Branch Groups Laurent Bartholdi Rostislav I. Grigorchuk Zoranšunik
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Discrete and Profinite Groups Acting on Regular Rooted Trees
Discrete and Profinite Groups Acting on Regular Rooted Trees Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades “Doctor rerum naturalium” der Georg-August-Universit¨at G¨ottingen vorgelegt von Olivier Siegenthaler aus Lausanne G¨ottingen, den 31. August 2009 Referent: Prof. Dr. Laurent Bartholdi Korreferent: Prof. Dr. Thomas Schick Tag der m¨undlichen Pr¨ufung: den 28. September 2009 Contents Introduction 1 1 Foundations 5 1.1 Definition of Aut X∗ and ...................... 5 A∗ 1.2 ZariskiTopology ............................ 7 1.3 Actions of X∗ .............................. 8 1.4 Self-SimilarityandBranching . 9 1.5 Decompositions and Generators of Aut X∗ and ......... 11 A∗ 1.6 The Permutation Modules k X and k X ............ 13 { } {{ }} 1.7 Subgroups of Aut X∗ .......................... 14 1.8 RegularBranchGroups . 16 1.9 Self-Similarity and Branching Simultaneously . 18 1.10Questions ................................ 19 ∗ 2 The Special Case Autp X 23 2.1 Definition ................................ 23 ∗ 2.2 Subgroups of Autp X ......................... 24 2.3 NiceGeneratingSets. 26 2.4 Uniseriality ............................... 28 2.5 Signature and Maximal Subgroups . 30 2.6 Torsion-FreeGroups . 31 2.7 Some Specific Classes of Automorphisms . 32 2.8 TorsionGroups ............................. 34 3 Wreath Product of Affine Group Schemes 37 3.1 AffineSchemes ............................. 38 3.2 ExponentialObjects . 40 3.3 Some Hopf Algebra Constructions . 43 3.4 Group Schemes Corresponding to Aut X∗ .............. 45 3.5 Iterated Wreath Product of the Frobenius Kernel . 46 i Contents 4 Central Series and Automorphism Towers 49 4.1 Notation................................. 49 4.2 CentralSeries.............................. 51 4.3 Automorphism and Normalizer Towers . 54 5 Hausdorff Dimension 57 5.1 Definition ................................ 57 5.2 Layers .................................. 58 5.3 ComputingDimensions . -
Algorithmic Constructions of Relative Train Track Maps and Cts Arxiv
Algorithmic constructions of relative train track maps and CTs Mark Feighn∗ Michael Handely June 30, 2018 Abstract Building on [BH92, BFH00], we proved in [FH11] that every element of the outer automorphism group of a finite rank free group is represented by a particularly useful relative train track map. In the case that is rotationless (every outer automorphism has a rotationless power), we showed that there is a type of relative train track map, called a CT, satisfying additional properties. The main result of this paper is that the constructions of these relative train tracks can be made algorithmic. A key step in our argument is proving that it 0 is algorithmic to check if an inclusion F @ F of φ-invariant free factor systems is reduced. We also give applications of the main result. Contents 1 Introduction 2 2 Relative train track maps in the general case 5 2.1 Some standard notation and definitions . .6 arXiv:1411.6302v4 [math.GR] 6 Jun 2017 2.2 Algorithmic proofs . .9 3 Rotationless iterates 13 3.1 More on markings . 13 3.2 Principal automorphisms and principal points . 14 3.3 A sufficient condition to be rotationless and a uniform bound . 16 3.4 Algorithmic Proof of Theorem 2.12 . 20 ∗This material is based upon work supported by the National Science Foundation under Grant No. DMS-1406167 and also under Grant No. DMS-14401040 while the author was in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2016 semester. yThis material is based upon work supported by the National Science Foundation under Grant No. -
Abstract Quotients of Profinite Groups, After Nikolov and Segal
ABSTRACT QUOTIENTS OF PROFINITE GROUPS, AFTER NIKOLOV AND SEGAL BENJAMIN KLOPSCH Abstract. In this expanded account of a talk given at the Oberwolfach Ar- beitsgemeinschaft “Totally Disconnected Groups”, October 2014, we discuss results of Nikolay Nikolov and Dan Segal on abstract quotients of compact Hausdorff topological groups, paying special attention to the class of finitely generated profinite groups. Our primary source is [17]. Sidestepping all difficult and technical proofs, we present a selection of accessible arguments to illuminate key ideas in the subject. 1. Introduction §1.1. Many concepts and techniques in the theory of finite groups depend in- trinsically on the assumption that the groups considered are a priori finite. The theoretical framework based on such methods has led to marvellous achievements, including – as a particular highlight – the classification of all finite simple groups. Notwithstanding, the same methods are only of limited use in the study of infinite groups: it remains mysterious how one could possibly pin down the structure of a general infinite group in a systematic way. Significantly more can be said if such a group comes equipped with additional information, such as a structure-preserving action on a notable geometric object. A coherent approach to studying restricted classes of infinite groups is found by imposing suitable ‘finiteness conditions’, i.e., conditions that generalise the notion of being finite but are significantly more flexible, such as the group being finitely generated or compact with respect to a natural topology. One rather fruitful theme, fusing methods from finite and infinite group theory, consists in studying the interplay between an infinite group Γ and the collection of all its finite quotients. -
On Just-Infiniteness of Locally Finite Groups and Their -Algebras
Bull. Math. Sci. DOI 10.1007/s13373-016-0091-4 On just-infiniteness of locally finite groups and their C∗-algebras V. Belyaev1 · R. Grigorchuk2 · P. Shumyatsky3 Received: 14 August 2016 / Accepted: 23 September 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com Abstract We give a construction of a family of locally finite residually finite groups with just-infinite C∗-algebra. This answers a question from Grigorchuk et al. (Just- infinite C∗-algebras. https://arxiv.org/abs/1604.08774, 2016). Additionally, we show that residually finite groups of finite exponent are never just-infinite. Keywords Just infinite groups · C*-algebras Mathematics Subject Classification 46L05 · 20F50 · 16S34 For Alex Lubotzky on his 60th birthday. Communicated by Efim Zelmanov. R. Grigorchuk was supported by NSA Grant H98230-15-1-0328. P. Shumyatsky was supported by FAPDF and CNPq. B P. Shumyatsky [email protected] V. Belyaev [email protected] R. Grigorchuk [email protected] 1 Institute of Mathematics and Mechanics, S. Kovalevskaja 16, Ekaterinburg, Russia 2 Department of Mathematics, Texas A&M University, College Station, TX, USA 3 Department of Mathematics, University of Brasília, 70910 Brasília, DF, Brazil 123 V. Belyaev et al. 1 Introduction A group is called just-infinite if it is infinite but every proper quotient is finite. Any infi- nite finitely generated group has just-infinite quotient. Therefore any question about existence of an infinite finitely generated group with certain property which is pre- served under homomorphic images can be reduced to a similar question in the class of just-infinite groups. -
Composition Series of Arbitrary Cardinality in Abelian Categories
COMPOSITION SERIES OF ARBITRARY CARDINALITY IN ABELIAN CATEGORIES ERIC J. HANSON AND JOB D. ROCK Abstract. We extend the notion of a composition series in an abelian category to allow the mul- tiset of composition factors to have arbitrary cardinality. We then provide sufficient axioms for the existence of such composition series and the validity of “Jordan–Hölder–Schreier-like” theorems. We give several examples of objects which satisfy these axioms, including pointwise finite-dimensional persistence modules, Prüfer modules, and presheaves. Finally, we show that if an abelian category with a simple object has both arbitrary coproducts and arbitrary products, then it contains an ob- ject which both fails to satisfy our axioms and admits at least two composition series with distinct cardinalities. Contents 1. Introduction 1 2. Background 4 3. Subobject Chains 6 4. (Weakly) Jordan–Hölder–Schreier objects 12 5. Examples and Discussion 21 References 28 1. Introduction The Jordan–Hölder Theorem (sometimes called the Jordan–Hölder–Schreier Theorem) remains one of the foundational results in the theory of modules. More generally, abelian length categories (in which the Jordan–Hölder Theorem holds for every object) date back to Gabriel [G73] and remain an important object of study to this day. See e.g. [K14, KV18, LL21]. The importance of the Jordan–Hölder Theorem in the study of groups, modules, and abelian categories has also motivated a large volume work devoted to establishing when a “Jordan–Hölder- like theorem” will hold in different contexts. Some recent examples include exact categories [BHT21, E19+] and semimodular lattices [Ro19, P19+]. In both of these examples, the “composition series” arXiv:2106.01868v1 [math.CT] 3 Jun 2021 in question are assumed to be of finite length, as is the case for the classical Jordan-Hölder Theorem. -
Burnside, March 2016
A Straightforward Solution to Burnside’s Problem S. Bachmuth 1. Introduction The Burnside Problem for groups asks whether a finitely generated group, all of whose elements have bounded order, is finite. We present a straightforward proof showing that the 2-generator Burnside groups of prime power exponent are solvable and therefore finite. This proof is straightforward in that it does not rely on induced maps as in [2], but it is strongly dependent on Theorem B in the joint paper with H. A. Heilbronn and H. Y. Mochizuki [9]. Theorem B is reformulated here as Lemma 3(i) in Section 2. Our use of Lemma 3(i) is indispensable. Throughout this paper we fix a prime power q = pe and unless specifically mentioned otherwise, all groups are 2-generator. At appropriate places, we may require e = 1 so that q = p is prime; otherwise q may be any fixed prime power. The only (published) positive results of finiteness of Burnside groups of prime power exponents are for exponents q = 2, 3 and 4 ([10],[12]). Some authors, beginning with P. S. Novikoff and S. I. Adian {15], (see also [1}), have claimed that groups of exponent k are infinite for k sufficiently large. Our result here, as in [2], is at odds with this claim. Since this proof avoids the use of induced maps, Section 4 of [2] has been rewritten. Sections 2, 3 and 6 have been left unaltered apart from minor, mostly expository, changes and renumbering of items. The introduction and Section 5 have been rewritten. Sections 5 & 6 are not involved in the proof although Section 5 is strongly recommended. -
Arxiv:1510.00545V4 [Math.GR] 29 Jun 2016 7
SCHREIER GRAPHS OF GRIGORCHUK'S GROUP AND A SUBSHIFT ASSOCIATED TO A NON-PRIMITIVE SUBSTITUTION ROSTISLAV GRIGORCHUK, DANIEL LENZ, AND TATIANA NAGNIBEDA Abstract. There is a recently discovered connection between the spectral theory of Schr¨o- dinger operators whose potentials exhibit aperiodic order and that of Laplacians associated with actions of groups on regular rooted trees, as Grigorchuk's group of intermediate growth. We give an overview of corresponding results, such as different spectral types in the isotropic and anisotropic cases, including Cantor spectrum of Lebesgue measure zero and absence of eigenvalues. Moreover, we discuss the relevant background as well as the combinatorial and dynamical tools that allow one to establish the afore-mentioned connection. The main such tool is the subshift associated to a substitution over a finite alphabet that defines the group algebraically via a recursive presentation by generators and relators. Contents Introduction 2 1. Subshifts and aperiodic order in one dimension 3 2. Schr¨odingeroperators with aperiodic order 5 2.1. Constancy of the spectrum and the integrated density of states (IDS) 5 2.2. The spectrum as a set and the absolute continuity of spectral measures 9 2.3. Aperiodic order and discrete random Schr¨odingeroperators 10 3. The substitution τ, its finite words Subτ and its subshift (Ωτ ;T ) 11 3.1. The substitution τ and its subshift: basic features 11 3.2. The main ingredient for our further analysis: n-partition and n-decomposition 14 3.3. The maximal equicontinuous factor of the dynamical system (Ωτ ;T ) 15 3.4. Powers and the index (critical exponent) of Subτ 19 3.5. -
What Is the Grigorchuk Group?
WHAT IS THE GRIGORCHUK GROUP? JAKE HURYN Abstract. The Grigorchuk group was first constructed in 1980 by Rostislav Grigorchuk, defined as a set of measure-preserving maps on the unit interval. In this talk a simpler construction in terms of binary trees will be given, and some important properties of this group will be explored. In particular, we study it as a negative example to a variant of the Burnside problem posed in 1902, an example of a non-linear group, and the first discovered example of a group of intermediate growth. 1. The Infinite Binary Tree We will denote the infinite binary tree by T . The vertex set of T is all finite words in the alphabet f0; 1g, and two words have an edge between them if and only if deleting the rightmost letter of one of them yields the other: ? 0 1 00 01 10 11 . Figure 1. The infinite binary tree T . This will in fact be a rooted tree, with the root at the empty sequence, so that any automorphism of T must fix the empty sequence. Here are some exercises about Aut(T ), the group of automorphisms of T . In this paper, exercises are marked with either ∗ or ∗∗ based on difficulty. Most are taken from exercises or statements made in the referenced books. Exercise 1. Show that the group Aut(T ) is uncountable and has a subgroup iso- morphic to Aut(T ) × Aut(T ).∗ Exercise 2. Impose a topology on Aut(T ) to make it into a topological group home- omorphic to the Cantor set.∗∗ Exercise 3. -
Group Theory
Group Theory Hartmut Laue Mathematisches Seminar der Universit¨at Kiel 2013 Preface These lecture notes present the contents of my course on Group Theory within the masters programme in Mathematics at the University of Kiel. The aim is to introduce into concepts and techniques of modern group theory which are the prerequisites for tackling current research problems. In an area which has been studied with extreme intensity for many decades, the decision of what to include or not under the time limits of a summer semester was certainly not trivial, and apart from the aspect of importance also that of personal taste had to play a role. Experts will soon discover that among the results proved in this course there are certain theorems which frequently are viewed as too difficult to reach, like Tate’s (4.10) or Roquette’s (5.13). The proofs given here need only a few lines thanks to an approach which seems to have been underestimated although certain rudiments of it have made it into newer textbooks. Instead of making heavy use of cohomological or topological considerations or character theory, we introduce a completely elementary but rather general concept of normalized group action (1.5.4) which serves as a base for not only the above-mentioned highlights but also for other important theorems (3.6, 3.9 (Gasch¨utz), 3.13 (Schur-Zassenhaus)) and for the transfer. Thus we hope to escape the cartesian reservation towards authors in general1, although other parts of the theory clearly follow well-known patterns when a major modification would not result in a gain of clarity or applicability. -
The Commensurability Relation for Finitely Generated Groups
J. Group Theory 12 (2009), 901–909 Journal of Group Theory DOI 10.1515/JGT.2009.022 ( de Gruyter 2009 The commensurability relation for finitely generated groups Simon Thomas (Communicated by A. V. Borovik) Abstract. There does not exist a Borel way of selecting an isomorphism class within each com- mensurability class of finitely generated groups. 1 Introduction Two groups G1, G2 are (abstractly) commensurable, written G1 QC G2, if and only if there exist subgroups Hi c Gi of finite index such that H1 G H2. In this paper, we shall consider the commensurability relation on the space G of finitely generated groups. Here G denotes the Polish space of finitely generated groups introduced by Grigorchuk [4]; i.e., the elements of G are the isomorphism types of marked groups 3G; c4, where G is a finitely generated group and c is a finite sequence of generators. (For a clear account of the basic properties of the space G, see either Champetier [1] or Grigorchuk [6].) Our starting point is the following result, which intuitively says that the isomorphism and commensurability relations on G have exactly the same complexity. Theorem 1.1. The isomorphism relation G and commensurability relation QC on the space G of finitely generated groups are Borel bireducible. In particular, there exists a Borel reduction from QC to G; i.e., a Borel map f : G ! G such that if G, H a G, then G QC H if and only if f ðGÞ G f ðHÞ: However, while the proof of Theorem 1.1 shows that there exists a Borel reduction from QC to G, it does not provide an explicit example of such a reduction. -
The Tits Alternative
The Tits Alternative Matthew Tointon April 2009 0 Introduction In 1972 Jacques Tits published his paper Free Subgroups in Linear Groups [Tits] in the Journal of Algebra. Its key achievement was to prove a conjecture of H. Bass and J.-P. Serre, now known as the Tits Alternative for linear groups, namely that a finitely-generated linear group over an arbitrary field possesses either a solvable subgroup of finite index or a non-abelian free subgroup. The aim of this essay is to present this result in such a way that it will be clear to a general mathematical audience. The greatest challenge in reading Tits's original paper is perhaps that the range of mathematics required to understand the theorem's proof is far greater than that required to understand its statement. Whilst this essay is not intended as a platform in which to regurgitate theory it is very much intended to overcome this challenge by presenting sufficient background detail to allow the reader, without too much effort, to enjoy a proof that is pleasing in both its variety and its ingenuity. Large parts of the prime-characteristic proof follow basically the same lines as the characteristic-zero proof; however, certain elements of the proof, particularly where it is necessary to introduce field theory or number theory, can be made more concrete or intuitive by restricting to characteristic zero. Therefore, for the sake of clarity this exposition will present the proof over the complex numbers, although where clarity and brevity are not impaired by considering a step in the general case we will do so. -
Congruence Subgroup Problem for Algebraic Groups: Old and New Astérisque, Tome 209 (1992), P
Astérisque A. S. RAPINCHUK Congruence subgroup problem for algebraic groups: old and new Astérisque, tome 209 (1992), p. 73-84 <http://www.numdam.org/item?id=AST_1992__209__73_0> © Société mathématique de France, 1992, tous droits réservés. L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l’accord avec les conditions générales d’uti- lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CONGRUENCE SUBGROUP PROBLEM FOR ALGEBRAIC GROUPS: OLD AND NEW A. S. RAPINCHUK* Let G C GLn be an algebraic group defined over an algebraic number field K. Let 5 be a finite subset of the set VK of all valuations of K, containing the set V*£ of archimedean valuations. Denote by O(S) the ring of 5-integers in K and by GQ(S) the group of 5-units in G. To any nonzero ideal a C O(S) there corresponds the congruence subgroup Go(s)(*) = {96 G0(s) \ 9 = En (mod a)} , which is a normal subgroup of finite index in GQ(S)- The initial statement of the Congruence Subgroup Problem was : (1) Does any normal subgroup of finite index in GQ(S) contain a suitable congruence subgroup Go(s)(a) ? In fact, it was found by F. Klein as far back as 1880 that for the group SL2(Z) the answer to question (1) is "no".