Ribosomal Protein Mutants and Their Effects on Plant Growth and Development

Total Page:16

File Type:pdf, Size:1020Kb

Ribosomal Protein Mutants and Their Effects on Plant Growth and Development RIBOSOMAL PROTEIN MUTANTS AND THEIR EFFECTS ON PLANT GROWTH AND DEVELOPMENT A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In the Department of Biology University of Saskatchewan Saskatoon By Chad Dale Stewart © Copyright Chad Stewart, November, 2012. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Biology University of Saskatchewan Saskatoon, Saskatchewan S7N 5E2 i ABSTRACT Ribosomes, large enzymatic complexes containing an RNA catalytic core, drive protein synthesis in all living organisms. 80S cytoplasmic eukaryotic ribosomes are comprised of four rRNAs and approximately 80 ribosomal proteins (r-proteins). R- proteins are encoded by gene families with large families (average of twelve members) predominating in mammals and smaller families (two to seven members) in plants. Increased ribosome heterogeneity is possible in plant ribosomes due to multiple transcriptionally active members in each family, whereas, in mammalian r-protein gene families, only one member is typically active. Multiple functional paralogs provide for greater plasticity in response to environmental/developmental cues, as well as, increasing the possibility of individual paralogs procuring or retaining extraribosomal functions. This research investigated the effects of r-protein mutations on plant growth and development. Through RNA interference (RNAi) mediated knockdown (KD) of type I (cytoplasmic: RPS15aA/D and F) and type II (non-cytosolic: RPS15aB and E) RPS15a family members I was able to confirm the delineation between the two types. Subcellular localization of the type I isoforms was nuclear/nucleolar while localization of type II isoforms was non- mitochondrial and probably cytosolic. Illumina sequencing of two r-protein mutant transcriptomes, pfl1 (rps18a) and pfl2 (rps13a), identified a novel set of up and down regulated genes, previously unknown or linked to r-protein mutants. The 20 genes identified were classified into four groups (1) plant defense, (2) transposable elements, (3) nitrogen metabolism and (4) genes with unknown function. Illumina miRNOME analysis revealed no changes in the miRNA profile of pfl1 and pfl2 plants. These data do not support the previously proposed theory that a disruption in ribosome biogenesis (by decreased r- protein synthesis) disrupts miRNA-mediated degradation of a range of auxin response genes. Finally, a novel double r-protein mutant, rps18a:HF/RPL18B, presented a late flowering/thickened bolt phenotype not seen in a rps13a:HF/RPL18B mutant, suggesting that RPS18A has an extraribosomal role in plant growth and development in Arabidopsis. ii ACKNOWLEDGEMENTS Without Dr. Peta Bonham-Smith’s constant encouragement and insight my time as a graduate student would not have been as enjoyable. She has proven to be an excellent mentor in not only my academic but also my personal life. Many thanks go to my committee members, Drs. Hong Wang, Chris Todd and Pierre Fobert for their numerous contributions to my project, and to Dr. Doug Muench for serving as my exteral examiner. Thank you also to Drs. Ken Wilson, Art Davis, Jose Andres and David Logan for access to both equipment and their expertise. I thank all past and present members of the Bonham-Smith lab for their friendship and assistance throughout my research including Drs. Rory Degenhardt, Donna Lindsay, Raghavendra Prasad Savada, Anoop Sindhu, Xianzhong Wu and Ushan Alahakoon, as well as, Heather Wakely, Esther McAleer, Alex Neumann, Marshall Timmermans, Jiangying Tu and Mitchell Baniulis. I would like to thank all members of the Biology Department, with special thanks to Marlynn Mierau, Jeaniene Smith, Joan Virgl, Diedre Wasyliw and Guosheng Liu. My deepest gratitude must be extended to my family and friends throughout this process, without you, I might have ended up in an Arts program. Special thanks to my parents Gord and Cheryl Stewart, Shauna Stewart, John Douglas, Jaret Laquerre, Dave Allan, Jodi Souter, Clare Anstead and Rebeccah Molnar. Lastly, I would like to acknowledge the financial contributions from the Natural Sciences and Engineering Research Council and the University of Saskatchewan College of Graduate Studies and Research. iii DEDICATION For their constant love, support and encouragement throughout this endeavor I dedicate this thesis to my wife Rebeccah Molnar and parents Gord and Cheryl Stewart. iv TABLE OF CONTENTS PERMISSION TO USE I ABSTRACT II ACKNOWLEDGEMENTS III DEDICATION IV TABLE OF CONTENTS V LIST OF TABLES VIII LIST OF FIGURES IX LIST OF ABBREVIATIONS XI 1. CHAPTER 1. LITERATURE REVIEW 1 1.1. Introduction 1 1.2. Ribosome structure and function 2 1.3. Ribosome assembly 3 1.3.1. Ribosome components 3 1.3.2. Ribosomal subunit biogenesis 3 1.3.3. Ribosomal subunit export 6 1.4. The nucleolus 6 1.5. Ribosomal proteins 8 1.5.1. Ribosomal protein functions 10 1.5.2. Ribosomal protein gene regulation 11 1.5.2.1. R-protein gene arrangement 11 1.5.2.2. Prokaryotic r-protein gene regulation 12 1.5.2.3. Eukaryotic r-protein gene regulation 13 1.5.2.3.1. Yeast r-protein gene regulation 13 1.5.2.3.2. Animal r-protein gene regulation 14 1.5.2.3.3. Plant r-protein gene regulation 15 1.6. Extraribosomal functions 16 1.7. Ribosomal protein mutants 19 1.8. Ribosomes and development 20 1.8.1. Ribosome deficiency model 20 1.8.2. Ribosome heterogeneity model 22 1.8.3. Ribosome aberrancy model 24 1.9. Arabidopsis thaliana RPS15a gene family 24 1.10. Objectives 25 v 2. CHAPTER 2. CHARACTERIZING THE RPS15A GENE FAMILY 27 2.1. Introduction 27 2.2. Material and methods 32 2.2.1. Plant material and growth conditions 32 2.2.2. RNAi constructs 32 2.2.3. Stable transgenics 32 2.2.4. Quantitative RT-PCR 33 2.2.5. Fluorescent protein constructs 34 2.2.6. RPS15aA/F and D C-terminal truncations 34 2.2.7. Transient expression in tobacco and confocal microscopy 35 2.2.8. RPS15aE overexpression in E. coli and western blots 36 2.2.9. Genevestigator transcript expression profiling 36 2.2.10. Statistics 37 2.3. Results 37 2.3.1. Type I and II RPS15a gene family members show similar expression patterns through a variety of developmental stages 37 2.3.2. Type I RPS15a isoforms exhibit classic r-protein subcellular localization while type II do not 39 2.3.3. Nuclear localization of the type I RPS15a isoforms requires the C-terminal seven amino acids of the protein 44 2.3.4. Delayed root development in individual type I and II RNAi lines 48 2.3.5. RPS15aE is not detected in total protein from Arabidopsis seedlings 56 2.4. Discussion 58 3. CHAPTER 3. USING NEXT GENERATION SEQUENCING TO ANALYZE pfl1 (rps18a) AND pfl2 (rps13a) RIBOSOMAL PROTEIN MUTANTS 67 3.1. Introduction 67 3.2. Material and methods 71 3.2.1. Plant material and growth conditions 71 3.2.2. Sample preparation for Illumina sequencing 71 3.2.3. Analysis of raw FASTQ data 72 3.2.3.1. Transcriptome analysis 72 3.2.3.2. miRNOME analysis 72 3.2.4. DESeq statistical analyses 73 3.2.5. Quantitative RT-PCR 73 3.2.6. Statistics 73 3.3. Results 73 3.3.1. Common changes in transcriptome in pfl1 and pfl2 compared to WT 73 3.3.2. qRT-PCR and Illumina data show similar trends of up and/or down regulation of Illumina identified transcripts 78 3.3.3. Transcript levels for Illumina-identified genes in tir1, afb1, afb2 and afb3 auxin mutants show little similarity to those in pfl1 and pfl2 78 3.3.4. miRNOME analysis of pfl1 and pfl2 showed no change in miRNA pools 84 3.4. Discussion 84 vi 4. CHAPTER 4. THE rps18a:HF/RPL18B DOUBLE MUTANT GENERATES A NOVEL PHENOTYPE 90 4.1. Introduction 90 4.2. Material and methods 94 4.2.1. Plant material and growth conditions 94 4.2.2. Fluorescent protein constructs 95 4.2.3. Transient expression in tobacco and confocal microscopy 95 4.2.4. Genevestigator transcript expression profiling 95 4.2.5. Light microscopy 95 4.3. Results 96 4.3.1. Heterozygous pfl1:HF/RPL18B double mutants result in a novel phenotype 96 4.3.2. Transcript expression profiles of each member of the RPS18, RPS13 and RPL18 families are consistent and similar across a variety of developmental stages 101 4.3.3. Nuclear and nucleolar subcellular localization of RPS13, RPS18 and RPL18 proteins 104 4.4. Discussion 110 5. CHAPTER 5. GENERAL DISCUSSION AND CONCLUSIONS 115 6. APPENDIX A. LIST OF R-PROTEINS IDENTIFIED IN 15-DAY-OLD ARABIDOPSIS TOTAL PROTEIN FOR CHAPTER 2 118 7.
Recommended publications
  • C8cc08685k1.Pdf
    Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018 Supporting Information Minimalist Linkers Suitable for Irreversible Inhibitors in Simultaneous Proteome Profiling, Live-Cell Imaging and Drug Screening Cuiping Guo,Yu Chang, Xin Wang, Chengqian Zhang, Piliang Hao*, Ke Ding and Zhengqiu Li* School of Pharmacy, Jinan University, Guangzhou, China 510632 *Corresponding author ([email protected]) 1. General Information All chemicals were purchased from commercial vendors and used without further purification, unless indicated otherwise. All reactions requiring anhydrous conditions were carried out under argon or nitrogen atmosphere using oven-dried glassware. AR-grade solvents were used for all reactions. Reaction progress was monitored by TLC on pre-coated silica plates (Merck 60 F254 nm, 0.25 µm) and spots were visualized by UV, iodine or other suitable stains. Flash column chromatography was carried out using silica gel (Qingdao Ocean). All NMR spectra (1H-NMR, 13C-NMR) were recorded on Bruker 300 MHz/400 MHz NMR spectrometers. Chemical shifts were reported in parts per million (ppm) referenced with respect to appropriate internal standards or residual solvent peaks (CDCl3 = 7.26 ppm, DMSO-d6 = 2.50 ppm). The following abbreviations were used in reporting spectra, br s (broad singlet), s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublets). Mass spectra were obtained on Agilent LC-ESI-MS system. All analytical HPLC were carried out on Agilent system. Water with 0.1% TFA and acetonitrile with 0.1% TFA were used as eluents and the flow rate was 0.5 mL/min.
    [Show full text]
  • The Rise and Fall of the Bovine Corpus Luteum
    University of Nebraska Medical Center DigitalCommons@UNMC Theses & Dissertations Graduate Studies Spring 5-6-2017 The Rise and Fall of the Bovine Corpus Luteum Heather Talbott University of Nebraska Medical Center Follow this and additional works at: https://digitalcommons.unmc.edu/etd Part of the Biochemistry Commons, Molecular Biology Commons, and the Obstetrics and Gynecology Commons Recommended Citation Talbott, Heather, "The Rise and Fall of the Bovine Corpus Luteum" (2017). Theses & Dissertations. 207. https://digitalcommons.unmc.edu/etd/207 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It has been accepted for inclusion in Theses & Dissertations by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. THE RISE AND FALL OF THE BOVINE CORPUS LUTEUM by Heather Talbott A DISSERTATION Presented to the Faculty of the University of Nebraska Graduate College in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biochemistry and Molecular Biology Graduate Program Under the Supervision of Professor John S. Davis University of Nebraska Medical Center Omaha, Nebraska May, 2017 Supervisory Committee: Carol A. Casey, Ph.D. Andrea S. Cupp, Ph.D. Parmender P. Mehta, Ph.D. Justin L. Mott, Ph.D. i ACKNOWLEDGEMENTS This dissertation was supported by the Agriculture and Food Research Initiative from the USDA National Institute of Food and Agriculture (NIFA) Pre-doctoral award; University of Nebraska Medical Center Graduate Student Assistantship; University of Nebraska Medical Center Exceptional Incoming Graduate Student Award; the VA Nebraska-Western Iowa Health Care System Department of Veterans Affairs; and The Olson Center for Women’s Health, Department of Obstetrics and Gynecology, Nebraska Medical Center.
    [Show full text]
  • Reprogramming of Trna Modifications Controls the Oxidative Stress Response by Codon-Biased Translation of Proteins
    Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Chan, Clement T.Y. et al. “Reprogramming of tRNA Modifications Controls the Oxidative Stress Response by Codon-biased Translation of Proteins.” Nature Communications 3 (2012): 937. As Published http://dx.doi.org/10.1038/ncomms1938 Publisher Nature Publishing Group Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/76775 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins Clement T.Y. Chan,1,2 Yan Ling Joy Pang,1 Wenjun Deng,1 I. Ramesh Babu,1 Madhu Dyavaiah,3 Thomas J. Begley3 and Peter C. Dedon1,4* 1Department of Biological Engineering, 2Department of Chemistry and 4Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; 3College of Nanoscale Science and Engineering, University at Albany, SUNY, Albany, NY 12203 * Corresponding author: PCD, Department of Biological Engineering, NE47-277, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139; tel 617-253-8017; fax 617-324-7554; email [email protected] 2 ABSTRACT Selective translation of survival proteins is an important facet of cellular stress response. We recently demonstrated that this translational control involves a stress-specific reprogramming of modified ribonucleosides in tRNA.
    [Show full text]
  • Protein Name Accession Number Molecular Weight Myovi-GTD
    MyoVI-GTD MyoVI-GTD MyoVa-MGT MyoVa-MGT Molecular Spectral Unique Spectral Unique Protein Name Accession Number Weight Counts Peptides Counts Peptides Dync1h1 Cytoplasmic dynein 1 heavy chain 1 IPI00119876 532 kDa 310 121 515 182 Spna2 Spectrin alpha 2 IPI00757353 285 kDa 853 170 597 149 Myo5a 215 kDa protein IPI00875222 215 kDa 162 47 874 109 AU042671 hypothetical protein LOC269700 isoform 1 IPI00762814 453 kDa 2 2 231 104 Spnb2 Isoform 1 of Spectrin beta chain, brain 1 IPI00319830 274 kDa 505 122 347 100 Dmxl2 Isoform 1 of DmX-like protein 2 IPI00853932 338 kDa 63 38 251 100 Cltc Clathrin heavy chain 1 IPI00169916 (+1) 192 kDa 1994 138 565 90 Mtap2 12 days embryo spinal cord cDNA, RIKEN full-length enriched library, clone:C530026F16 product:microtubule-associated protein 2, full insert sequenceIPI00894724 199 kDa 229 82 258 74 Mtap1a Isoform 1 of Microtubule-associated protein 1A IPI00408909 (+1) 300 kDa 310 86 214 74 Itpr1 Isoform 4 of Inositol 1,4,5-trisphosphate receptor type 1 IPI00230019 (+3) 311 kDa 37 18 155 73 Huwe1 HECT, UBA and WWE domain containing 1 IPI00463909 (+1) 483 kDa 5 5 91 69 Fasn Fatty acid synthase IPI00113223 272 kDa 24 17 140 68 Usp9x Ubiquitin carboxyl-terminal hydrolase IPI00798468 291 kDa 68 45 98 65 Lrp1 Prolow-density lipoprotein receptor-related protein 1 precursor IPI00119063 505 kDa 92 53 109 62 Myh10 Myosin-10 IPI00515398 (+1) 229 kDa 65 40 98 59 Mical1 NEDD9-interacting protein with calponin homology and LIM domains IPI00116371 117 kDa 2 2 203 57 Plec1 Isoform PLEC-1I of Plectin-1 IPI00229509 (+10)
    [Show full text]
  • Allele-Specific Expression of Ribosomal Protein Genes in Interspecific Hybrid Catfish
    Allele-specific Expression of Ribosomal Protein Genes in Interspecific Hybrid Catfish by Ailu Chen A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 1, 2015 Keywords: catfish, interspecific hybrids, allele-specific expression, ribosomal protein Copyright 2015 by Ailu Chen Approved by Zhanjiang Liu, Chair, Professor, School of Fisheries, Aquaculture and Aquatic Sciences Nannan Liu, Professor, Entomology and Plant Pathology Eric Peatman, Associate Professor, School of Fisheries, Aquaculture and Aquatic Sciences Aaron M. Rashotte, Associate Professor, Biological Sciences Abstract Interspecific hybridization results in a vast reservoir of allelic variations, which may potentially contribute to phenotypical enhancement in the hybrids. Whether the allelic variations are related to the downstream phenotypic differences of interspecific hybrid is still an open question. The recently developed genome-wide allele-specific approaches that harness high- throughput sequencing technology allow direct quantification of allelic variations and gene expression patterns. In this work, I investigated allele-specific expression (ASE) pattern using RNA-Seq datasets generated from interspecific catfish hybrids. The objective of the study is to determine the ASE genes and pathways in which they are involved. Specifically, my study investigated ASE-SNPs, ASE-genes, parent-of-origins of ASE allele and how ASE would possibly contribute to heterosis. My data showed that ASE was operating in the interspecific catfish system. Of the 66,251 and 177,841 SNPs identified from the datasets of the liver and gill, 5,420 (8.2%) and 13,390 (7.5%) SNPs were identified as significant ASE-SNPs, respectively.
    [Show full text]
  • Cryo-EM Structure of the RNA-Rich Plant Mitochondrial Ribosome
    bioRxiv preprint doi: https://doi.org/10.1101/777342; this version posted September 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Cryo-EM structure of the RNA-rich plant mitochondrial ribosome Florent Waltz1* & Heddy Soufari1*, Anthony Bochler1, Philippe Giegé2+ & Yaser Hashem1+ 1 Institut Européen de Chimie et Biologie, U1212 Inserm, Université de Bordeaux, 2 rue R. Escarpit, F- 33600 Pessac, France 2Institut de biologie de moléculaire des plantes, UPR 2357 du CNRS, Université de Strasbourg, 12 rue du général Zimmer, F-67084 Strasbourg, France *equally contributing authors +corresponding authors The vast majority of eukaryotic cells contain mitochondria, essential powerhouses and metabolic hubs1. These organelles have a bacterial origin and were acquired during an early endosymbiosis event2. Mitochondria possess specialized gene expression systems composed of various molecular machines including the mitochondrial ribosomes (mitoribosomes). Mitoribosomes are in charge of translating the few essential mRNAs still encoded by mitochondrial genomes3. While chloroplast ribosomes strongly resemble those of bacteria4,5, mitoribosomes have diverged significantly during evolution and present strikingly different structures across eukaryotic species6–10. In contrast to animals and trypanosomatides, plants mitoribosomes have unusually expanded ribosomal RNAs and conserved the short 5S rRNA, which is usually missing in mitoribosomes11. We have previously characterized the composition of the plant mitoribosome6 revealing a dozen plant-specific proteins, in addition to the common conserved mitoribosomal proteins. In spite of the tremendous recent advances in the field, plant mitoribosomes remained elusive to high-resolution structural investigations, and the plant-specific ribosomal features of unknown structures.
    [Show full text]
  • Supplementary Materials
    1 Supplementary Materials: Supplemental Figure 1. Gene expression profiles of kidneys in the Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice. (A) A heat map of microarray data show the genes that significantly changed up to 2 fold compared between Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice (N=4 mice per group; p<0.05). Data show in log2 (sample/wild-type). 2 Supplemental Figure 2. Sting signaling is essential for immuno-phenotypes of the Fcgr2b-/-lupus mice. (A-C) Flow cytometry analysis of splenocytes isolated from wild-type, Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice at the age of 6-7 months (N= 13-14 per group). Data shown in the percentage of (A) CD4+ ICOS+ cells, (B) B220+ I-Ab+ cells and (C) CD138+ cells. Data show as mean ± SEM (*p < 0.05, **p<0.01 and ***p<0.001). 3 Supplemental Figure 3. Phenotypes of Sting activated dendritic cells. (A) Representative of western blot analysis from immunoprecipitation with Sting of Fcgr2b-/- mice (N= 4). The band was shown in STING protein of activated BMDC with DMXAA at 0, 3 and 6 hr. and phosphorylation of STING at Ser357. (B) Mass spectra of phosphorylation of STING at Ser357 of activated BMDC from Fcgr2b-/- mice after stimulated with DMXAA for 3 hour and followed by immunoprecipitation with STING. (C) Sting-activated BMDC were co-cultured with LYN inhibitor PP2 and analyzed by flow cytometry, which showed the mean fluorescence intensity (MFI) of IAb expressing DC (N = 3 mice per group). 4 Supplemental Table 1. Lists of up and down of regulated proteins Accession No.
    [Show full text]
  • Swissprot Genetrail Acc. No. ID Exp1 Exp2 Exp1 Exp2 Exp1 Exp2
    Supplementary TABLE 1. Quantitative MS-based proteomic results from the macrophage cytosolic proteomes for both biological replicates separately Human proteins HSV-1 dLeu d3-4 Protein name SwissProt Genetrail N % Seq Cov Pept(95%) Fold change P-value Fold change P-value Fold change P-value Acc. No. ID Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 10 kDa heat shock protein, mitochondrial P61604 HSPE1 121 108 69,6 65,7 9 18 1,24 1,11 0,014 0,141 1,12 1,16 0,127 0,054 1,07 0,96 0,290 0,529 14-3-3 protein beta/alpha P31946 YWHAB 350 145 37 52,9 13 16 1,10 0,97 0,409 0,743 1,12 0,72 0,651 0,184 1,04 0,72 0,730 0,101 14-3-3 protein epsilon P62258 YWHAE 661 524 16,5 24,7 5 8 1,43 1,00 0,996 0,60 0,78 0,238 0,84 0,87 0,765 14-3-3 protein eta Q04917 YWHAH 572 376 36,2 34,6 9 10 0,77 1,00 1,30 14-3-3 protein gamma P61981 YWHAG 135 358 38,1 35,2 13 10 1,93 1,21 0,170 1,10 0,44 0,515 1,88 1,17 0,099 14-3-3 protein theta P27348 YWHAQ 659 596 20,4 43,7 7 8 1,12 0,72 1,16 14-3-3 protein zeta/delta P63104 YWHAZ 59 36 45,3 54,7 15 19 1,48 1,33 0,004 0,019 1,22 0,95 0,265 0,570 1,08 1,10 0,315 0,416 182 kDa tankyrase-1-binding protein Q9C0C2 TNKS1BP1 517 2,7 2 0,89 0,874 1,18 0,345 1,06 0,651 1-phosphatidylinositol 4,5-bisphosphate phosphodiesteraseQ00722 beta-2 PLCB2 291 9,1 3 0,67 0,290 0,65 0,046 0,94 0,793 2,4-dienoyl-CoA reductase, mitochondrial Q16698 DECR1 335 14,3 4 0,76 0,284 0,97 0,841 0,91 0,415 26S proteasome non-ATPase regulatory subunit 11 O00231 PSMD11 375 18,7 3 1,43 1,19 0,93 26S proteasome non-ATPase
    [Show full text]
  • Mito-Cytosolic Translational Balance Increased Cytoprotection And
    Graphical Abstract Worms Human cells Mice Mito-cytosolic translational balance Genetically mrps-5 RNAi Mitochondrial Cytosolic ribosomes ribosomes ATF4/atf-5 Doxycycline Pharmacologically Increased cytoprotection and longevity Manuscript A conserved mito-cytosolic translational balance links two longevity pathways Marte Molenaars1*, Georges E. Janssens1*, Evan G. Williams2, Aldo Jongejan3, Jiayi Lan2, Sylvie Rabot4, Fatima Joly4, Perry D. Moerland3, Bauke V. Schomakers1,5, Marco Lezzerini1 Yasmine J. Liu1, Mark A. McCormick6,7, Brian K. Kennedy8,9, Michel van Weeghel1,5, Antoine H.C. van Kampen3, Ruedi Aebersold2,10, Alyson W. MacInnes1, Riekelt H. Houtkooper1,11# 1Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands 2Institute of Molecular Systems Biology, ETH Zurich, Zürich, Switzerland 3Bioinformatics Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands 4Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France 5Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands. 6 Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, USA 7Autophagy, Inflammation, and Metabolism Center of Biological Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, USA 8Buck Institute for Research on Aging, Novato, USA 9Departments
    [Show full text]
  • Immunoprecipitation and Mass Spectrometry Defines an Extensive
    BRES : 44759 Model7 pp: À 1221ðcol:fig: : NILÞ brain research ] ( ]]]]) ]]]– ]]] Available online at www.sciencedirect.com 121 122 123 124 125 126 www.elsevier.com/locate/brainres 127 128 129 Review 130 131 fi 132 Immunoprecipitation and mass spectrometry de nes 133 – 134 an extensive RBM45 protein protein interaction 135 Q2 136 network 137 138 a a,b a a c 139 Yang Li , Mahlon Collins , Jiyan An , Rachel Geiser , Tony Tegeler , c c c a,b,n 140 Q1 Kristine Tsantilas , Krystine Garcia , Patrick Pirrotte , Robert Bowser 141 aDivisions of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 142 Phoenix, AZ 85013, USA 143 bUniversity of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA 144 cCenter for Proteomics, TGen (Translational Genomics Research Institute), Phoenix, AZ 85004, USA 145 146 147 article info abstract 148 149 Article history: The pathological accumulation of RNA-binding proteins (RBPs) within inclusion bodies is a 150 Received 30 January 2016 hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration 151 Received in revised form (FTLD). RBP aggregation results in both toxic gain and loss of normal function. Determining 152 25 February 2016 the protein binding partners and normal functions of disease-associated RBPs is necessary 153 Accepted 28 February 2016 to fully understand molecular mechanisms of RBPs in disease. Herein, we characterized 154 the protein–protein interactions (PPIs) of RBM45, a RBP that localizes to inclusions in ALS/ 155 – fi Keywords: FTLD. Using immunoprecipitation coupled to mass spectrometry (IP MS), we identi ed 132 156 fi RBM45 proteins that speci cally interact with RBM45 within HEK293 cells.
    [Show full text]
  • The Interactome of the Yeast Mitochondrial Ribosome
    The interactome of the yeast mitochondrial ribosome Organization of mitochondrial post-transcriptional regulation, membrane protein insertion and quality control Braulio Vargas Möller-Hergt Academic dissertation for the Degree of Doctor of Philosophy in Biochemistry at Stockholm University to be publicly defended on Friday 19 October 2018 at 13.00 in Magnélisalen Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B. Abstract The proteins found in mitochondria originate from two different genetic systems. Most mitochondrial proteins are synthesized in the cytosol and post-translationally imported into the organelle. However, a small subset of mitochondrial proteins is encoded in an organelle-resident genome. Mitochondria contain factors responsible for replication, transcription and, most important for this thesis, synthesis of the mitochondrially encoded proteins. In the course of evolution the mitochondria specific ribosomes were extensively remodeled. The reasons for many of these adaptations are currently not well understood. For example, the mitoribosome is less stable and abundant than its bacterial counterpart. Therefore, I contributed in the development of robust biochemical tools in order to isolate and analyze the intact yeast mitoribosome and interaction partners by mass spectrometry. The results revealed a higher order organization of mitochondrial gene expression in complexes that we termed MIOREX (mitochondrial organization of gene expression). Besides the mitoribosome, MIOREX complexes contain factors involved in all steps of gene expression. This study also established many new ribosomal interaction partners, among them some proteins that were previously completely uncharacterized. In order to study these proteins, I refined the mass spectrometry approach, allowing a subunit-specific assignment of ribosomal interaction partners. The Mrx15 protein was determined by this approach as an interactor of the large subunit.
    [Show full text]
  • Elabscience.Com ® E-Mail:[email protected] Elabscience Elabscience Biotechnology Inc
    Tel:240-252-7368(USA) Fax:240-252-7376(USA) www.elabscience.com ® E-mail:[email protected] Elabscience Elabscience Biotechnology Inc. RPL7 Polyclonal Antibody Catalog No. E-AB-32805 Reactivity H,M,R Storage Store at -20℃. Avoid freeze / thaw cycles. Host Rabbit Applications WB,IHC-p,ELISA Isotype IgG Note: Centrifuge before opening to ensure complete recovery of vial contents. Images Immunogen Information Immunogen Synthesized peptide derived from the C-terminal region of human Ribosomal Protein L7 Swissprot P18124 Synonyms RPL7,60S ribosomal protein L7 Western Blot analysis of 293 cells Product Information using RPL7 Polyclonal Antibody at Calculated MW 29kDa dilution of 1:2000. Observed MW 32kDa Buffer PBS with 0.02% sodium azide, 0.5% BSA and 50% glycerol, pH7.4 Purify Affinity purification Dilution WB 1:500-1:2000, IHC 1:100-1:300, ELISA 1:10000 Background Ribosomes, the organelles that catalyze protein synthesis, consist of a small 40S subunit and a large 60S subunit. Together these subunits are composed of 4 RNA species and approximately 80 structurally distinct proteins. This gene encodes a ribosomal protein that is a component of the 60S subunit. The protein belongs to the L30P family of ribosomal proteins. It contains an N-terminal basic region-leucine zipper (BZIP)-like domain and the RNP consensus submotif RNP2. In vitro the BZIP-like domain mediates homodimerization and stable binding to DNA and RNA, with a preference for 28S rRNA and mRNA. The protein can inhibit cell- free translation of mRNAs, suggesting that it plays a regulatory role in the translation apparatus.
    [Show full text]