Derived Algebraic Geometry III: Commutative Algebra

Total Page:16

File Type:pdf, Size:1020Kb

Derived Algebraic Geometry III: Commutative Algebra Derived Algebraic Geometry III: Commutative Algebra October 21, 2009 Contents 1 1-Operads 4 1.1 Basic Definitions . 5 1.2 Fibrations of 1-Operads . 11 1.3 Algebra Objects . 14 1.4 Cartesian Monoidal Structures . 19 1.5 CoCartesian Monoidal Structures . 27 1.6 Monoidal Envelopes . 35 1.7 Subcategories of O-Monoidal 1-Categories . 41 1.8 1-Preoperads . 45 1.9 O-Operad Families . 50 1.10 Unital 1-Operads . 56 2 Algebras 59 2.1 Limits of Algebras . 60 2.2 Operadic Colimit Diagrams . 63 2.3 Unit Objects and Trivial Algebras . 72 2.4 Strictly Unital 1-Categories . 77 2.5 Operadic Left Kan Extensions . 78 2.6 Free Algebras . 87 2.7 Colimits of Algebras . 92 3 Modules 96 3.1 Coherent 1-Operads and Modules . 97 3.2 Algebra Objects of 1-Categories of Modules . 106 3.3 Limits of Modules . 119 3.4 Colimits of Modules . 130 3.5 Modules for the Associative 1-Operad . 140 3.6 Modules for the Commutative 1-Operad . 153 4 Commutative Ring Spectra 162 4.1 Commutativity of the Smash Product . 162 4.2 E1-Ring Spectra . 168 4.3 Symmetric Monoidal Model Categories . 175 1 Introduction Let K denote the functor of complex K-theory, which associates to every compact Hausdorff space X the Grothendieck group K(X) of isomorphism classes of complex vector bundles on X. The functor X 7! K(X) is an example of a cohomology theory: that is, one can define more generally a sequence of abelian groups n fK (X; Y )gn2Z for every inclusion of topological spaces Y ⊆ X, in such a way that the Eilenberg-Steenrod axioms are satisfied (see [18]). However, the functor K is endowed with even more structure: for every topological space X, the abelian group K(X) has the structure of a commutative ring (when X is compact, the multiplication on K(X) is induced by the operation of tensor product of complex vector bundles). One would like that the ring structure on K(X) is a reflection of the fact that K itself has a ring structure, in a suitable setting. To analyze the problem in greater detail, we observe that the functor X 7! K(X) is representable. That is, there exists a topological space Z = Z×BU and a universal class η 2 K(Z), such that for every sufficiently nice topological space X, the pullback of η induces a bijection [X; Z] ! K(X); here [X; Z] denotes the set of homotopy classes of maps from X into Z. According to Yoneda's lemma, this property determines the space Z up to homotopy equivalence. Moreover, since the functor X 7! K(X) takes values in the category of commutative rings, the topological space Z is automatically a commutative ring object in the homotopy category H of topological spaces. That is, there exist addition and multiplication maps Z × Z ! Z, such that all of the usual ring axioms are satisfied up to homotopy. Unfortunately, this observation is not very useful. We would like to have a robust generalization of classical algebra which includes a good theory of modules, constructions like localization and completion, and so forth. The homotopy category H is too poorly behaved to support such a theory. An alternate possibility is to work with commutative ring objects in the category of topological spaces itself: that is, to require the ring axioms to hold \on the nose" and not just up to homotopy. Although this does lead to a reasonable generalization of classical commutative algebra, it not sufficiently general for many purposes. For example, if Z is a topological commutative ring, then one can always extend the functor X 7! [X; Z] to a cohomology theory. However, this cohomology theory is not very interesting: in degree zero, it simply gives the following variant of classical cohomology: Y n H (X; πnZ): n≥0 In particular, complex K-theory cannot be obtained in this way. In other words, the Z = Z × BU for stable vector bundles cannot be equipped with the structure of a topological commutative ring. This reflects the fact that complex vector bundles on a space X form a category, rather than just a set. The direct sum and tensor product operation on complex vector bundles satisfy the ring axioms, such as the distributive law E ⊗(F ⊕ F0) ' (E ⊗ F) ⊕ (E ⊗ F0); but only up to isomorphism. However, although Z × BU has less structure than a commutative ring, it has more structure than simply a commutative ring object in the homotopy category H, because the isomorphism displayed above is actually canonical and satisfies certain coherence conditions (see [43] for a discussion). To describe the kind of structure which exists on the topological space Z × BU, it is convenient to introduce the language of commutative ring spectra, or, as we will call them, E1-rings. Roughly speaking, an E1-ring can be thought of as a space Z which is equipped with an addition and a multiplication for which the axioms for a commutative ring hold not only up to homotopy, but up to coherent homotopy. The E1-rings play a role in stable homotopy theory analogous to the role played by commutative rings in ordinary algebra. As such, they are the fundamental building blocks of derived algebraic geometry. Our goal in this paper is to introduce the theory of E1-ring spectra from an 1-categorical point of view. An ordinary commutative ring R can be viewed as a commutative algebra object in the category of abelian groups, which we view as endowed with a symmetric monoidal structure given by tensor product of abelian groups. To obtain the theory of E1-rings we will use the same definition, except that we will replace the 2 ordinary category of abelian groups by the 1-category of spectra. In order to carry out the details, we will need to develop an 1-categorical version of the theory of symmetric monoidal categories. The construction of this theory will occupy our attention throughout most of this paper. The notion of a symmetric monoidal 1-category can be regarded as a special case of the more general notion of an 1-operad. The theory of 1-operads bears the same relationship to the theory of 1-categories that the classical theory of colored operads (or multicategories) bears to ordinary category theory. Roughly speaking, an 1-operad C⊗ consists of an underlying 1-category C equipped with some additional data, given by \multi-input" morphism spaces MulC(fXigi2I ;Y ) for Y 2 C, where fXigi2I is any finite collection of objects of C; we recover the usual morphism spaces in C by taking the set I to contain a single element. We will give a more precise definition in x1, and construct a number of examples. Remark 0.0.1. An alternate approach to the theory of 1-operads has been proposed by Cisinski and Moerdijk, based on the formalism of dendroidal sets (see [15] for details). It seems very likely that their theory is equivalent to the one presented here. More precisely, there should be a Quillen equivalence between the category of dendroidal sets and the category POp1 of 1-preoperads which we describe in x1.8. Nevertheless, the two perspectives differ somewhat at the level of technical detail. Our approach has the advantage of being phrased entirely in the language of simplicial sets, which allows us to draw heavily upon the preexisting theory of 1-categories (as described in [46]) and to avoid direct contact with the combinatorics of trees (which play an essential role in the definition of a dendroidal set). However, the advantage comes at a cost: though our 1-operads can be described using the relatively pedestrian language of simplicial sets, the actual simplicial sets which we need are somewhat unwieldy and tend to encode information in a inefficient way. Consequently, some of the proofs presented here are perhaps more difficult than they need to be: for example, we suspect that Theorems 2.5.4 and 3.4.3 admit much shorter proofs in the dendroidal setting. If C⊗ is a symmetric monoidal 1-category (or, more generally, an 1-operad), then we can define an 1-category CAlg(C) of commutative algebra objects of C. In x2, we will study these 1-categories in some detail: in particular, we will show that, under reasonable hypotheses, there is a good theory of free algebras which can be used to construct colimits of diagrams in CAlg(C). If A 2 CAlg(C) is a commutative algebra object of C, we can also associate to A an 1-category ModA(C) of A-module objects of C. We will define and study these 1-categories of modules in x3, and show that (under some mild hypotheses) they inherit the structure of symmetric monoidal 1-categories. The symmetric monoidal 1-category of greatest interest to us is the 1-category Sp of spectra. In x4, we will show that the smash product monoidal structure on Sp (constructed in xM.4.2) can be refined, in an essentially unique way, to a symmetric monoidal structure on Sp. We will define an E[1]-ring to be a commutative algebra object in the 1-category of Sp. In x4.2, we will study the 1-category CAlg(Sp) of E[1]-rings and establish some of its basic properties. In particular, we will show that the 1-category CAlg(Sp) contains, as a full subcategory, the (nerve of the) ordinary category of commutative rings. In other words, the theory of E[1]-rings really can be viewed as a generalization of classical commutative algebra.
Recommended publications
  • Dynamic Algebras: Examples, Constructions, Applications
    Dynamic Algebras: Examples, Constructions, Applications Vaughan Pratt∗ Dept. of Computer Science, Stanford, CA 94305 Abstract Dynamic algebras combine the classes of Boolean (B ∨ 0 0) and regu- lar (R ∪ ; ∗) algebras into a single finitely axiomatized variety (BR 3) resembling an R-module with “scalar” multiplication 3. The basic result is that ∗ is reflexive transitive closure, contrary to the intuition that this concept should require quantifiers for its definition. Using this result we give several examples of dynamic algebras arising naturally in connection with additive functions, binary relations, state trajectories, languages, and flowcharts. The main result is that free dynamic algebras are residu- ally finite (i.e. factor as a subdirect product of finite dynamic algebras), important because finite separable dynamic algebras are isomorphic to Kripke structures. Applications include a new completeness proof for the Segerberg axiomatization of propositional dynamic logic, and yet another notion of regular algebra. Key words: Dynamic algebra, logic, program verification, regular algebra. This paper originally appeared as Technical Memo #138, Laboratory for Computer Science, MIT, July 1979, and was subsequently revised, shortened, retitled, and published as [Pra80b]. After more than a decade of armtwisting I. N´emeti and H. Andr´eka finally persuaded the author to publish TM#138 itself on the ground that it contained a substantial body of interesting material that for the sake of brevity had been deleted from the STOC-80 version. The principal changes here to TM#138 are the addition of footnotes and the sections at the end on retrospective citations and reflections. ∗This research was supported by the National Science Foundation under NSF grant no.
    [Show full text]
  • Algebra + Homotopy = Operad
    Symplectic, Poisson and Noncommutative Geometry MSRI Publications Volume 62, 2014 Algebra + homotopy = operad BRUNO VALLETTE “If I could only understand the beautiful consequences following from the concise proposition d 2 0.” —Henri Cartan D This survey provides an elementary introduction to operads and to their ap- plications in homotopical algebra. The aim is to explain how the notion of an operad was prompted by the necessity to have an algebraic object which encodes higher homotopies. We try to show how universal this theory is by giving many applications in algebra, geometry, topology, and mathematical physics. (This text is accessible to any student knowing what tensor products, chain complexes, and categories are.) Introduction 229 1. When algebra meets homotopy 230 2. Operads 239 3. Operadic syzygies 253 4. Homotopy transfer theorem 272 Conclusion 283 Acknowledgements 284 References 284 Introduction Galois explained to us that operations acting on the solutions of algebraic equa- tions are mathematical objects as well. The notion of an operad was created in order to have a well defined mathematical object which encodes “operations”. Its name is a portemanteau word, coming from the contraction of the words “operations” and “monad”, because an operad can be defined as a monad encoding operations. The introduction of this notion was prompted in the 60’s, by the necessity of working with higher operations made up of higher homotopies appearing in algebraic topology. Algebra is the study of algebraic structures with respect to isomorphisms. Given two isomorphic vector spaces and one algebra structure on one of them, 229 230 BRUNO VALLETTE one can always define, by means of transfer, an algebra structure on the other space such that these two algebra structures become isomorphic.
    [Show full text]
  • On Minimally Free Algebras
    Can. J. Math., Vol. XXXVII, No. 5, 1985, pp. 963-978 ON MINIMALLY FREE ALGEBRAS PAUL BANKSTON AND RICHARD SCHUTT 1. Introduction. For us an "algebra" is a finitary "universal algebra" in the sense of G. Birkhoff [9]. We are concerned in this paper with algebras whose endomorphisms are determined by small subsets. For example, an algebra A is rigid (in the strong sense) if the only endomorphism on A is the identity id^. In this case, the empty set determines the endomorphism set E(A). We place the property of rigidity at the bottom rung of a cardinal-indexed ladder of properties as follows. Given a cardinal number K, an algebra .4 is minimally free over a set of cardinality K (K-free for short) if there is a subset X Q A of cardinality K such that every function f\X —-> A extends to a unique endomorphism <p e E(A). (It is clear that A is rigid if and only if A is 0-free.) Members of X will be called counters; and we will be interested in how badly counters can fail to generate the algebra. The property "«-free" is a solipsistic version of "free on K generators" in the sense that A has this property if and only if A is free over a set of cardinality K relative to the concrete category whose sole object is A and whose morphisms are the endomorphisms of A (thus explaining the use of the adverb "minimally" above). In view of this we see that the free algebras on K generators relative to any variety give us examples of "small" K-free algebras.
    [Show full text]
  • The Freealg Package: the Free Algebra in R
    The freealg package: the free algebra in R Robin K. S. Hankin 2021-04-19 Introduction The freealg package provides some functionality for the free algebra, using the Standard Template library of C++, commonly known as the STL. It is very like the mvp package for multivariate polynomials, but the indeterminates do not commute: multiplication is word concatenation. The free algebra A vector space over a commutative field F (here the reals) is a set V together with two binary operations, addition and scalar multiplication. Addition, usually written +, makes (V, +) an Abelian group. Scalar multiplication is usually denoted by juxtaposition (or sometimes ×) and makes (V, ·) a semigroup. In addition, for any a, b ∈ F and u, v ∈ V, the following laws are satisfied: • Compatibility: a (bv) = (ab)v • Identity: 1v = v, where 1 ∈ F is the multiplicative identity • Distributivity of vector addition: a (u + v) = au + bv • Distributivity of field addition: (a + b)v = av + bv An algebra is a vector space endowed with a binary operation, usually denoted by either a dot or juxtaposition of vectors, from V × V to V satisfying: • Left distributivity: u · (v + w) = u · v + u · w. • Right distributivity: (u + v) · w = u · w + v · w. • Compatibility: (au) · (bv) = (ab)(u · v). There is no requirement for vector multiplication to be commutative. Here we assume associativity so in addition to the axioms above we have • Associativity: (u · v) · w = u · (v · w). The free associative algebra is, in one sense, the most general associative algebra. Here we follow standard terminology and drop the word ‘associative’ while retaining the assumption of associativity.
    [Show full text]
  • The Clifford Algebra and the Group of Similitudes
    THE CLIFFORD ALGEBRA AND THE GROUP OF SIMILITUDES MARIA J. WONENBURGER Let C(M, Q) be the Clifford algebra of an even dimensional vector space M relative to a quadratic form Q. When Q is non-degenerate, it is well known that there exists an isomorphism of the orthogonal group 0(Q) onto the group of those automorphisms of C(M, Q) which leave invariant the space M C C(M, Q). These automorphisms are inner and the group of invertible elements of C(M, Q) which define such inner automorphisms is called the Clifford group. If instead of the group 0(Q) we take the group of similitudes y(Q) or even the group of semi-similitudes Ty(Q), it is possible to associate in a natural way with any element of these groups an automorphism or semi-automorphism, respectively, of the subalgebra of even elements C+(M, Q) C C(M, Q). Each one of the automorphisms of C+(M, Q) so defined can be extended, as it is shown here (Theorem 2), to an inner automorphism of C(M, Q), although the extension is not unique. A semi-automorphism of C+(M, Q) associated to a semi-similitude of Q can be extended to all of C(M, Q) if and only if the ratio of the semi-similitude satisfies the conditions given in Theorem 3. Although the extension is not unique, Theorem 3 gives all the possible ex­ tensions. We do not know if there exist semi-similitudes whose ratios do not satisfy the conditions of Theorem 3.
    [Show full text]
  • Monads and Algebras - an Introduction
    Monads and Algebras - An Introduction Uday S. Reddy April 27, 1995 1 1 Algebras of monads Consider a simple form of algebra, say, a set with a binary operation. Such an algebra is a pair hX, ∗ : X × X → Xi. Morphisms of these algebras preserve the binary operation: f(x ∗ y) = f(x) ∗ f(y). We first notice that the domain of the operation is determined by a functor F : Set → Set (the diagonal functor FX = X ×X). In general, given an endofunctor F : C → C on a category C, we can speak of the “algebras” for F , which are pairs hX, α : FX → Xi of an object X of C and an arrow α : FX → X. Morphism preserve the respective operations, i.e., F f FX - FY α β ? f ? X - Y Now, in algebra, it is commonplace to talk about “derived operators.” Such an operator is determined by a term made up of variables (over X) and the operations of the algebra. For example, for the simple algebra with a binary operation, terms such as x, x ∗ (y ∗ z), and (x ∗ y) ∗ (z ∗ w) determine derived operators. From a categorical point of view, such derived operators are just compositions of the standard operators and identity arrows: id X X- X id ×α α X × (X × X) X - X × X - X α×α α (X × X) × (X × X) - X × X - X To formalize such derived operators, we think of another functor T : C → C into which we can embed the domains of all the derived operators. In particular, we should have embeddings I →.
    [Show full text]
  • Gorenstein Subrings of Invariants Under Hopf Algebra Actions ∗ E
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Algebra 322 (2009) 3640–3669 Contents lists available at ScienceDirect Journal of Algebra www.elsevier.com/locate/jalgebra Gorenstein subrings of invariants under Hopf algebra actions ∗ E. Kirkman a, J. Kuzmanovich a, J.J. Zhang b, a Department of Mathematics, PO Box 7388, Wake Forest University, Winston-Salem, NC 27109, United States b Department of Mathematics, Box 354350, University of Washington, Seattle, WA 98195, United States article info abstract Article history: This paper concerns conditions on the action of a finite dimensional Received 19 November 2008 semisimple Hopf algebra on an Artin–Schelter regular algebra Available online 24 September 2009 that force the subring of invariants to satisfy the Artin–Schelter Communicated by Michel Van den Bergh Gorenstein condition. Classical results such as Watanabe’s Theorem and Stanley’s Theorem are extended from the case of a group Keywords: Artin–Schelter regular algebra action to the context of a Hopf algebra action. A Hopf algebra Hopf algebra action version of the homological determinant is introduced, and it Invariant subring becomes an important tool in the generalization from group actions to Hopf algebra actions. © 2009 Elsevier Inc. All rights reserved. Contents Introduction.................................................................... 3641 1. Preliminariesongradedrings.................................................. 3642 2. PreliminariesonHopfactions.................................................
    [Show full text]
  • Equational Theories of Tropical Semirings Basic Research in Computer Science
    BRICS Basic Research in Computer Science BRICS RS-01-21 Aceto et al.: Equational Theories of Tropical Semirings Equational Theories of Tropical Semirings Luca Aceto Zoltan´ Esik´ Anna Ingolfsd´ ottir´ BRICS Report Series RS-01-21 ISSN 0909-0878 June 2001 Copyright c 2001, Luca Aceto & Zoltan´ Esik´ & Anna Ingolfsd´ ottir.´ BRICS, Department of Computer Science University of Aarhus. All rights reserved. Reproduction of all or part of this work is permitted for educational or research use on condition that this copyright notice is included in any copy. See back inner page for a list of recent BRICS Report Series publications. Copies may be obtained by contacting: BRICS Department of Computer Science University of Aarhus Ny Munkegade, building 540 DK–8000 Aarhus C Denmark Telephone: +45 8942 3360 Telefax: +45 8942 3255 Internet: [email protected] BRICS publications are in general accessible through the World Wide Web and anonymous FTP through these URLs: http://www.brics.dk ftp://ftp.brics.dk This document in subdirectory RS/01/21/ Equational Theories of Tropical Semirings Luca Aceto∗ Zolt´an Esik´ y Anna Ing´olfsd´ottir∗ Abstract This paper studies the equational theory of various exotic semirings presented in the literature. Exotic semirings are semirings whose un- derlying carrier set is some subset of the set of real numbers equipped with binary operations of minimum or maximum as sum, and addition as product. Two prime examples of such structures are the (max; +) semiring and the tropical semiring. It is shown that none of the exotic semirings commonly considered in the literature has a finite basis for its equations, and that similar results hold for the commutative idempotent weak semirings that underlie them.
    [Show full text]
  • Monomial Orderings, Rewriting Systems, and Gröbner Bases for The
    Monomial orderings, rewriting systems, and Gr¨obner bases for the commutator ideal of a free algebra Susan M. Hermiller Department of Mathematics and Statistics University of Nebraska-Lincoln Lincoln, NE 68588 [email protected] Xenia H. Kramer Department of Mathematics Virginia Polytechnic Institute and State University Blacksburg, VA 24061 [email protected] Reinhard C. Laubenbacher Department of Mathematics New Mexico State University Las Cruces, NM 88003 [email protected] 0Key words and phrases. non-commutative Gr¨obner bases, rewriting systems, term orderings. 1991 Mathematics Subject Classification. 13P10, 16D70, 20M05, 68Q42 The authors thank Derek Holt for helpful suggestions. The first author also wishes to thank the National Science Foundation for partial support. 1 Abstract In this paper we consider a free associative algebra on three gen- erators over an arbitrary field K. Given a term ordering on the com- mutative polynomial ring on three variables over K, we construct un- countably many liftings of this term ordering to a monomial ordering on the free associative algebra. These monomial orderings are total well orderings on the set of monomials, resulting in a set of normal forms. Then we show that the commutator ideal has an infinite re- duced Gr¨obner basis with respect to these monomial orderings, and all initial ideals are distinct. Hence, the commutator ideal has at least uncountably many distinct reduced Gr¨obner bases. A Gr¨obner basis of the commutator ideal corresponds to a complete rewriting system for the free commutative monoid on three generators; our result also shows that this monoid has at least uncountably many distinct mini- mal complete rewriting systems.
    [Show full text]
  • Lie Algebras by Shlomo Sternberg
    Lie algebras Shlomo Sternberg April 23, 2004 2 Contents 1 The Campbell Baker Hausdorff Formula 7 1.1 The problem. 7 1.2 The geometric version of the CBH formula. 8 1.3 The Maurer-Cartan equations. 11 1.4 Proof of CBH from Maurer-Cartan. 14 1.5 The differential of the exponential and its inverse. 15 1.6 The averaging method. 16 1.7 The Euler MacLaurin Formula. 18 1.8 The universal enveloping algebra. 19 1.8.1 Tensor product of vector spaces. 20 1.8.2 The tensor product of two algebras. 21 1.8.3 The tensor algebra of a vector space. 21 1.8.4 Construction of the universal enveloping algebra. 22 1.8.5 Extension of a Lie algebra homomorphism to its universal enveloping algebra. 22 1.8.6 Universal enveloping algebra of a direct sum. 22 1.8.7 Bialgebra structure. 23 1.9 The Poincar´e-Birkhoff-Witt Theorem. 24 1.10 Primitives. 28 1.11 Free Lie algebras . 29 1.11.1 Magmas and free magmas on a set . 29 1.11.2 The Free Lie Algebra LX ................... 30 1.11.3 The free associative algebra Ass(X). 31 1.12 Algebraic proof of CBH and explicit formulas. 32 1.12.1 Abstract version of CBH and its algebraic proof. 32 1.12.2 Explicit formula for CBH. 32 2 sl(2) and its Representations. 35 2.1 Low dimensional Lie algebras. 35 2.2 sl(2) and its irreducible representations. 36 2.3 The Casimir element. 39 2.4 sl(2) is simple.
    [Show full text]
  • Finitely Generated Simple Algebras: a Question of Bi Plotkin
    FINITELY GENERATED SIMPLE ALGEBRAS: A QUESTION OF B. I. PLOTKIN A. I. LICHTMAN AND D. S. PASSMAN Abstract. In his recent series of lectures, Prof. B. I. Plotkin discussed ge- ometrical properties of the variety of associative K-algebras. In particular, he studied geometrically noetherian and logically noetherian algebras and, in this connection, he asked whether there exist uncountably many sim- ple K-algebras with a fixed finite number of generators. We answer this question in the affirmative using both crossed product constructions and HNN extensions of division rings. Specifically, we show that there exist un- countably many nonisomorphic 4-generator simple Ore domains, and also uncountably many nonisomorphic division algebras having 2 generators as a division algebra. 1. Introduction In his recent series of lectures [Pl], B. I. Plotkin discussed some geometrical properties of the variety of associative K-algebras. In particular, he considered geometrically noetherian and logically noetherian algebras and, in this connec- tion, he asked whether there exist uncountably many simple K-algebras with a fixed finite number of generators. We answer this question in the affirmative using both crossed product constructions and HNN extensions of division rings. To be precise, we show that there exist uncountably many nonisomorphic 4-generator simple Ore domains, and also uncountably many nonisomorphic division algebras having 2 generators as a division algebra. These results can be viewed as algebra analogs of the well-known theorem [N] which asserts that there exist uncount- ably many nonisomorphic 2-generator groups. Indeed, it was shown in [H] that there exist uncountably many nonisomorphic 6-generator simple groups (see [LS, Theorems IV.3.3 and IV.3.5]).
    [Show full text]
  • Arxiv:2001.01064V1 [Math.RA] 4 Jan 2020 Eis Rncnetlpwrseries
    GRADED ALGEBRAS WITH PRESCRIBED HILBERT SERIES VESSELIN DRENSKY Abstract. For any power series a(t) with exponentially bounded nonnega- tive integer coefficients we suggest a simple construction of a finitely generated monomial associative algebra R with Hilbert series H(R, t) very close to a(t). If a(t) is rational/algebraic/transcendental, then the same is H(R, t). If the growth of the coefficients of a(t) is polynomial, in the same way we construct a graded algebra R preserving the polynomial growth of the coefficients of its Hilbert series H(R, t). Applying a classical result of Fatou from 1906 we ob- tain that if a finitely generated graded algebra R has a finite Gelfand-Kirillov dimension, then its Hilbert series is either rational or transcendental. In par- ticular the same dichotomy holds for the Hilbert series of finitely generated algebras R with polynomial identity. Introduction We consider finitely generated unitary associative algebras R over an arbitrary field K of any characteristic. The algebra R is graded if R is a direct sum of vector subspaces R0, R1, R2,... called homogeneous components of R and RmRn Rm+n, m,n =0, 1, 2,.... ⊂ In the sequel we consider graded algebras only. We assume that R0 =0or R0 = K and the generators of R are of first degree. The formal power series n H(R,t)= dim(Rn)t , n≥0 X is called the Hilbert series of R. In the sequel, when we speak about algebraic and transcendental power series we shall mean over Q(t). Let K Xd = K x1,...,xd be the free d-generated unitary associative algebra h i h i and let Xd be the set of all monomials in K Xd .
    [Show full text]