First Notice of the Chirostylidae (Deeapoda) in the Fossil Record and New Tertiary Galatheidae (Deeapoda) from the Americas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Classification of Living and Fossil Genera of Decapod Crustaceans
RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. -
Part I. an Annotated Checklist of Extant Brachyuran Crabs of the World
THE RAFFLES BULLETIN OF ZOOLOGY 2008 17: 1–286 Date of Publication: 31 Jan.2008 © National University of Singapore SYSTEMA BRACHYURORUM: PART I. AN ANNOTATED CHECKLIST OF EXTANT BRACHYURAN CRABS OF THE WORLD Peter K. L. Ng Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore Email: [email protected] Danièle Guinot Muséum national d'Histoire naturelle, Département Milieux et peuplements aquatiques, 61 rue Buffon, 75005 Paris, France Email: [email protected] Peter J. F. Davie Queensland Museum, PO Box 3300, South Brisbane, Queensland, Australia Email: [email protected] ABSTRACT. – An annotated checklist of the extant brachyuran crabs of the world is presented for the first time. Over 10,500 names are treated including 6,793 valid species and subspecies (with 1,907 primary synonyms), 1,271 genera and subgenera (with 393 primary synonyms), 93 families and 38 superfamilies. Nomenclatural and taxonomic problems are reviewed in detail, and many resolved. Detailed notes and references are provided where necessary. The constitution of a large number of families and superfamilies is discussed in detail, with the positions of some taxa rearranged in an attempt to form a stable base for future taxonomic studies. This is the first time the nomenclature of any large group of decapod crustaceans has been examined in such detail. KEY WORDS. – Annotated checklist, crabs of the world, Brachyura, systematics, nomenclature. CONTENTS Preamble .................................................................................. 3 Family Cymonomidae .......................................... 32 Caveats and acknowledgements ............................................... 5 Family Phyllotymolinidae .................................... 32 Introduction .............................................................................. 6 Superfamily DROMIOIDEA ..................................... 33 The higher classification of the Brachyura ........................ -
Decapod Crustaceans from the Middle Jurassic Opalinus Clay of Northern Switzerland, with Comments on Crustacean Taphonomy
0012-9402/04/030381-12 Eclogae geol. Helv. 97 (2004) 381–392 DOI 10.1007/s00015-004-1137-2 Birkhäuser Verlag, Basel, 2004 Decapod crustaceans from the Middle Jurassic Opalinus Clay of northern Switzerland, with comments on crustacean taphonomy WALTER ETTER Key words: Decapoda, Peracarida, Jurassic, Switzerland, ecology, crustacean taphonomy ABSTRACT ZUSAMMENFASSUNG Four species of decapod crustaceans from the Middle Jurassic Opalinus Clay Aus dem Opalinuston (Mittlerer Jura, Aalenian) der Nordschweiz werden vier (Aalenian) of Northern Switzerland are described. Of these, Mecochirus cf. Arten von decapoden Krebsen beschrieben. Von Aeger sp., Eryma cf. bedelta eckerti is the most common one, while Eryma cf. bedelta, Glyphea sp. and und Glyphaea sp. wurden nur ganz wenige Exemplaren gefunden, während Aeger sp. were present as individuals, or only a few specimens. The preserva- Mecochirus cf. eckerti etwas häufiger ist. Die Erhaltungsbedingungen waren tion of these crustaceans ranges from moderate to excellent, reflecting the während der Ablagerung des Opalinustones günstig, was sich in einer geringen favourable taphonomic conditions of the depositional environment. An inter- Disartikulations- und Fragmentationsrate der Krebse widerspiegelt. Ein in- esting aspect of the taphocoenosis in the Opalinus Clay is that the decapod teressanter Aspekt der Taphocoenose ist die deutliche Dominanz der Klein- crustaceans are by far outnumbered by small peracarid crustaceans (isopods krebse (Peracarida: Isopoden und Tanaidaceen). Dies dürfte die Zahlenver- and tanaids). This is interpreted as reflecting the original differences in abun- hältnisse der ehemaligen Lebensgemeinschaft widerspiegeln. In den meisten dance. Yet this distribution is not frequently encountered in sedimentary se- Ablagerungen dominieren jedoch die decapoden Krebse, wogegen Peracarida quences where decapods (although rare) are far more common than isopods äusserst selten sind. -
Functional Diversity of Marine Ecosystems After the Late Permian Mass
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Plymouth Electronic Archive and Research Library 1 Title: Functional diversity of marine ecosystems after the Late Permian mass 2 extinction event 3 4 Authors: William J. Foster1*, Richard J. Twitchett1 5 6 Affiliations: 1Plymouth University, School of Geography, Earth and Environmental Sciences, 7 Drake Circus, Plymouth, Devon. PL4 8AA. United Kingdom. 8 9 Keywords: mass extinction; ecospace; reefs; marine invertebrates; Permian; Triassic 10 11 Introductory paragraph: The Late Permian mass extinction event was the most severe such 12 crisis of the past 500 million years and occurred during an episode of global warming. It is 13 assumed to have had significant ecological impact, but its effects on marine ecosystem 14 functioning are unknown and the patterns of marine recovery are debated. We analysed the fossil 15 occurrences of all known Permian-Triassic benthic marine genera and assigned each to a 16 functional group based on their inferred life habit. We show that despite the selective extinction 17 of 62-74% of marine genera there was no significant loss of functional diversity at the global 18 scale, and only one novel mode of life originated in the extinction aftermath. Early Triassic 19 marine ecosystems were not as ecologically depauperate as widely assumed, which explains the 20 absence of a Cambrian-style Triassic radiation in higher taxa. Functional diversity was, however, 21 significantly reduced in particular regions and habitats, such as tropical reefs, and at these scales 22 recovery varied spatially and temporally, probably driven by migration of surviving groups. -
Temporal Trends of Two Spider Crabs (Brachyura, Majoidea) in Nearshore Kelp Habitats in Alaska, U.S.A
TEMPORAL TRENDS OF TWO SPIDER CRABS (BRACHYURA, MAJOIDEA) IN NEARSHORE KELP HABITATS IN ALASKA, U.S.A. BY BENJAMIN DALY1,3) and BRENDA KONAR2,4) 1) University of Alaska Fairbanks, School of Fisheries and Ocean Sciences, 201 Railway Ave, Seward, Alaska 99664, U.S.A. 2) University of Alaska Fairbanks, School of Fisheries and Ocean Sciences, P.O. Box 757220, Fairbanks, Alaska 99775, U.S.A. ABSTRACT Pugettia gracilis and Oregonia gracilis are among the most abundant crab species in Alaskan kelp beds and were surveyed in two different kelp habitats in Kachemak Bay, Alaska, U.S.A., from June 2005 to September 2006, in order to better understand their temporal distribution. Habitats included kelp beds with understory species only and kelp beds with both understory and canopy species, which were surveyed monthly using SCUBA to quantify crab abundance and kelp density. Substrate complexity (rugosity and dominant substrate size) was assessed for each site at the beginning of the study. Pugettia gracilis abundance was highest in late summer and in habitats containing canopy kelp species, while O. gracilis had highest abundance in understory habitats in late summer. Large- scale migrations are likely not the cause of seasonal variation in abundances. Microhabitat resource utilization may account for any differences in temporal variation between P. gracilis and O. gracilis. Pugettia gracilis may rely more heavily on structural complexity from algal cover for refuge with abundances correlating with seasonal changes in kelp structure. Oregonia gracilis mayrelyonkelp more for decoration and less for protection provided by complex structure. Kelp associated crab species have seasonal variation in habitat use that may be correlated with kelp density. -
The Eocene Decapod Crustacean Fauna of the "Main" Quarry in Arzignano (Vicenza - Ne Italy) with the Description of a New Species of Raninidae
Lavori - Soc. Ven. Sc. Nat. - Vol. 29: 109-117, Venezia, 31 gennaio 2004 THE EOCENE DECAPOD CRUSTACEAN FAUNA OF THE "MAIN" QUARRY IN ARZIGNANO (VICENZA - NE ITALY) WITH THE DESCRIPTION OF A NEW SPECIES OF RANINIDAE CLAUDIO BESCHIN*, ALESSANDRA BUSULINI**, ANTONIO DE ANGELI***, GIULIANO TESSIER** Key words: Crustacea, Decapoda, Raninidae, Eocene, NE Italy. Abstract The Eocene crustacean fauna found in the "Main" quarry of Arzignano (Vicenza - NE Italy) has been studied for twenty years and the number of species is still increasing. Up to now the known species are 53 and belong to 20 families: Callianassidae, Albuneidae, Diogenidae, Dromiidac, Dynomenidae, Raninidae, Calappidae, Hepatidae, Majidae, Dairidae, Parthenopidae, Retroplumidae, Cheiragonidae, Portunidae, Carpiliidae, Goneplacidae, Pilumnidae, Xanthidae, Palicidae and Grapsidae. The new discovery of a very well preserved specimen of great size has allowed the creation of Lophoranina maxima sp. nov. and a better placement of the specimens previously known as L. cf. reussi. The new species is characterized by the number and the distribution of the transverse ridges on the dorsal surface of carapace and the shape and distribution of the little spines on the ridges which vary in the different phases of growth. The genus Lophoranina is widely spread in the Eocene deposits of Veneto. The great size of the studied specimen let us say that L. maxima sp. nov. is the greatest fossil Raninidae that has ever been found. Riassunto La fauna eocenica a crostacei decapodi delta cava "Main" di Arzignano (Vicenza - Italia nordorientale) con la descrizione di una nuova specie di Raninidae. La fauna a crostacei di eta eocenica rinvenuta nella cava "Main" di Arzignano (Vicenza - Italia nordorientale) viene studiata ormai da vent'anni e si arricchisce continuamente di nuove forme. -
Crustacea : Decapoda : Erymidae) Dans Le Jurassique
Première occurrence d’Enoploclytia M’Coy, 1849 (Crustacea : Decapoda : Erymidae) dans le Jurassique First occurence of Enoploclytia M’Coy, 1849 (Crustacea: Decapoda: Erymidae) in the Jurassic Julien Devillez Muséum national d’Histoire naturelle, Paris Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (CR2P, UMR 7207), Sorbonne Universités, MNHN, UPMC, CNRS, 57 rue Cuvier F-75005 Paris (France) [email protected] Sylvain Charbonnier Muséum national d’Histoire naturelle, Paris Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (CR2P, UMR 7207), Sorbonne Universités, MNHN, UPMC, CNRS, 57 rue Cuvier F-75005 Paris (France) [email protected] Jean-Philippe Pezy Normandie Univ, UNICAEN, CNRS, M2C, 14000 CAEN, France [email protected] RÉSUMÉ Parmi les Erymidae Van Straelen, 1925, connus dès le Permien supérieur (Changhsingien) et répandus au Jurassique, le genre Enoploclytia M’Coy, 1849 passe pour être apparu tardivement en raison de son absence avant le Crétacé. Jusqu’à présent, le plus ancien représentant était E. augustobonae Devillez, Charbonnier, Hyžný & Leroy, 2016 du Crétacé inférieur (Barrémien) de l’est du bassin de Paris (France). Cependant, un nouveau fossile récolté en Normandie (France), présentant une architecture des sillons de la carapace typique d’Enoploclytia, atteste de la présence du genre dès le Jurassique supérieur (Oxfordien). MOTS CLÉS Crustacé, Erymidae, France, homard, Jurassique, Mésozoïque, Normandie. ABSTRACT Among the Erymidae Van Straelen, 1925, known as early as the Late Permian (Changhsingian) and widespread in the Jurassic, the genus Enoploclytia M’Coy, 1849 seems to have a late appearance because of its lack before the Cretaceous. Until now, the oldest representative was E. -
Anomura: Galatheidae) from the Dampier Archipelago, Western Australia
DOI: 10.18195/issn.0313-122x.73.2007.289-297 /-(ecords of the Western Australian ;\/useum Supplement No. 71: 2H9-297 (2007). Some new records of shallow-water galatheid crustaceans (Anomura: Galatheidae) from the Dampier Archipelago, Western Australia Enrique Macpherson Centro de Fstudios Avanzados de Blanes (CSIC) Cami ace. Cala San Francesc sin ]710() Blanes. Cirona. Spain. email: macphersolw1ceab.csic.es Abstract - A collection of galatheid crustaceans from the Dampier Archipelago, north-western Australia, is studied. Six species arc reported: AIJogalathea elegans (Adams and White, ]848), Ga/athea orientalis Stimpson, ]858, G. subsquamata Stimpson, 1858, Lauriea gardineri (Laurie, ](26), PhvIJadiorhynchus integrirostris (Dana, 1852) and Phylladiorhynchus muius sp. novo Ga/athea corallicola Haswell, 1888 is redescribed and its relationship with G. orientalis Stimpson, ]858 and G. coralliophilus Baba and Oh, 199() are discussed. INTRODUCTION SYSTEMATICS During recent expeditions to the Oampier Allogalathea elegans (Adams and White, 1848) Archipelago in 1998 and 1999, an interesting collection of shallow-water galatheids was Galathea elegans Adams and White, 1848: pI. 12, collected. The shallow-water galatheid fauna in this fig. 7. area of the Indian Ocean is not very well known, Allogalathea elegans Baba, 1969: 6, fig. 1. 1979: although some species have been reported, e.g 654, fig. 3. 1988: 54. Haig, 1973: 275. - 1974: Allogalathea elegans (Adams and White, 1848), 447. - Tirmizi and ]aved, 1993: 27, figs 12, 13. Galathea aegyptiaca (Paulson, 1875), G. austraJiensis Stimpson, 1858, G. corrallicola Material examined Haswell, 1882, G. genkai Miyake and Baba, 1964, G. Western Australia, Dampier Archipelago. WAM magnifica Haswell, 1882, G. pubescens Stimpson, C 26709 (2 males, 3.1-5.2 mm), stn OA2/99/06 1858, G. -
Das System Der Decapoden-Krebse. Arnold Eduard Ortmann
© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Nachdruck verboten liebersttzungsrecht vorbehalten. Das System der Decapoden-Krebse. Von Dr. Arnold E. Ortmann, in Princeton, N. J., — U. S. A. In einer Reihe von acht Abhandlungen, die ich in den Jahren 1890-1894 veröffentlicht habe ^), richtete ich besondere Aufmerksam- keit darauf, ein den Verwandtschaftsverhältnissen entsprechendes System der Decapoden-Krebse aufzustellen. Diese Untersuchungen, die sich auf den grundlegenden Arbeiten von Boas aufbauen, haben i) Oktmann, Die Decapoden-Krebse des Strassburger Museums. 1890. 1. Theil, Die Unterordnung Natantia Boas, in: Zool. Jahrb., V. 5, Syst., 1890. 1891a. 2. Theil, Versuch einer Revision der Gattungen Palaemon und Bithynis, ibid. V. 5, 1891. 1891b. 3. Theil, Die Abtheilungen der Reptantia Boas: Homaridea, Loricata und Thalassinidea, ibid. V. 6, 1891. 1892a. 4. Theil, Die Abtheilungen Galatheidea und Paguridea, ibid. V. 6, 1892. 1892b. 5. Theil, Die Abtheilungen Hippidea, Dromiidea und Oxystomata, ibid. V. 6, 1892. 1893a. 6. Theil, Abtheilung: Brachyura (Brachyura genuina Boas) I. Unterabtheilung: Majoidea und Cancroidea, 1. Section : Portuninea, ibid. V. 7, 1893. 1893b. 7. Theil, Abtheilung: Brachyura (Brachyura genuina Boas) II. Unterabtheilung : Cancroidea, 2. Section : Cancrinea, 1. Gruppe: Cyclometopa, ibid. V. 7, 1893. 1894. 8. Theil, Abtheilung: Brachyura (Brachyura genuina Boas) III. Unterabtheilung : Cancroidea, 2. Section : Cancrinea, 2. Gruppe: Catametopa, ibid. V. 7, 1894. ZooI. Jahrb. IX. Abth. f. Syst. 27 - © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at 4l0 A. ORTMANN, dazu geführt, dass ich die alte Eiiitheiluiig der Decapoden in Macrureil, Anomuren und Brachyuren gänzlich verliess und dafür eine Keihe von grossen ,, Abtheilungen" aufstellte, deren jede einen besondern, eigenthümlich entwickelten Hauptzweig des Decapoden-Stammes dar- stellt. -
Allogalathea (Decapoda: Galatheidae): a Monospecific Genus of Squat Lobster?
Zoological Journal of the Linnean Society, 2011, 162, 245–270. With 7 figures Allogalathea (Decapoda: Galatheidae): a monospecific genus of squat lobster? PATRICIA CABEZAS1*, ENRIQUE MACPHERSON2 and ANNIE MACHORDOM1 1Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain 2Centro de Estudios Avanzados de Blanes (CSIC), Carr. Acc. Cala Sant Francesc 14, 17300 Blanes, Girona, Spain Received 8 March 2010; revised 14 June 2010; accepted for publication 16 June 2010 The genus Allogalathea was established by Baba in 1969 to include the well-known species Galathea elegans. This species is widely distributed across the Indo-West Pacific Ocean, and is characterized by living in close association with crinoids, and by its conspicuous coloration. Although the genus is considered monospecific, different colour patterns and discrete morphological variations mainly associated with the rostrum and chelipeds have been reported. These differences could point to cryptic species, thereby questioning Allogalathea as a monotypic taxon. To address this issue, we sequenced the mitochondrial cytochrome oxidase I (COI; 658 bp) and 16S rRNA (882 bp) genes and the nuclear gene phosphoenolpyruvate carboxykinase (PEPCK; 598 bp) in numerous specimens from eight different localities, and also examined their morphological characters. DNA sequences were analysed using maximum-parsimony, maximum-likelihood, and Bayesian approaches of phylogenetic inference. The resulting trees were combined with morphological evidence to test species boundaries. Our molecular data revealed four deeply divergent clades, which can be distinguished by subtle morphological differences in the spinulation and length- : breadth ratio of the P1 carpus, spinulation of the walking legs, and shape of the rostrum. Our findings indicated that Allogalathea elegans is in fact a species complex comprising four different species, which, although genetically very distinct, are morphologically very similar. -
Associated with Gorgonian Corals from the Deep Waters Off Taiwan
PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON 120(2):167–174. 2007. AnewMunidopsis (Crustacea: Decapoda: Galatheidae) associated with gorgonian corals from the deep waters off Taiwan Chia-Wei Lin, Masayuki Osawa, and Tin-Yam Chan* (CWL, MO and TYC) Institute of Marine Biology, National Taiwan Ocean University, Keelung 202, Taiwan, R.O.C., email: [email protected]; (MO) Department of Marine and Environmental Sciences, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213, Japan Abstract.—Munidopsis sarissa, a new galatheid crustacean associated with gorgonian corals, is described from Taiwan at depths of about 1000 m. This new species is unique in the genus by having an extremely spinose carapace with elongated spearhead-like rostrum, fourth thoracic sternite much larger than following sternites, and very long and slender chelipeds possessing broad coxae which are clearly visible from the dorsal view of the animal. The galatheid genus Munidopsis White- species is deposited in the National aves, 1874 is predominantly deep-sea in Taiwan Ocean University, Keelung distribution and has a very high diversity, (NTOU). The postorbital carapace length with 147 species known in the Indo- (cl) was measured from the orbital margin Pacific and about 70 species in the to the posterior margin of the carapace Atlantic Ocean (Baba 1988, 2005; Mac- along the dorsal midline. The abbrevia- pherson & Segonzac 2005, Macpherson tions ‘‘CP’’ and ‘‘PCP’’ refer to the 2007). Species of the genus are often French beam trawl with the spans of 4.2 found in the catches of deep-sea benthic and 2.5 m, respectively. -
Annual Meeting 2014
The Palaeontological Association 58th Annual Meeting 16th–19th December 2014 University of Leeds PROGRAMME abstracts and AGM papers Public transport to the University of Leeds BY TRAIN: FROM TRAIN STATION ON FOOT: Leeds Train Station links regularly to all major UK cities. You The University campus is a 20 minute walk from the train can get from the station to the campus on foot, by taxi or by station. The map below will help you find your way. bus. A taxi ride will take about 10 minutes and it will cost Leave the station through the exit facing the main concourse. approximately £5. Turn left past the bus stops and walk down towards City Square. Keeping City Square on your left, walk straight up FROM TRAIN STATION BY BUS: Park Row. At the top of the road turn right onto The Headrow, We advise you to take bus number 1 which departs from passing The Light shopping centre on your left. After The Light Infirmary Street. The bus runs approximately every 10 minutes turn left onto Woodhouse Lane to continue uphill. Keep going, and the journey takes 10 minutes. passing Morrisons, Leeds Metropolitan and the Dry Dock You should get off the bus just outside the Parkinson Building. boat pub heading for the large white clock tower. This is the (There is also the £1 Leeds City Bus which takes you from the Parkinson building. train station to the lower end of campus but the journey time is much longer). BY COACH: If you arrive by coach you can catch bus numbers 6,28 or 97 to the University (Parkinson Building).