The Powers of Monodromy
SU/ITP-14/13, SLAC-PUB-15962, DESY-14-078 The Powers of Monodromy Liam McAllister,1 Eva Silverstein,2;3;4 Alexander Westphal,5 and Timm Wrase2 1 Department of Physics, Cornell University, Ithaca, NY 14853, USA 2 Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305, USA 3 SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA 4 Kavli Institute for Particle Astrophysics and Cosmology, Stanford, CA 94305, USA 5Deutsches Elektronen-Synchrotron DESY, Theory Group, D-22603 Hamburg, Germany Abstract Flux couplings to string theory axions yield super-Planckian field ranges along which the axion potential energy grows. At the same time, other aspects of the physics remain es- sentially unchanged along these large displacements, respecting a discrete shift symmetry with a sub-Planckian period. After a general overview of this monodromy effect and its application to large-field inflation, we present new classes of specific models of monodromy inflation, with monomial potentials µ4−pφp. A key simplification in these models is that the inflaton potential energy plays a leading role in moduli stabilization during inflation. The arXiv:1405.3652v2 [hep-th] 9 Jul 2014 resulting inflaton-dependent shifts in the moduli fields lead to an effective flattening of the inflaton potential, i.e. a reduction of the exponent from a fiducial value p0 to p < p0. We focus on examples arising in compactifications of type IIB string theory on products of tori or Riemann surfaces, where the inflaton descends from the NS-NS two-form potential B2, with monodromy induced by a coupling to the R-R field strength F1.
[Show full text]