiparticles are believed to be vortices carrying a fractional charge in addition to the winding phase of the CS ¯ux tubes. The different structure of the wavefunction in these two cases directly affects the excitation energy gaps. By using a simple ansatz we were able to evaluate analytically the Coulomb excitation energies for the mean-®eld level CS wavefunction, thus allowing a direct comparison with corresponding numerical results obtained from Jain's CF picture. The considerable difference between the excitation energies found in these two cases demonstrates in quantitative terms the very different impact that the internal structure of the wavefunction has in these two approaches, often used interchangeably to describe the FQHE. q 2002 Elsevier Science Ltd. All rights reserved. PACS: 73.43. 2 f; 73.21. 2 b Keywords: A. Surfaces and interfaces; D. Electron±electron interactions; D. Fractional quantum Hall effect 2 p 1. Introduction given by r nn=2pl0 B ; where l0 B h= eB is the magnetic length. At these ®lling factors the electrons Two-dimensional electronic systems (2DES) subject to a condense into a strongly correlated incompressible quantum strong perpendicular magnetic ®eld display remarkable liquid, giving rise to quantized Hall resistivity and thermally phenomena, re¯ecting the great importance of electronic activated longitudinal resistivity.
    [Show full text]
  • Non-Minimal Maxwell-Chern-Simons Theory and the Composite Fermion Model
    men^y ISSN 0029-3865 CBPF CENTRO BRASILEIRO DE PESQUISAS FÍSICAS Rio de Janeiro Notas de Física CBPF-NF-009/03 January 2003 Non-minimal Maxwell-Chern-Simons theory and the composite Fermion model Ricardo C. Paschoal and José A. Helayél-Neto MCT - Ministério da Ciência e Tecnologia BRASIL CBPF-NF-009/03 Non-minimal Maxwell-Chern-Simons theory and the composite Fermion model Ricardo C. Paschoal1-2 [email protected] and José A. Helayèl-Netou [email protected] 1 Centro Brasileiro de Pesquisas Físicas - CBPF, Rua Dr. Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ, Brasil 2Serviço Nacional de Aprendizagem Industrial, Centro de Tecnologia da Indústria Química e Têxtil - SENAI/CETIQT, Rua Dr. iVIanoel Cotrim 195, 20961-040, Rio de Janeiro, RJ, Brasil 3Grupo de Física Teórica José Leite Lopes, Petrópolis, RJ, Brasil January 31, 2003 Abstract The magnetic field redefinition in Jain's composite fermion model for the frac- tional quantum Hall effect is shown to be effectively described by a mean-field approximation of a model containing a Maxwell-Chern-Simons gauge field non- miriimally coupled to matter. Also an explicit non-relativistic limit of the non- minimal (2-fl)D Dirac's equation is derived. Key-words: Maxwell-Chern-Simons QED; Non-minimal coupling; Composite fermions; Quantum Hall Effect. CBPF-NF-009/03 1 Since the introduction of the Chern-Simons (CS) term in the Lagrangean of planar Electrodynamics [1], it has been used in many aplications, and probably the most suc- cessful of them was the establishment of a connection between CS theory and fractional statistics [2], mainly when applied to the physics of the fractional quantum Hall effect (FQHE) [3].
    [Show full text]
  • Collective Excitations of Composite Fermions Across Multiple Lambda
    LETTERS PUBLISHED ONLINE: 10 MAY 2009 | DOI: 10.1038/NPHYS1275 Collective excitations of composite fermions across multiple 3 levels Dwipesh Majumder1, Sudhansu S. Mandal1 and Jainendra K. Jain2* The fractional quantum Hall state1 is a quintessential system kinetic energy levels in this reduced magnetic field, called 3 for the study of collective quantum behaviour. In such levels, and their filling factor ν∗ is related to the electron filling a system, the collective behaviour results in the creation factor ν through the relation ν D ν∗=(2pν∗ C 1). In particular, at of so-called composite fermions, quasi-particles formed by ν D n=(2pn C 1), the ground state consists of n filled 3 levels. In electrons attached to magnetic flux quanta. Recently, a the composite-fermion theory, the lowest-energy neutral excitation new collective mode was unexpectedly observed in Raman is a particle–hole pair, or an exciton, of composite fermions, scattering experiments2 on such a system as it was found to wherein a single composite fermion from the topmost occupied split off from the familiar ‘fundamental’ long-wavelength mode 3 level is excited into the lowest unoccupied 3 level (Fig. 1b on increase of the wave vector. Here, we present results from shows the fundamental composite-fermion exciton at ν D 2=5). extensive theoretical calculations that make a compelling case The validity of this description has been confirmed for fractions of that this mode corresponds to an excitation of a composite the form ν D n=(2pn C 1) by comparison to exact diagonalization fermion across two 3 levels—effective kinetic energy levels results as well as to experiment11,12.
    [Show full text]