Automatic Derivation of Grammar Rules Used for Speech Recognition in Dialogue Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Speech Recognition in Java Breandan Considine Jetbrains, Inc
Speech Recognition in Java Breandan Considine JetBrains, Inc. Automatic speech recognition in 2011 Automatic speech recognition in 2015 What happened? • Bigger data • Faster hardware • Smarter algorithms Traditional ASR • Requires lots of handmade feature engineering • Poor results: >25% WER for HMM architectures State of the art ASR • <10% average word error on large datasets • DNNs: DBNs, CNNs, RBMs, LSTM • Thousands of hours of transcribed speech • Rapidly evolving field • Takes time (days) and energy (kWh) to train • Difficult to customize without prior experience Free / open source • Deep learning libraries • C/C++: Caffe, Kaldi • Python: Theano, Caffe • Lua: Torch • Java: dl4j, H2O • Open source datasets • LibriSpeech – 1000 hours of LibriVox audiobooks • Experience is required Let’s think… • What if speech recognition were perfect? • Models are still black boxes • ASR is just a fancy input method • How can ASR improve user productivity? • What are the user’s expectations? • Behavior is predictable/deterministic • Control interface is simple/obvious • Recognition is fast and accurate Why offline? • Latency – many applications need fast local recognition • Mobility – users do not always have an internet connection • Privacy – data is recorded and analyzed completely offline • Flexibility – configurable API, language, vocabulary, grammar Introduction • What techniques do modern ASR systems use? • How do I build a speech recognition application? • Is speech recognition accessible for developers? • What libraries and frameworks exist -
Covenant Journal of Engineering Technology (CJET) Vol.3 No.1, June 2019
Covenant Journal of Engineering Technology (CJET) Vol.3 No.1, June 2019 ISSN: p. 2682-5317 e. 2682-5325 An Open Access Journal Available Online Covenant Journal of Engineering Technology (CJET) Vol. 3 No. 1, June 2019 Publication of the College of Engineering, Covenant University, Canaanland. Editor-in-Chief: Dr. Olugbenga Omotosho [email protected] Managing Editor: Edwin O. Agbaike [email protected] URL: http://journals.covenantuniversity.edu.ng/index.php/cjet Achebe C. H., et al CJET (2019) 3(1) 1-19 © 2019 Covenant University Journals All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any meams, electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher. It is a condition of publication in this journal that manuscripts have not been published or submitted for publication and will not be submitted or published elsewhere. Upon the acceptance of articles to be published in this journal,the author(s) are required to transfer copyright of the article to the publisher. ISSN: p. 2682-5317 e. 2682-5325 Published by Covenant University Journals, Covenant University, Canaanland, Km 10, Idiroko Road, P.M.B. 1023, Ota, Ogun State, Nigeria Printed by Covenant University Press URL: http://journals.covenantuniversity.edu.ng/index.php/cjet ii Achebe C. H., et al CJET (2019) 3(1) 1-19 Articles Evaluation of Frictional Heat and Oil Cooling Rate in Mechanical Contact Due to Debris Formation. Achebe C. H., Nwagu I. A., Chukwuneke J. -
A New Era: Digital Curtilage and Alexa-Enabled Smart Home Devices
Touro Law Review Volume 36 Number 2 Article 12 2020 A New Era: Digital Curtilage and Alexa-Enabled Smart Home Devices Johanna Sanchez Touro Law Center Follow this and additional works at: https://digitalcommons.tourolaw.edu/lawreview Part of the Constitutional Law Commons, Fourth Amendment Commons, Internet Law Commons, Law Enforcement and Corrections Commons, and the Supreme Court of the United States Commons Recommended Citation Sanchez, Johanna (2020) "A New Era: Digital Curtilage and Alexa-Enabled Smart Home Devices," Touro Law Review: Vol. 36 : No. 2 , Article 12. Available at: https://digitalcommons.tourolaw.edu/lawreview/vol36/iss2/12 This Article is brought to you for free and open access by Digital Commons @ Touro Law Center. It has been accepted for inclusion in Touro Law Review by an authorized editor of Digital Commons @ Touro Law Center. For more information, please contact [email protected]. Sanchez: A New Era: Digital Curtilage A NEW ERA: DIGITAL CURTILAGE AND ALEXA-ENABLED SMART HOME DEVICES Johanna Sanchez* I. INTRODUCTION ....................................................................664 II. SOCIERY’S BENEFITS DERIVED FROM THE ALEXA-ENABLED SMART HOME DEVICES .......................................................667 A. A New Form of Electronic Surveillance...............667 1. What is a smart device? ..............................667 2. What is voice recognition? ..........................668 3. The Alexa-enabled Echo device assists law enforcement .......................................................669 4. -
Multimodal HALEF: an Open-Source Modular Web-Based Multimodal Dialog Framework
Multimodal HALEF: An Open-Source Modular Web-Based Multimodal Dialog Framework Zhou Yu‡†, Vikram Ramanarayanan†, Robert Mundkowsky†, Patrick Lange†, Alexei Ivanov†, Alan W Black‡ and David Suendermann-Oeft† Abstract We present an open-source web-based multimodal dialog framework, “Multimodal HALEF”, that integrates video conferencing and telephony abilities into the existing HALEF cloud-based dialog framework via the FreeSWITCH video telephony server. Due to its distributed and cloud-based architecture, Multimodal HALEF allows researchers to collect video and speech data from participants in- teracting with the dialog system outside of traditional lab settings, therefore largely reducing cost and labor incurred during the traditional audio-visual data collection process. The framework is equipped with a set of tools including a web-based user survey template, a speech transcription, annotation and rating portal, a web visual processing server that performs head tracking, and a database that logs full-call audio and video recordings as well as other call-specific information. We present observations from an initial data collection based on an job interview application. Finally we report on some future plans for development of the framework. 1 Introduction and Related Work Previously, many end-to-end spoken dialog systems (SDSs) used close-talk micro- phones or handheld telephones to gather speech input [3] [22] in order to improve automatic speech recognition (ASR) performance of the system. However, this lim- its the accessibility of the system. Recently, the performance of ASR systems has improved drastically even in noisy conditions [5]. In turn, spoken dialog systems are now becoming increasingly deployable in open spaces [2]. -
Systematic Review on Speech Recognition Tools and Techniques Needed for Speech Application Development
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 03, MARCH 2020 ISSN 2277-8616 Systematic Review On Speech Recognition Tools And Techniques Needed For Speech Application Development Lydia K. Ajayi, Ambrose A. Azeta, Isaac. A. Odun-Ayo, Felix.C. Chidozie, Aeeigbe. E. Azeta Abstract: Speech has been widely known as the primary mode of communication among individuals and computers. The existence of technology brought about human computer interface to allow human computer interaction. Existence of speech recognition research has been ongoing for the past 60 years which has been embraced as an alternative access method for individuals with disabilities, learning shortcomings, Navigation problems etc. and at the same time allow computer to identify human languages by converting these languages into strings of words or commands. The ongoing problem in speech recognition especially for under-resourced languages has been identified to be background noise, speed, recognition accuracy, etc. In this paper, in order to achieve a higher level of speed, recognition accuracy (word or sentence accuracy), manage background noise, etc. we have to be able to identify and apply the right speech recognition algorithms/techniques/parameters/tools needed ultimately to develop any speech recognition system. The primary objective of this paper is to make summarization and comparison of some of the well-known methods/algorithms/techniques/parameters identifying their steps, strengths, weaknesses, and application areas in various stages of speech recognition systems as well as for the effectiveness of future services and applications. Index Terms: Speech recognition, Speech recognition tools, Speech recognition techniques, Isolated speech recognition, Continuous speech recognition, Under-resourced languages, High resourced languages. -
Artificial Intelligence for Health
Artificial Intelligence for Health Erwan Scornet (Assistant Professor, Ecole Polytechnique) Erwan Scornet Intelligence Artificielle et sant´e 1 History of AI 2 From Big Data to Deep Learning 3 AI and Health Chest X-ray Liver lesion segmentation Genomics Toxicogenetics Medical 4 Perspective and issues Erwan Scornet Intelligence Artificielle et sant´e A first look at Artificial Intelligence What is Artificial Intelligence? What are the main challenges? What are the applications of What are the issues raised by AI? AI? Erwan Scornet Intelligence Artificielle et sant´e Definition of AI - Dartmouth conference On September 1955, a project was proposed by McCarthy, Marvin Minsky, Nathaniel Rochester and Claude Shannon introducing formally for the first time the term ”Artificial Intelligence". The study is to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it. An attempt will be made to find how to make machines use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves. Proposal for Dartmouth conference on AI (1956) Erwan Scornet Intelligence Artificielle et sant´e Old applications of AI Many tasks were achieved between 1956 and 1974. Computer checkers (1959, Arthur Lee Samuel) capable of challenging a respectable amateur. Interestingly, he coined the term "Machine Learning" in 1959. IBM Shoebox (1961) was able to recognize 16 spoken words and the digits 0 to 9. ELIZA (1964-1966 at MIT, Joseph Weizenbaum) was one of the first chatterbots and one of the first programs capable of attempting the Turing Test. -
Open Source German Distant Speech Recognition: Corpus and Acoustic Model
Open Source German Distant Speech Recognition: Corpus and Acoustic Model Stephan Radeck-Arneth1;2, Benjamin Milde1, Arvid Lange1;2, Evandro Gouvea,ˆ Stefan Radomski1, Max Muhlh¨ auser¨ 1, and Chris Biemann1 1Language Technology Group / 2Telecooperation Group Computer Science Departement Technische Universitat¨ Darmstadt {stephan.radeck-arneth,milde,biem}@cs.tu-darmstadt.de {radomski,max}@tk.informatik.tu-darmstadt.de {egouvea,arvidjl}@gmail.com Abstract. We present a new freely available corpus for German distant speech recognition and report speaker-independent word error rate (WER) results for two open source speech recognizers trained on this corpus. The corpus has been recorded in a controlled environment with three different microphones at a dis- tance of one meter. It comprises 180 different speakers with a total of 36 hours of audio recordings. We show recognition results with the open source toolkit Kaldi (20.5% WER) and PocketSphinx (39.6% WER) and make a complete open source solution for German distant speech recognition possible. Keywords: German speech recognition, open source, speech corpus, distant speech recognition, speaker-independent 1 Introduction In this paper, we present a new open source corpus for distant microphone record- ings of broadcast-like speech with sentence-level transcriptions. We evaluate the corpus with standard word error rate (WER) for different acoustic models, trained with both Kaldi[1] and PocketSphinx[2]. While similar corpora already exist for the German lan- guage (see Table 1), we placed a particular focus on open access by using a permissive CC-BY license and ensured a high quality of (1) the audio recordings, by conducting the recordings in a controlled environment with different types of microphones; and (2) the hand verified accompanying transcriptions. -
Hidden Voice Commands
Hidden Voice Commands Nicholas Carlini∗ Pratyush Mishra University of California, Berkeley University of California, Berkeley Tavish Vaidya Yuankai Zhang Micah Sherr Georgetown University Georgetown University Georgetown University Clay Shields David Wagner Wenchao Zhou Georgetown University University of California, Berkeley Georgetown University Abstract command may recognize it as an unwanted command Voiceinterfaces are becoming more ubiquitous and are and cancel it, or otherwise take action. This motivates now the primary input method for many devices. We ex- the question we study in this paper: can an attacker cre- plore in this paper how they can be attacked with hidden ate hidden voice commands, i.e., commands that will be voice commands that are unintelligible to human listen- executed by the device but which won’t be understood ers but which are interpreted as commands by devices. (or perhaps even noticed) by the human user? We evaluate these attacks under two different threat The severity of a hidden voice command depends upon models. In the black-box model, an attacker uses the what commands the targeted device will accept. De- speech recognition system as an opaque oracle. We show pending upon the device, attacks could lead to informa- that the adversary can produce difficult to understand tion leakage (e.g., posting the user’s location on Twitter), commands that are effective against existing systems in cause denial of service (e.g., activating airplane mode), the black-box model. Under the white-box model, the or serve as a stepping stone for further attacks (e.g., attacker has full knowledge of the internals of the speech opening a web page hosting drive-by malware). -
German Speech Recognition: a Solution for the Analysis and Processing of Lecture Recordings
German Speech Recognition: A Solution for the Analysis and Processing of Lecture Recordings Haojin Yang, Christoph Oehlke, Christoph Meinel Hasso Plattner Institut (HPI), University of Potsdam P.O. Box 900460, D-14440 Potsdam e-mail: Haojin.Yang, Meinel @hpi.uni-potsdam.de; [email protected] { } Abstract—Since recording technology has become more ro- Therefore their training dictionary can not be extended or bust and easier to use, more and more universities are taking optimized periodically. [8] proposed a solution for creating the opportunity to record their lectures and put them on the an English speech corpus basing on lecture audio data. But, Web in order to make them accessable by students. The auto- matic speech recognition (ASR) techniques provide a valueable they have not dealt with a complete speech recognition source for indexing and retrieval of lecture video materials. In system. [7] introduced a spoken document retrieval system this paper, we evaluate the state-of-the-art speech recognition for Korean lecture search. Their automatically generated software to find a solution for the automatic transcription of search index table is based on lecture transcriptions. How- German lecture videos. Our experimental results show that ever, they do not consider the recognition of topic-related the word error rates (WERs) was reduced by 12.8% when the speech training corpus of a lecturer is increased by 1.6 hours. technical foreign words which are important for keyword- search. Overall, most of these lecture recognition systems Keywords-automatic speech recognition; e-learning; multi- have a low recognition accuracy, the WERs of audio lec- media retrieval; recorded lecture videos. -
Bootstrapping Development of a Cloud-Based Spoken Dialog System in the Educational Domain from Scratch Using Crowdsourced Data
Research Report ETS RR–16-16 Bootstrapping Development of a Cloud-Based Spoken Dialog System in the Educational Domain From Scratch Using Crowdsourced Data Vikram Ramanarayanan David Suendermann-Oeft Patrick Lange Alexei V. Ivanov Keelan Evanini Zhou Yu Eugene Tsuprun Yao Qian May 2016 ETS Research Report Series EIGNOR EXECUTIVE EDITOR James Carlson Principal Psychometrician ASSOCIATE EDITORS Beata Beigman Klebanov Donald Powers Senior Research Scientist - NLP ManagingPrincipalResearchScientist Heather Buzick Gautam Puhan Research Scientist Principal Psychometrician Brent Bridgeman John Sabatini Distinguished Presidential Appointee ManagingPrincipalResearchScientist Keelan Evanini Matthias von Davier Managing Senior Research Scientist - NLP Senior Research Director Marna Golub-Smith Rebecca Zwick Principal Psychometrician Distinguished Presidential Appointee Shelby Haberman Distinguished Presidential Appointee PRODUCTION EDITORS Kim Fryer Ayleen Stellhorn Manager, Editing Services Senior Editor Since its 1947 founding, ETS has conducted and disseminated scientific research to support its products and services, and to advance the measurement and education fields. In keeping with these goals, ETS is committed to making its research freely available to the professional community and to the general public. Published accounts of ETS research, including papers in the ETS Research Report series, undergo a formal peer-review process by ETS staff to ensure that they meet established scientific and professional standards. All such ETS-conducted peer reviews are in addition to any reviews that outside organizations may provide as part of their own publication processes. Peer review notwithstanding, the positions expressed in the ETS Research Report series and other published accounts of ETS research are those of the authors and not necessarily those of the Officers and Trustees of Educational Testing Service. -
Using Open Source Speech Recognition Software Without an American Accent
Using open source speech recognition software without an American accent. The field Julius: C, strange BSDish license, Japanese HTK: (HMM (Hidden Markov Model) Toolkit) C, non-commercial license Kaldi: C++ library, Apache 2.0 (F.U. HTK) CMU Sphinx Family: C, Java, BSD-ish Smaller possibly dormant projects Shout: C++, GPL RWTH ASR: C++, non-commercial, German Iatros: C, GPL3, Spanish Carnegie Mellon University Sphinx Sphinx C 1980s Sphinx 2 C 1990s -------. | Sphinx 3 C 2000s | | Sphinx 4 Java | | PocketSphinx C Sphinx 3, 4, and PocketSphinx share tools. Sphinx development model PhD driven: 1. Have a moderately good idea 2. Write code that “proves” your idea 3. Submit thesis 4. $$$* * $$$ refers to a job at Nuance, Apple, Microsoft, Google, IBM,... The “Coral Reef” development model. What Americans do: sudo aptitude install \ pocketsphinx-hmm-wsj1 \ pocketsphinx-lm-wsj \ python-pocketsphinx \ # or gstreamer0.10-pocketsphinx from pocketsphinx import Decoder HMM = "/usr/share/pocketsphinx/model/hmm/wsj1/" LM = "/usr/share/pocketsphinx/model/"\ "lm/wsj/wlist5o.3e-7.vp.tg.lm.DMP" DICT = "/usr/share/pocketsphinx/model/"\ "lm/wsj/wlist5o.dic" decoder = Decoder(hmm=HMM, lm=LM, dict=DICT) fh = open("speech.wav") fh.seek(44) # skip the WAV header decoder.decode_raw(fh) print decoder.get_hyp() # short for hypothesis A good reference is David Huggins-Daines’ live-coding PyCon2010 lightning talk. Everything goes wrong and he still finishes in under 4 minutes. The configuration lines: HMM = ".../hmm/wsj1/" LM = ".../lm/wlist5o.3e-7.vp.tg.lm.DMP" DICT = ".../lm/wsj/wlist5o.dic" HMM Acoustic model (Hidden Markov Model) LM Language model DICT Pronunciation dictionary The Acoustic model matches sounds to phoneme probabilities. -
End User License Agreement
End User License Agreement End User License Agreement 14 January 2016 Contact: LumenVox, LLC Edward Miller, CEO 3615 Kearny Villa Road, Suite 202, San Diego, CA 92123 USA Telephone: +1 (858) 707-7700 Email: [email protected] Website: www.LumenVox.com Version 15.0 Page 1 January 2016 End User License Agreement This License Agreement between LumenVox LLC (Hereinafter “LumenVox”) and You (Hereinafter “You”) constitutes the terms and conditions for Your use of the Software Product in consideration of the license fees that You have paid. The Software Product(s) provided with this agreement are licensed, not sold, to You for use only under the terms of this License Agreement, unless a Software Product is accompanied by a separate license agreement, in which case the terms of that separate license agreement will govern, subject to Your prior acceptance of that separate license agreement. Please read this Agreement carefully. By downloading, installing, copying, or otherwise using the Software, You agree to be bound by the terms and conditions of this Agreement and become a party to this Agreement. If You do not agree with all of the terms and conditions of this Agreement, do not download, install, copy or otherwise use the Software. You may, however, request a return for a full refund within 30 days of your purchase. THE SOFTWARE PRODUCT IS PROTECTED UNDER U.S. AND INTERNATIONAL COPYRIGHT LAWS, AS WELL AS OTHER INTELLECTUAL PROPERTY LAWS AND TREATIES. 1. DEFINITIONS. The following definitions apply to this Licensing Agreement: 1.1. “Application Context” means the particular fields of use and the purpose and manner of using the Software permitted under this Agreement, as specified below.