Cells Formation of Stat2:Stat6 Complexes in B Activates Stat6 And

Total Page:16

File Type:pdf, Size:1020Kb

Cells Formation of Stat2:Stat6 Complexes in B Activates Stat6 And IFN-α Activates Stat6 and Leads to the Formation of Stat2:Stat6 Complexes in B Cells This information is current as Sanjay Gupta, Man Jiang and Alessandra B. Pernis of October 5, 2021. J Immunol 1999; 163:3834-3841; ; http://www.jimmunol.org/content/163/7/3834 References This article cites 55 articles, 31 of which you can access for free at: Downloaded from http://www.jimmunol.org/content/163/7/3834.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: by guest on October 5, 2021 http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1999 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. IFN-a Activates Stat6 and Leads to the Formation of Stat2: Stat6 Complexes in B Cells1 Sanjay Gupta, Man Jiang, and Alessandra B. Pernis2 IFN-a consists of a family of highly homologous proteins, which exert pleiotropic effects on a wide variety of cell types. The biologic activities of IFN-a are mediated by its binding to a multicomponent receptor complex resulting in the activation of the Janus kinase-STAT signaling pathway. In most cell types, activation of Stat1 and Stat2 by IFN-a leads to the formation of either STAT homo-/heterodimers or of the IFN-stimulated gene factor 3 complex composed of Stat1, Stat2, and p48, a non-STAT protein. These distinct transcriptional complexes then target two different sets of cis-elements, g-activated sites and IFN-stimulated response elements. Here, we report that IFN-a can activate complexes containing Stat6, which, until now, has been primarily associated with signaling by two cytokines with biologic overlap, IL-4 and IL-13. Induction of Stat6 complexes by IFN-a appears to be cell type specific, given that tyrosine phosphorylation of Stat6 in response to IFN-a is predominantly detected in B cells. Activation of Stat6 by IFN-a in B cells is accompanied by the formation of novel Stat2:Stat6 complexes, including an IFN-stimulated gene Downloaded from factor 3-like complex containing Stat2, Stat6, and p48. B cell lines resistant to the antiproliferative effects of IFN-a display a decrease in the IFN-a-mediated activation of Stat6. Activation of Stat6 as well as of Stat2:Stat6 complexes by IFN-a in B cells may allow modulation of target genes in a cell type-specific manner. The Journal of Immunology, 1999, 163: 3834–3841. nterferon-a consists of a family of highly homologous pro- Stat1, and of Stat2 in most cell types (9–11), although activation teins that exert pleiotropic actions, including immunomodu- of Stat3, Stat4, and Stat5 has also been reported (12–14). http://www.jimmunol.org/ I latory, antiviral, and antiproliferative effects (1–3). These bi- STAT homo-/heterodimers activated in response to IFN-a can ologic activities are mediated by the ability of the IFN-a species to drive the expression of a subset of IFN-a-inducible genes, e.g., the bind to a multicomponent receptor complex. Two distinct human gene encoding the transcription factor IFN regulatory factor 1 receptor chains have been cloned so far: the IFNaR1 and the (IRF-1), by binding to specific promoter elements termed g-acti- IFNaR2 chains (4). However, additional receptor components may vated sites (GAS).3 Unlike other cytokines, IFN-a activation of exist, given that transfection of both human receptor chains in STATs also leads to the formation of an additional transcriptional murine cells does not fully reconstitute biologic responses to all complex termed IFN-stimulated gene factor 3 (ISGF3), which is human IFN-a subspecies (5). Cell type-specific differences in re- composed of a Stat1:Stat2 heterodimer and a non-STAT protein, ceptor composition may also occur, as suggested by the finding that p48. The ISGF3 complex can then induce the expression of a dis- by guest on October 5, 2021 IFN-a interacts differently with lymphoid vs epithelial cells (6). tinct subset of IFN-responsive genes by binding to a different sub- The early intracellular events triggered by IFN-a have recently set of cis-acting elements, termed IFN-stimulated response ele- been elucidated and have served as a paradigm for cytokine sig- ments (ISREs) (15). naling (7, 8). Binding of IFN-a to its receptor leads to the activa- IFN-a has been widely used as an antiviral as well as an anti- tion, via two receptor-associated tyrosine kinases, Tyk2 and Jak1, tumor agent because of its growth-inhibitory effects (16–18). of latent cytoplasmic factors belonging to the STAT (signal trans- Up-regulation of IRF-1 is believed to mediate some of the anti- ducers and activators of transcription) family of proteins. Tyrosine proliferative effects of the IFNs (19). The effectiveness of the phosphorylation of the STATs allows them to homodimerize or growth-inhibitory actions of IFNs is, however, limited by the heterodimerize and to translocate into the nucleus, where they emergence of IFN resistance. In B cells, IFN resistance character- modulate gene transcription. So far, seven distinct members of the izes EBV transformation of B cells as well as certain subclones of STAT family have been identified in eukaryotes. Some STATs Daudi, a Burkitt’s lymphoma cell line, which is normally exquis- display a restricted pattern of activation. For instance, Stat6 com- itely sensitive to growth inhibition by IFN-a. IFN resistance in plexes are induced primarily in response to two cytokines with EBV-transformed B cells has been attributed to the presence of the overlapping biologic functions, IL-4 and IL-13. In contrast, other EBV nuclear Ag 2 (EBNA2) (20). However, a distinct mechanism STATs can be activated in response to a variety of cytokines (9). is believed to be responsible for the emergence of IFN resistance IFN-a has been shown to lead to the tyrosine phosphorylation of in Daudi variants, because the EBV genome present in Daudi cells is defective and carries a deletion of the entire coding region of EBNA2 (21). In both of these systems, IFN resistance leads to the Department of Medicine, Columbia University, New York, NY 10032 selective extinction of the antiproliferative pathways triggered by Received for publication September 22, 1998. Accepted for publication July 23, 1999. IFN-a, whereas the induction of other IFN-a responses is main- The costs of publication of this article were defrayed in part by the payment of page tained at normal levels (20, 22). Studies of the molecular mecha- charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. nisms underlying IFN resistance in both Daudi as well as EBV- 1 This work was supported by a Grant-in-Aid from the American Heart Association, transformed B cells have failed to demonstrate changes in either the Silverberg Award, and the Saydman Trust Fund for Research in Septicemia in honor of Dr. Harold C. Neu at Columbia University. 2 Address correspondence and reprint requests to Dr. Alessandra Pernis, Department 3 Abbreviations used in this paper: GAS, g-activated site; IRF, IFN regulatory factor; of Medicine, Columbia University, 630 West 168th Street, New York, NY 10032. ISRE, IFN-stimulated response element; ISGF3, IFN-stimulated gene factor 3; E-mail address: [email protected] EBNA2, EBV nuclear Ag 2; WCE, whole-cell extract. Copyright © 1999 by The American Association of Immunologists 0022-1767/99/$02.00 The Journal of Immunology 3835 the affinity or number of IFN-a receptors. A variety of defects in Antibodies STAT activation has been reported in Daudi resistant clones, in- Rabbit polyclonal antisera against Stat1, Stat2, and p48 were a generous cluding lack of Stat3 activation (12), premature loss of Stat1 phos- gift of Dr. Chris Schindler. Rabbit polyclonal Abs against human Stat3, phorylation (23), and an inability to activate an ISRE binding com- Stat5, and Stat6 were purchased from Santa Cruz Biotechnology (Santa plex (24). A similar defect in ISGF3 activation has not been Cruz, CA). The antiserum against IFN-aRI was a generous gift of Dr. detected in EBV-transformed B cells (21), while the ability of Oscar Colamonici (University of Tennessee). these cells to activate other STAT complexes has not been thor- Immunoprecipitations oughly investigated. In this study, we have found that exposure of B cells to IFN-a Extracts were immunoprecipitated with anti-STAT antisera as described leads to activation of Stat6-containing complexes, which are in- previously (31). The immunoprecipitates were fractionated by 7% SDS- PAGE before immunoblotting with either an anti-phosphotyrosine Ab distinguishable from those induced by IL-4 (25–28). Stat6 activa- (4G10, Upstate Biotechnology, Lake Placid, NY) or anti-STAT antisera. tion in response to IFN-a is not observed in non-B cell lines. The Bands were detected by enhanced chemiluminescence (Amersham, Arling- ability of IFN-a to activate Stat6 in addition to previously char- ton Heights, IL). acterized STATs allows for the formation of novel Stat2:Stat6 complexes in B cells, including an ISGF3-like complex containing Northern analysis a Stat2, Stat6, and p48. IFN- -mediated activation of Stat6 is mark- Total RNA was extracted by utilizing the ULTRA-SPEC II kit (Bioteck edly reduced in both EBV-transformed B cells and D-R cells.
Recommended publications
  • Viral Resistance and IFN Signaling in STAT2 Knockout Fish Cells Carola E
    Viral Resistance and IFN Signaling in STAT2 Knockout Fish Cells Carola E. Dehler, Katherine Lester, Giulia Della Pelle, Luc Jouneau, Armel Houel, Catherine Collins, Tatiana Dovgan, This information is current as Radek Machat, Jun Zou, Pierre Boudinot, Samuel A. M. of September 26, 2021. Martin and Bertrand Collet J Immunol published online 29 May 2019 http://www.jimmunol.org/content/early/2019/05/28/jimmun ol.1801376 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2019/05/28/jimmunol.180137 Material 6.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2019 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published May 29, 2019, doi:10.4049/jimmunol.1801376 The Journal of Immunology Viral Resistance and IFN Signaling in STAT2 Knockout Fish Cells Carola E. Dehler,* Katherine Lester,† Giulia Della Pelle,‡ Luc Jouneau,‡ Armel Houel,‡ Catherine Collins,† Tatiana Dovgan,*,† Radek Machat,‡,1 Jun Zou,*,2 Pierre Boudinot,‡ Samuel A.
    [Show full text]
  • A Molecular Switch from STAT2-IRF9 to ISGF3 Underlies Interferon-Induced Gene Transcription
    ARTICLE https://doi.org/10.1038/s41467-019-10970-y OPEN A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription Ekaterini Platanitis 1, Duygu Demiroz1,5, Anja Schneller1,5, Katrin Fischer1, Christophe Capelle1, Markus Hartl 1, Thomas Gossenreiter 1, Mathias Müller2, Maria Novatchkova3,4 & Thomas Decker 1 Cells maintain the balance between homeostasis and inflammation by adapting and inte- grating the activity of intracellular signaling cascades, including the JAK-STAT pathway. Our 1234567890():,; understanding of how a tailored switch from homeostasis to a strong receptor-dependent response is coordinated remains limited. Here, we use an integrated transcriptomic and proteomic approach to analyze transcription-factor binding, gene expression and in vivo proximity-dependent labelling of proteins in living cells under homeostatic and interferon (IFN)-induced conditions. We show that interferons (IFN) switch murine macrophages from resting-state to induced gene expression by alternating subunits of transcription factor ISGF3. Whereas preformed STAT2-IRF9 complexes control basal expression of IFN-induced genes (ISG), both type I IFN and IFN-γ cause promoter binding of a complete ISGF3 complex containing STAT1, STAT2 and IRF9. In contrast to the dogmatic view of ISGF3 formation in the cytoplasm, our results suggest a model wherein the assembly of the ISGF3 complex occurs on DNA. 1 Max Perutz Labs (MPL), University of Vienna, Vienna 1030, Austria. 2 Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria. 3 Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna 1030, Austria. 4 Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria.
    [Show full text]
  • An Immunoevasive Strategy Through Clinically-Relevant Pan-Cancer Genomic and Transcriptomic Alterations of JAK-STAT Signaling Components
    bioRxiv preprint doi: https://doi.org/10.1101/576645; this version posted March 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. An immunoevasive strategy through clinically-relevant pan-cancer genomic and transcriptomic alterations of JAK-STAT signaling components Wai Hoong Chang1 and Alvina G. Lai1, 1Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, United Kingdom Since its discovery almost three decades ago, the Janus ki- Although cytokines are responsible for inflammation in nase (JAK)-signal transducer and activator of transcription cancer, spontaneous eradication of tumors by endoge- (STAT) pathway has paved the road for understanding inflam- nous immune processes rarely occurs. Moreover, the matory and immunity processes related to a wide range of hu- dynamic interaction between tumor cells and host immu- man pathologies including cancer. Several studies have demon- nity shields tumors from immunological ablation, which strated the importance of JAK-STAT pathway components in overall limits the efficacy of immunotherapy in the clinic. regulating tumor initiation and metastatic progression, yet, the extent of how genetic alterations influence patient outcome is far from being understood. Focusing on 133 genes involved in Cytokines can be pro- or anti-inflammatory and are inter- JAK-STAT signaling, we found that copy number alterations dependent on each other’s function to maintain immune underpin transcriptional dysregulation that differs within and homeostasis(3).
    [Show full text]
  • Role of Perforin-2 in Regulating Type I Interferon Signaling
    https://www.scientificarchives.com/journal/journal-of-cellular-immunology Journal of Cellular Immunology Review Article Role of Perforin-2 in Regulating Type I Interferon Signaling Gregory V Plano, Noula Shembade* Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center Miller School of Medicine, University of Miami, Miami, FL 33136, USA *Correspondence should be addressed to Noula Shembade; [email protected] Received date: November 21, 2020, Accepted date: February 02, 2021 Copyright: © 2021 Plano G, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Sepsis is a systemic inflammatory response caused by a harmful host immune reaction that is activated in response to microbial infections. Infection-induced type I interferons (IFNs) play critical roles during septic shock. Type I IFNs initiate their biological effects by binding to their transmembrane interferon receptors and initiating the phosphorylation and activation of tyrosine kinases TYK2 and JAK1, which promote phosphorylation and activation of STAT molecules. Type I IFN-induced activation of JAK/STAT pathways is a complex process and not well understood. Improper regulation of type I IFN responses can lead to the development of infectious and inflammation-related diseases, including septic shock, autoimmune diseases, and inflammatory syndromes. This review is mainly focused on the possible mechanistic roles of the transmembrane Perforin-2 molecule in the regulation of type I IFN- induced signaling. Keywords: JAK/STAT, Interferons, TYK2, STATs, Perforin-2, IFNAR1, IFNAR2 and Signaling Introduction and activator of transcription 2), respectively, under normal physiological conditions [4,5].
    [Show full text]
  • Identification of Differentially Expressed Genes in Human Breast
    www.impactjournals.com/oncotarget/ Oncotarget, 2018, Vol. 9, (No. 2), pp: 2475-2501 Research Paper Identification of differentially expressed genes in human breast cancer cells induced by 4-hydroxyltamoxifen and elucidation of their pathophysiological relevance and mechanisms Qi Fang1, Shuang Yao2, Guanghua Luo2 and Xiaoying Zhang2 1Department of Breast Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China 2Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China Correspondence to: Xiaoying Zhang, email: [email protected] Guanghua Luo, email: [email protected] Keywords: breast cancer; MCF-7; 4-hydroxyl tamoxifen; STAT1; STAT2 Received: June 05, 2017 Accepted: December 13, 2017 Published: December 20, 2017 Copyright: Fang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT While tamoxifen (TAM) is used for treating estrogen receptor (ER)a-positive breast cancer patients, its anti-breast cancer mechanisms are not completely elucidated. This study aimed to examine effects of 4-hydroxyltamoxifen (4-OH- TAM) on ER-positive (ER+) breast cancer MCF-7 cell growth and gene expression profiles. MCF-7 cell growth was inhibited by 4-OH-TAM dose-dependently with IC50 of 29 μM. 332 genes were up-regulated while 320 genes were down-regulated. The mRNA levels of up-regulated genes including STAT1, STAT2, EIF2AK2, TGM2, DDX58, PARP9, SASH1, RBL2 and USP18 as well as down-regulated genes including CCDN1, S100A9, S100A8, ANXA1 and PGR were confirmed by quantitative real-time PCR (qRT- PCR).
    [Show full text]
  • Vs. BCR-ABL-Positive Cells to Interferon Alpha
    Schubert et al. Journal of Hematology & Oncology (2019) 12:36 https://doi.org/10.1186/s13045-019-0722-9 RESEARCH Open Access Differential roles of STAT1 and STAT2 in the sensitivity of JAK2V617F- vs. BCR-ABL- positive cells to interferon alpha Claudia Schubert1, Manuel Allhoff2, Stefan Tillmann1, Tiago Maié2, Ivan G. Costa2, Daniel B. Lipka3, Mirle Schemionek1, Kristina Feldberg1, Julian Baumeister1, Tim H. Brümmendorf1, Nicolas Chatain1† and Steffen Koschmieder1*† Abstract Background: Interferon alpha (IFNa) monotherapy is recommended as the standard therapy in polycythemia vera (PV) but not in chronic myeloid leukemia (CML). Here, we investigated the mechanisms of IFNa efficacy in JAK2V617F- vs. BCR-ABL-positive cells. Methods: Gene expression microarrays and RT-qPCR of PV vs. CML patient PBMCs and CD34+ cells and of the murine cell line 32D expressing JAK2V617F or BCR-ABL were used to analyze and compare interferon-stimulated gene (ISG) expression. Furthermore, using CRISPR/Cas9n technology, targeted disruption of STAT1 or STAT2, respectively, was performed in 32D-BCR-ABL and 32D-JAK2V617F cells to evaluate the role of these transcription factors for IFNa efficacy. The knockout cell lines were reconstituted with STAT1, STAT2, STAT1Y701F, or STAT2Y689F to analyze the importance of wild-type and phosphomutant STATs for the IFNa response. ChIP-seq and ChIP were performed to correlate histone marks with ISG expression. Results: Microarray analysis and RT-qPCR revealed significant upregulation of ISGs in 32D-JAK2V617F but downregulation in 32D-BCR-ABL cells, and these effects were reversed by tyrosine kinase inhibitor (TKI) treatment. Similar expression patterns were confirmed in human cell lines, primary PV and CML patient PBMCs and CD34+ cells, demonstrating that these effects are operational in patients.
    [Show full text]
  • A Dual Cis-Regulatory Code Links IRF8 to Constitutive and Inducible Gene Expression in Macrophages
    Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press A dual cis-regulatory code links IRF8 to constitutive and inducible gene expression in macrophages Alessandra Mancino,1,3 Alberto Termanini,1,3 Iros Barozzi,1 Serena Ghisletti,1 Renato Ostuni,1 Elena Prosperini,1 Keiko Ozato,2 and Gioacchino Natoli1 1Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy; 2Laboratory of Molecular Growth Regulation, Genomics of Differentiation Program, National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland 20892, USA The transcription factor (TF) interferon regulatory factor 8 (IRF8) controls both developmental and inflammatory stimulus-inducible genes in macrophages, but the mechanisms underlying these two different functions are largely unknown. One possibility is that these different roles are linked to the ability of IRF8 to bind alternative DNA sequences. We found that IRF8 is recruited to distinct sets of DNA consensus sequences before and after lipopolysaccharide (LPS) stimulation. In resting cells, IRF8 was mainly bound to composite sites together with the master regulator of myeloid development PU.1. Basal IRF8–PU.1 binding maintained the expression of a broad panel of genes essential for macrophage functions (such as microbial recognition and response to purines) and contributed to basal expression of many LPS-inducible genes. After LPS stimulation, increased expression of IRF8, other IRFs, and AP-1 family TFs enabled IRF8 binding to thousands of additional regions containing low-affinity multimerized IRF sites and composite IRF–AP-1 sites, which were not premarked by PU.1 and did not contribute to the basal IRF8 cistrome.
    [Show full text]
  • The Effect of STAT5 on Inflammation-Related Gene Expression in Diabetic Mouse
    The Effect of STAT5 on Inflammation-Related Gene Expression in Diabetic Mouse Kidneys A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Master of Science Samantha J. Shaw May 2014 © 2014 Samantha J. Shaw. All Rights Reserved. 2 This thesis titled The Effect of STAT5 on Inflammation-Related Gene Expression in Diabetic Mouse Kidneys by SAMANTHA J. SHAW has been approved for the Department of Biological Sciences and the College of Arts and Sciences by Karen T. Coschigano Associate Professor of Biomedical Sciences Robert Frank Dean, College of Arts and Sciences 3 ABSTRACT SHAW, SAMANTHA J., M.S., May 2014, Biological Sciences The Effect of STAT5 on Inflammation-Related Gene Expression in Diabetic Mouse Kidneys Director of Thesis: Karen T. Coschigano Diabetic nephropathy (DN) is the leading cause of end-stage renal disease and renal failure in humans. The molecular pathways that lead to DN are not well known. This research investigates possible roles of several signal transducers and activators of transcription (STAT) proteins in this disease using a STAT5A/B knockout (SKO) mouse model. Based on previous observations of increased inflammation-related gene expression in the kidneys of diabetic SKO mice, the hypothesis of the current project was that the combination of the loss of STAT5 repression and increase of STAT3 activity escalates inflammation-related gene expression in the kidneys of diabetic SKO mice. In support of this hypothesis, an increase of IRF-1 RNA expression, reflective of the loss of STAT5 repression, was observed in the kidneys of diabetic SKO mice.
    [Show full text]
  • Myeloid-Derived Suppressor Cell Development Is Regulated by a STAT/IRF-8 Axis
    Myeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axis Jeremy D. Waight, … , Kebin Liu, Scott I. Abrams J Clin Invest. 2013;123(10):4464-4478. https://doi.org/10.1172/JCI68189. Research Article Immunology Myeloid-derived suppressor cells (MDSCs) comprise immature myeloid populations produced in diverse pathologies, including neoplasia. Because MDSCs can impair antitumor immunity, these cells have emerged as a significant barrier to cancer therapy. Although much research has focused on how MDSCs promote tumor progression, it remains unclear how MDSCs develop and why the MDSC response is heavily granulocytic. Given that MDSCs are a manifestation of aberrant myelopoiesis, we hypothesized that MDSCs arise from perturbations in the regulation of interferon regulatory factor–8 (IRF-8), an integral transcriptional component of myeloid differentiation and lineage commitment. Overall, we demonstrated that (a) Irf8-deficient mice generated myeloid populations highly homologous to tumor-induced MDSCs with respect to phenotype, function, and gene expression profiles; (b) IRF-8 overexpression in mice attenuated MDSC accumulation and enhanced immunotherapeutic efficacy; (c) the MDSC-inducing factors G-CSF and GM-CSF facilitated IRF-8 downregulation via STAT3- and STAT5-dependent pathways; and (d) IRF-8 levels in MDSCs of breast cancer patients declined with increasing MDSC frequency, implicating IRF-8 as a negative regulator in human MDSC biology. Together, our results reveal a previously unrecognized role for IRF-8 expression in MDSC subset development, which may provide new avenues to target MDSCs in neoplasia. Find the latest version: https://jci.me/68189/pdf Research article Myeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axis Jeremy D.
    [Show full text]
  • Modulation of STAT Signaling by STAT-Interacting Proteins
    Oncogene (2000) 19, 2638 ± 2644 ã 2000 Macmillan Publishers Ltd All rights reserved 0950 ± 9232/00 $15.00 www.nature.com/onc Modulation of STAT signaling by STAT-interacting proteins K Shuai*,1 1Departments of Medicine and Biological Chemistry, University of California, Los Angeles, California, CA 90095, USA STATs (signal transducer and activator of transcription) play important roles in numerous cellular processes Interaction with non-STAT transcription factors including immune responses, cell growth and dierentia- tion, cell survival and apoptosis, and oncogenesis. In Studies on the promoters of a number of IFN-a- contrast to many other cellular signaling cascades, the induced genes identi®ed a conserved DNA sequence STAT pathway is direct: STATs bind to receptors at the named ISRE (interferon-a stimulated response element) cell surface and translocate into the nucleus where they that mediates IFN-a response (Darnell, 1997; Darnell function as transcription factors to trigger gene activa- et al., 1994). Stat1 and Stat2, the ®rst known members tion. However, STATs do not act alone. A number of of the STAT family, were identi®ed in the transcription proteins are found to be associated with STATs. These complex ISGF-3 (interferon-stimulated gene factor 3) STAT-interacting proteins function to modulate STAT that binds to ISRE (Fu et al., 1990, 1992; Schindler et signaling at various steps and mediate the crosstalk of al., 1992). ISGF-3 consists of a Stat1:Stat2 heterodimer STATs with other cellular signaling pathways. This and a non-STAT protein named p48, a member of the article reviews the roles of STAT-interacting proteins in IRF (interferon regulated factor) family (Levy, 1997).
    [Show full text]
  • A Virus-Induced Conformational Switch of STAT1-STAT2 Dimers Boosts Antiviral Defenses
    www.nature.com/cr www.cell-research.com ARTICLE OPEN A virus-induced conformational switch of STAT1-STAT2 dimers boosts antiviral defenses Yuxin Wang1, Qiaoling Song2, Wei Huang 3, Yuxi Lin4, Xin Wang5, Chenyao Wang6, Belinda Willard7, Chenyang Zhao5, Jing Nan4, Elise Holvey-Bates1, Zhuoya Wang2, Derek Taylor3, Jinbo Yang2 and George R. Stark1 Type I interferons (IFN-I) protect us from viral infections. Signal transducer and activator of transcription 2 (STAT2) is a key component of interferon-stimulated gene factor 3 (ISGF3), which drives gene expression in response to IFN-I. Using electron microscopy, we found that, in naive cells, U-STAT2, lacking the activating tyrosine phosphorylation, forms a heterodimer with U-STAT1 in an inactive, anti-parallel conformation. A novel phosphorylation of STAT2 on T404 promotes IFN-I signaling by disrupting the U-STAT1-U-STAT2 dimer, facilitating the tyrosine phosphorylation of STATs 1 and 2 and enhancing the DNA-binding ability of ISGF3. IKK-ε, activated by virus infection, phosphorylates T404 directly. Mice with a T-A mutation at the corresponding residue (T403) are highly susceptible to virus infections. We conclude that T404 phosphorylation drives a critical conformational switch that, by boosting the response to IFN-I in infected cells, enables a swift and efficient antiviral defense. Cell Research (2021) 31:206–218; https://doi.org/10.1038/s41422-020-0386-6 1234567890();,: INTRODUCTION for ISG promoters. We further demonstrate that, by activating IKK- Emerging viral threats have recurrently challenged healthcare ε, viruses elevate T404 phosphorylation. As a consequence, systems, taking a huge toll on nations and individuals, world-wide.
    [Show full text]
  • Batf3 and Id2 Have a Synergistic Effect on Irf8-Directed Classical Cd8α+ Dendritic Cell Development
    Batf3 and Id2 Have a Synergistic Effect on Irf8-Directed Classical CD8α+ Dendritic Cell Development This information is current as Hemant Jaiswal, Monika Kaushik, Rachid Sougrat, Monica of October 3, 2021. Gupta, Anup Dey, Rohit Verma, Keiko Ozato and Prafullakumar Tailor J Immunol 2013; 191:5993-6001; Prepublished online 13 November 2013; doi: 10.4049/jimmunol.1203541 http://www.jimmunol.org/content/191/12/5993 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2013/11/13/jimmunol.120354 Material 1.DC1 http://www.jimmunol.org/ References This article cites 57 articles, 38 of which you can access for free at: http://www.jimmunol.org/content/191/12/5993.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on October 3, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Batf3 and Id2 Have a Synergistic Effect on Irf8-Directed Classical CD8a+ Dendritic Cell Development Hemant Jaiswal,* Monika Kaushik,* Rachid Sougrat,† Monica Gupta,‡ Anup Dey,‡ Rohit Verma,* Keiko Ozato,‡ and Prafullakumar Tailor* Dendritic cells (DCs) are heterogeneous cell populations represented by different subtypes, each varying in terms of gene expression patterns and specific functions.
    [Show full text]