Onset and Breakdown of Cnidarian-Dinoflagellate Symbiosis

Total Page:16

File Type:pdf, Size:1020Kb

Onset and Breakdown of Cnidarian-Dinoflagellate Symbiosis AN ABSTRACT OF THE DISSERTATION OF Sheila A. Kitchen for the degree of Doctor of Philosophy in Zoology presented on January 29, 2016. Title: Onset and Breakdown of Cnidarian-Dinoflagellate Symbiosis: A Survey of the Host Transcriptomic Response and Characterization of the Sphingosine Rheostat during Symbiont Colonization and Hyperthermal Stress Abstract approved: ______________________________________________________ Virginia M. Weis The symbiosis between cnidarians, such as corals and sea anemones, and photosynthetic dinoflagellates belonging to the genus Symbiodinium spp. is one of the most productive in the marine environment. This mutualistic endosymbiosis allow reef- building corals to lay down the foundation of coral reef ecosystems, which supports a highly biodiverse community of marine organisms. The relationship between the cnidarian host and algal symbiont changes over time, from the initial contact through symbiont removal. The breakdown of the partnership can be brought on by numerous environmental stressors; most notably by elevated temperatures associated with climate change. The cellular and molecular mechanisms underlying these key events in cnidarian- dinoflagellate symbiosis are still poorly understood. Lipids play a central role in symbiosis by providing cellular structure, energy storage, signaling platforms. Specifically, the signaling lipids from the sphingosine rheostat, sphingosine and sphingosine-1-phosphate (S1P), play a pivotal role in determining cell fate. Increased sphingosine drives apoptotic activity within the cell while S1P promotes cell survival. The research presented in this dissertation addresses (1) the role of signaling sphingolipids at different stages of cnidarian-dinoflagellate symbiosis and (2) the transcriptional patterns of coral larvae undergoing onset of symbiosis while exposed to elevated seawater temperatures. In Chapter 2, the proposed cnidarian sphingosine rheostat model was functionally characterized in the sea anemone Aiptasia pallida. This study identified differential response of the sphingosine rheostat with symbiont recolonization and long-term symbiont maintenance, suggesting a role in host-symbiont interactions. In Chapter 3, a heat stress experiment revealed a biphasic sphingosine rheostat response in A. pallida where acute stress inhibits rheostat expression and activity that is recovered and shifted toward cell death with longer-term heat stress. This response was not linked to symbiont loss, but has implications for a more generalized heat stress response for long-term acclimation in cnidarians. In Chapter 4, coral Acropora digitifera larvae displayed different phenotypes and transcriptional profiles with the combined stress of elevated temperature and symbiont uptake. Larval survival, symbiont colonization and algal density were highly reduced from this treatment. These transcriptional patterns indicate immune suppression, membrane reorganization and oxidative stress. Furthermore, sphingolipid signaling differed at the onset of heat stress. Overall, the work presented here indicates that the sphingosine rheostat mediates host- symbiont interactions until symbiosis dysfunction and that the determinants of symbiosis can be altered with climate-induced stress. ©Copyright by Sheila A. Kitchen January 29, 2016 All Rights Reserved Onset and Breakdown of Cnidarian-Dinoflagellate Symbiosis: A Survey of the Host Transcriptomic Response and Characterization of the Sphingosine Rheostat during Symbiont Colonization and Hyperthermal Stress by Sheila A. Kitchen A DISSERTATION submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Presented January 29, 2016 Commencement June 2016 Doctor of Philosophy dissertation of Sheila A. Kitchen presented on January 29, 2016 APPROVED: Major Professor, representing Zoology Chair of the Department of Integrative Biology Dean of the Graduate School I understand that my dissertation will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my dissertation to any reader upon request. Sheila A. Kitchen, Author ACKNOWLEDGEMENTS I would like to express sincere appreciation for the encouragement and support of my advisor, Dr. Virginia Weis. Over the course of my time in the Weis Lab, she continued to “fill my glass” with her optimism and insights. She has made significant strides to improve my scientific communication and deepen my understanding of symbiosis. Furthermore, she provided many opportunities for me to explore my interests leading to a collaboration with researchers in Japan that allowed me to do field work, developing curriculum for invertebrate biology and symbiosis classes and engaging in non- dissertation projects. I would like to thank my committee members Drs. Jerri Bartholemew, Dee Denver, John Fowler, and Barb Taylor for their feedback and technical assistance throughout my time at OSU. Additionally, I would like to specially thank Drs. Eli Meyer, Chuya Shinzato and Duo Jiang for their significant contributions to my scientific training. Both Eli and Chuya generously allowed me to work in their lab spaces and were instrumental to my bioinformatic training that allowed me to analyze the high-throughput sequencing data in this dissertation and other various collaborative projects. Duo played an important role in building my confidence with statistical analyses of small and big datasets and our conversations contributed greatly to the analyses in Chapter 4. A special thanks to the Weis Lab members, past and present, that have created a collaborative and productive working environment. From the lab, I would like to recognize Angela Poole, Cammie Crowder, Trevor Tivey and Nate Kirk, all of whom have kept me sane throughout graduate school and research woes. Angela not only made significant contributions to my transition in the lab with training on all things Aiptasia and our various collaborative projects, but she has been the most supportive and thoughtful friend outside of the lab. I would like to thank Cammie, Trevor and Nate for allowing me to bother them with scientific and often non-scientific questions. In addition, I would like to thank a couple undergraduates that contributed to my research projects: Jessica Flesher helped with the experimental design and execution of Aiptasia bleaching ACKNOWLEDGEMENTS (Continued) in Chapter 3 and Jamie Jo McGraw contributed to the Symbiodinium RNA extraction protocol in Chapter 2. Finally, I want to show my appreciation for the continued support from my friends and family during this long process. Their reassurance and optimism in my abilities to succeed did not go unnoticed. I cannot thank them enough for providing happy distractions when I was overwhelmed. CONTRIBUTION OF AUTHORS Dr. Angela Z. Poole assisted in the experimental design, collection and analysis of the symbiotic state and colonization qPCR data from Chapter 2. Dr. Poole also significantly contributed to preparation of the Appendix. Dr. Duo Jiang provided feedback on the statistical approaches used to analyze symbiont colonization, algal density and gene expression data in Chapter 4. Moreover, she performed the analysis of the survival data. Dr. Saki Harii assisted in both designing and performing the 2013 and 2014 larval colonization experiment. She performed pilot studies in 2013 on temperature tolerance of A. digitifera larvae, facilities for rearing adult colonies and larvae, and Symbiodinium cultures. Dr. Noriyuki Satoh provided laboratory equipment, reagents and financial support for high-throughput sequencing at Okinawa Institute of Science and Technology. Dr. Chuya Shinzato contributed significantly to the design, execution and analysis of the larval colonization experiment in Chapter 4. He assisted in the collection of samples, preparation of sequencing libraries, and provided resources from the A. digitifera genome necessary to perform RNASeq. Dr. Virginia M. Weis contributed significantly to the experimental design of each chapter. She provided equipment, reagents and space to complete Chapters 2 and 3, and computational resources to analyze the data from Chapter 4. In addition, her feedback was influential in the development and writing of each chapter. TABLE OF CONTENTS Page 1. Introduction ..................................................................................................................... 1 1.1 Initiation and establishment of cnidarian-dinoflagellate symbiosis .......................... 1 1.2 Breakdown of cnidarian-dinoflagellate symbiosis in a changing world ................... 3 1.3 Lipids are regulators of symbiosis ............................................................................. 5 1.4 A. pallida and A. digitifera: Two model systems used to investigate cnidarian- dinoflagellate symbiosis .................................................................................................. 7 1.5 References ............................................................................................................... 11 2. Sphingolipids in cnidarian-dinoflagellate interactions: investigating the role of the sphingosine rheostat during onset of symbiosis and at steady-state in Aiptasia pallida .. 19 2.1 Summary .................................................................................................................. 20 2.2 Introduction ............................................................................................................
Recommended publications
  • Bacteria Belonging to Pseudomonas Typographi Sp. Nov. from the Bark Beetle Ips Typographus Have Genomic Potential to Aid in the Host Ecology
    insects Article Bacteria Belonging to Pseudomonas typographi sp. nov. from the Bark Beetle Ips typographus Have Genomic Potential to Aid in the Host Ecology Ezequiel Peral-Aranega 1,2 , Zaki Saati-Santamaría 1,2 , Miroslav Kolaˇrik 3,4, Raúl Rivas 1,2,5 and Paula García-Fraile 1,2,4,5,* 1 Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; [email protected] (E.P.-A.); [email protected] (Z.S.-S.); [email protected] (R.R.) 2 Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain 3 Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague, Czech Republic; [email protected] 4 Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic 5 Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain * Correspondence: [email protected] Received: 4 July 2020; Accepted: 1 September 2020; Published: 3 September 2020 Simple Summary: European Bark Beetle (Ips typographus) is a pest that affects dead and weakened spruce trees. Under certain environmental conditions, it has massive outbreaks, resulting in attacks of healthy trees, becoming a forest pest. It has been proposed that the bark beetle’s microbiome plays a key role in the insect’s ecology, providing nutrients, inhibiting pathogens, and degrading tree defense compounds, among other probable traits. During a study of bacterial associates from I. typographus, we isolated three strains identified as Pseudomonas from different beetle life stages. In this work, we aimed to reveal the taxonomic status of these bacterial strains and to sequence and annotate their genomes to mine possible traits related to a role within the bark beetle holobiont.
    [Show full text]
  • Photoinhibition and Photoprotection in Symbiotic Dinoflagellates from Reef-Building Corals
    MARINE ECOLOGY PROGRESS SERIES Vol. 183: 73-86.1999 Published July 6 Mar Ecol Prog Ser 1 Photoinhibition and photoprotection in symbiotic dinoflagellates from reef-building corals Ove Hoegh-Guldberg*, Ross J. Jones School of Biological Sciences, Building A08. The University of Sydney, New South Wales 2006. Australia ABSTRACT: Pulse-amplitude-modulation fluorometry and oxygen respirometry were used to investi- gate die1 photosynthetic responses by symbiotic dnoflagellates to light levels in summer and winter on a high latitude coral reef. The symbiotic dinoflagellates from 2 species of reef-building coral (Porites cylindnca and Stylophora pistillata) showed photoinhibitory decreases in the ratio of variable (F,) to maximal (F,) fluorescence (F,/F,,,) as early as 09:00 h on both summer and winter days on the reefs associated wlth One Tree Island (23" 30'S, 1.52" 06' E; Great Barrier Reef, Australia). This was due to decreases in maximum, F,, and to a smaller extent minimum, F,, chlorophyll fluorescence. Complete recovery took 4 to 6 h and began to occur as soon as light levels fell each day. Chlorophyll fluorescence quenching analysis of corals measured during the early afternoon revealed classic regulation of photo- system I1 (PSII) efficiency through non-photochemical quenching (NPQ). These results appear to be similar to data collected for other algae and higher plants, suggesting involvement of the xanthophyll cycle of symbiotic dinoflagellates in regulating the quantum efficiency of PSII. The ability of symbiotic dinoflagellates to develop significant NPQ, however, depended strongly on when the symbiotic dinoflagellates were studied. Whereas symbiotic dinoflagellates from corals in the early afternoon showed a significant capacity to regulate the efficiency of PSII using NPQ, those sampled before sun- rise had a slower and much reduced capacity, suggesting that elements of the xanthophyll cycle are suppressed prior to sunrise.
    [Show full text]
  • Checklist of Fish and Invertebrates Listed in the CITES Appendices
    JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No.
    [Show full text]
  • Taxonomic Checklist of CITES Listed Coral Species Part II
    CoP16 Doc. 43.1 (Rev. 1) Annex 5.2 (English only / Únicamente en inglés / Seulement en anglais) Taxonomic Checklist of CITES listed Coral Species Part II CORAL SPECIES AND SYNONYMS CURRENTLY RECOGNIZED IN THE UNEP‐WCMC DATABASE 1. Scleractinia families Family Name Accepted Name Species Author Nomenclature Reference Synonyms ACROPORIDAE Acropora abrolhosensis Veron, 1985 Veron (2000) Madrepora crassa Milne Edwards & Haime, 1860; ACROPORIDAE Acropora abrotanoides (Lamarck, 1816) Veron (2000) Madrepora abrotanoides Lamarck, 1816; Acropora mangarevensis Vaughan, 1906 ACROPORIDAE Acropora aculeus (Dana, 1846) Veron (2000) Madrepora aculeus Dana, 1846 Madrepora acuminata Verrill, 1864; Madrepora diffusa ACROPORIDAE Acropora acuminata (Verrill, 1864) Veron (2000) Verrill, 1864; Acropora diffusa (Verrill, 1864); Madrepora nigra Brook, 1892 ACROPORIDAE Acropora akajimensis Veron, 1990 Veron (2000) Madrepora coronata Brook, 1892; Madrepora ACROPORIDAE Acropora anthocercis (Brook, 1893) Veron (2000) anthocercis Brook, 1893 ACROPORIDAE Acropora arabensis Hodgson & Carpenter, 1995 Veron (2000) Madrepora aspera Dana, 1846; Acropora cribripora (Dana, 1846); Madrepora cribripora Dana, 1846; Acropora manni (Quelch, 1886); Madrepora manni ACROPORIDAE Acropora aspera (Dana, 1846) Veron (2000) Quelch, 1886; Acropora hebes (Dana, 1846); Madrepora hebes Dana, 1846; Acropora yaeyamaensis Eguchi & Shirai, 1977 ACROPORIDAE Acropora austera (Dana, 1846) Veron (2000) Madrepora austera Dana, 1846 ACROPORIDAE Acropora awi Wallace & Wolstenholme, 1998 Veron (2000) ACROPORIDAE Acropora azurea Veron & Wallace, 1984 Veron (2000) ACROPORIDAE Acropora batunai Wallace, 1997 Veron (2000) ACROPORIDAE Acropora bifurcata Nemenzo, 1971 Veron (2000) ACROPORIDAE Acropora branchi Riegl, 1995 Veron (2000) Madrepora brueggemanni Brook, 1891; Isopora ACROPORIDAE Acropora brueggemanni (Brook, 1891) Veron (2000) brueggemanni (Brook, 1891) ACROPORIDAE Acropora bushyensis Veron & Wallace, 1984 Veron (2000) Acropora fasciculare Latypov, 1992 ACROPORIDAE Acropora cardenae Wells, 1985 Veron (2000) CoP16 Doc.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips Et Al
    USOO598.1835A United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips et al. (45) Date of Patent: Nov. 9, 1999 54) TRANSGENIC PLANTS AS AN Brown and Atanassov (1985), Role of genetic background in ALTERNATIVE SOURCE OF Somatic embryogenesis in Medicago. Plant Cell Tissue LIGNOCELLULOSC-DEGRADING Organ Culture 4:107-114. ENZYMES Carrer et al. (1993), Kanamycin resistance as a Selectable marker for plastid transformation in tobacco. Mol. Gen. 75 Inventors: Sandra Austin-Phillips; Richard R. Genet. 241:49-56. Burgess, both of Madison; Thomas L. Castillo et al. (1994), Rapid production of fertile transgenic German, Hollandale; Thomas plants of Rye. Bio/Technology 12:1366–1371. Ziegelhoffer, Madison, all of Wis. Comai et al. (1990), Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS 73 Assignee: Wisconsin Alumni Research elements. Plant Mol. Biol. 15:373-381. Foundation, Madison, Wis. Coughlan, M.P. (1988), Staining Techniques for the Detec tion of the Individual Components of Cellulolytic Enzyme 21 Appl. No.: 08/883,495 Systems. Methods in Enzymology 160:135-144. de Castro Silva Filho et al. (1996), Mitochondrial and 22 Filed: Jun. 26, 1997 chloroplast targeting Sequences in tandem modify protein import specificity in plant organelles. Plant Mol. Biol. Related U.S. Application Data 30:769-78O. 60 Provisional application No. 60/028,718, Oct. 17, 1996. Divne et al. (1994), The three-dimensional crystal structure 51 Int. Cl. ............................. C12N 15/82; C12N 5/04; of the catalytic core of cellobiohydrolase I from Tricho AO1H 5/00 derma reesei. Science 265:524-528.
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • Gene Expression in the Scleractinian Acropora Microphthalma Exposed to High Solar Irradiance Reveals Elements of Photoprotection and Coral Bleaching
    Gene Expression in the Scleractinian Acropora microphthalma Exposed to High Solar Irradiance Reveals Elements of Photoprotection and Coral Bleaching Antonio Starcevic1, Walter C. Dunlap2, John Cullum3, J. Malcolm Shick4, Daslav Hranueli1, Paul F. Long5*¤ 1 Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia, 2 Centre for Marine Microbiology and Genetics, Australian Institute of Marine Science, Townsville, Australia, 3 Department of Genetics, University of Kaiserslautern, Kaiserslautern, Germany, 4 School of Marine Sciences, University of Maine, Orono, Maine, United States of America, 5 The School of Pharmacy, University of London, London, United Kingdom Abstract Background: The success of tropical reef-building corals depends on the metabolic co-operation between the animal host and the photosynthetic performance of endosymbiotic algae residing within its cells. To examine the molecular response of the coral Acropora microphthalma to high levels of solar irradiance, a cDNA library was constructed by PCR-based suppression subtractive hybridisation (PCR-SSH) from mRNA obtained by transplantation of a colony from a depth of 12.7 m to near-surface solar irradiance, during which the coral became noticeably paler from loss of endosymbionts in sun-exposed tissues. Methodology/Principal Findings: A novel approach to sequence annotation of the cDNA library gave genetic evidence for a hypothetical biosynthetic pathway branching from the shikimic acid pathway that leads to the formation of 4- deoxygadusol. This metabolite is a potent antioxidant and expected precursor of the UV-protective mycosporine-like amino acids (MAAs), which serve as sunscreens in coral phototrophic symbiosis. Empirical PCR based evidence further upholds the contention that the biosynthesis of these MAA sunscreens is a ‘shared metabolic adaptation’ between the symbiotic partners.
    [Show full text]
  • Perspectives on Mucus Secretion in Reef Corals
    MARINE ECOLOGY PROGRESS SERIES Vol. 296: 291–309, 2005 Published July 12 Mar Ecol Prog Ser REVIEW Perspectives on mucus secretion in reef corals B. E. Brown*, J. C. Bythell School of Biology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK ABSTRACT: The coral surface mucus layer provides a vital interface between the coral epithelium and the seawater environment and mucus acts in defence against a wide range of environmental stresses, in ciliary-mucus feeding and in sediment cleansing, amongst other roles. However, we know surpris- ingly little about the in situ physical and chemical properties of the layer, or its dynamics of formation. We review the nature of coral mucus and its derivation and outline the wide array of roles that are pro- posed for mucus secretion in corals. Finally, we review models of the surface mucus layer formation. We argue that at any one time, different types of mucus secretions may be produced at different sites within the coral colony and that mucus layers secreted by the coral may not be single homogeneous layers but consist of separate layers with different properties. This requires a much more dynamic view of mucus than has been considered before and has important implications, not least for bacterial colonisation. Understanding the formation and dynamics of the surface mucus layer under different environmental conditions is critical to understanding a wide range of associated ecological processes. KEY WORDS: Mucin · Mucopolysaccharide · Coral surface microlayer · CSM · Surface mucopolysaccharide layer · SML Resale or republication not permitted without written consent of the publisher INTRODUCTION production has been a problem for many working with coral tissues in recent years, and the offending sub- The study of mucus secretion by corals has fascinated stance has to be removed before histological, biochem- scientists for almost a century, from the work of Duer- ical or physiological processing can begin.
    [Show full text]
  • Are Glucosylceramide-Related Sphingolipids Involved in the Increased Risk for Cancer in Gaucher Disease Patients? Review and Hypotheses
    cancers Review Are Glucosylceramide-Related Sphingolipids Involved in the Increased Risk for Cancer in Gaucher Disease Patients? Review and Hypotheses 1,2, 1,3, 1 1,2 Patricia Dubot y , Leonardo Astudillo y, Nicole Therville , Frédérique Sabourdy , Jérôme Stirnemann 4 , Thierry Levade 1,2,* and Nathalie Andrieu-Abadie 1,* 1 INSERM UMR1037, CRCT (Cancer Research Center of Toulouse), and Université Paul Sabatier, 31037 Toulouse, France; [email protected] (P.D.); [email protected] (L.A.); [email protected] (N.T.); [email protected] (F.S.) 2 Laboratoire de Biochimie Métabolique, Centre de Référence en Maladies Héréditaires du Métabolisme, Institut Fédératif de Biologie, CHU de Toulouse, 31059 Toulouse, France 3 Service de Médecine Interne, CHU de Toulouse, 31059 Toulouse, France 4 Service de Médecine Interne Générale, Hôpitaux Universitaires de Genève, CH-1211 Geneva, Switzerland; [email protected] * Correspondence: [email protected] (T.L.); [email protected] (N.A.-A.) These authors contributed equally to this work. y Received: 28 November 2019; Accepted: 14 February 2020; Published: 18 February 2020 Abstract: The roles of ceramide and its catabolites, i.e., sphingosine and sphingosine 1-phosphate, in the development of malignancies and the response to anticancer regimens have been extensively described. Moreover, an abundant literature points to the effects of glucosylceramide synthase, the mammalian enzyme that converts ceramide to β-glucosylceramide, in protecting tumor cells from chemotherapy. Much less is known about the contribution of β-glucosylceramide and its breakdown products in cancer progression. In this chapter, we first review published and personal clinical observations that report on the increased risk of developing cancers in patients affected with Gaucher disease, an inborn disorder characterized by defective lysosomal degradation of β-glucosylceramide.
    [Show full text]
  • Scleractinia Fauna of Taiwan I
    Scleractinia Fauna of Taiwan I. The Complex Group 台灣石珊瑚誌 I. 複雜類群 Chang-feng Dai and Sharon Horng Institute of Oceanography, National Taiwan University Published by National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei, Taiwan Table of Contents Scleractinia Fauna of Taiwan ................................................................................................1 General Introduction ........................................................................................................1 Historical Review .............................................................................................................1 Basics for Coral Taxonomy ..............................................................................................4 Taxonomic Framework and Phylogeny ........................................................................... 9 Family Acroporidae ............................................................................................................ 15 Montipora ...................................................................................................................... 17 Acropora ........................................................................................................................ 47 Anacropora .................................................................................................................... 95 Isopora ...........................................................................................................................96 Astreopora ......................................................................................................................99
    [Show full text]
  • Hermatypic Coral Fauna of Subtropical Southeast Africa: a Checklist!
    Pacific Science (1996), vol. 50, no. 4: 404-414 © 1996 by University of Hawai'i Press. All rights reserved Hermatypic Coral Fauna of Subtropical Southeast Africa: A Checklist! 2 BERNHARD RrnGL ABSTRACT: The South African hermatypic coral fauna consists of 96 species in 42 scleractinian genera, one stoloniferous octocoral genus (Tubipora), and one hermatypic hydrocoral genus (Millepora). There are more species in southern Mozambique, with 151 species in 49 scleractinian genera, one stolo­ niferous octocoral (Tubipora musica L.), and one hydrocoral (Millepora exaesa [Forskal)). The eastern African coral faunas of Somalia, Kenya, Tanzania, Mozambique, and South Africa are compared and Southeast Africa dis­ tinguished as a biogeographic subregion, with six endemic species. Patterns of attenuation and species composition are described and compared with those on the eastern boundaries of the Indo-Pacific in the Pacific Ocean. KNOWLEDGE OF CORAL BIODIVERSITY in the Mason 1990) or taxonomically inaccurate Indo-Pacific has increased greatly during (Boshoff 1981) lists of the corals of the high­ the past decade (Sheppard 1987, Rosen 1988, latitude reefs of Southeast Africa. Sheppard and Sheppard 1991 , Wallace and In this paper, a checklist ofthe hermatypic Pandolfi 1991, 1993, Veron 1993), but gaps coral fauna of subtropical Southeast Africa, in the record remain. In particular, tropical which includes the southernmost corals of and subtropical subsaharan Africa, with a Maputaland and northern Natal Province, is rich and diverse coral fauna (Hamilton and evaluated and compared with a checklist of Brakel 1984, Sheppard 1987, Lemmens 1993, the coral faunas of southern Mozambique Carbone et al. 1994) is inadequately docu­ (Boshoff 1981).
    [Show full text]
  • Glucocerebrosidase Mutations and Synucleinopathies. Potential Role of Sterylglucosides and Relevance of Studying Both GBA1 and GBA2 Genes
    MINI REVIEW published: 28 June 2018 doi: 10.3389/fnana.2018.00052 Glucocerebrosidase Mutations and Synucleinopathies. Potential Role of Sterylglucosides and Relevance of Studying Both GBA1 and GBA2 Genes Rafael Franco 1,2*†, Juan A. Sánchez-Arias 3†, Gemma Navarro 1,2,4 and José L. Lanciego 2,3,5* 1Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain, 2Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, Madrid, Spain, 3Department of Neuroscience, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain, 4Department of Biochemistry and Physiology, School of Pharmacy, University of Barcelona, Barcelona, Spain, 5Department of Neuroscience, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain Gaucher’s disease (GD) is the most prevalent lysosomal storage disorder. GD is caused Edited by: by homozygous mutations of the GBA1 gene, which codes for beta-glucocerebrosidase Francesco Fornai, (GCase). Although GD primarily affects peripheral tissues, the presence of neurological Università degli Studi di Pisa, Italy symptoms has been reported in several GD subtypes. GBA1 mutations have Reviewed by: Rosario Moratalla, recently deserved increased attention upon the demonstration that both homo- and Consejo Superior de Investigaciones heterozygous GBA1 mutations represent the most important genetic risk factor for the Científicas (CSIC), Spain Fabrizio Michetti, appearance of synucleinopathies like Parkinson’s disease (PD) and dementia with Lewy Università Cattolica del Sacro Cuore, bodies (LBD). Although reduced GCase activity leads to alpha-synuclein aggregation, Italy the mechanisms sustaining a role for GCase in alpha-synuclein homeostasis still *Correspondence: Rafael Franco remain largely unknown.
    [Show full text]