On Geometry of Manifolds with Some Tensor Structures and Metrics Of

Total Page:16

File Type:pdf, Size:1020Kb

On Geometry of Manifolds with Some Tensor Structures and Metrics Of University of Plovdiv Paisii Hilendarski Faculty of Mathematics and Informatics Department of Algebra and Geometry Mancho Hristov Manev On Geometry of Manifolds with Some Tensor Structures and Metrics of Norden Type Dissertation Submitted for the Scientific Degree: Doctor of Science Area of Higher Education: 4. Natural Sciences, Mathematics and Informatics Professional Stream: 4.5. Mathematics Scientific Specialty: Geometry and Topology arXiv:1706.05505v1 [math.DG] 17 Jun 2017 Plovdiv, 2017 To my wife Rositsa 2 Structure of the Dissertation Structure of the Dissertation The present dissertation consists of an introduction, a main body, a conclusion and a bibliography. The introduction consists of two parts: a scope of the topic and the purpose of the dissertation. The main body includes two chapters containing 15 sections. The conclusion provides a brief summary of the main contributions of the dissertation, a list of the publications on the results given in the dissertation, a declaration of originality and acknowledgements. The bibliography contains a list of 155 publications used in the text. >>> 3 Contents Contents Introduction 6 Scope of the Topic .............................................. 6 Purpose of the Dissertation ..................................... 9 Chapter I. On manifolds with almost complex structures and almost contact structures, equipped with metrics of Norden type 11 §1. Almost complex manifolds with Norden metric .......... .... 12 §2. Invariant tensors under the twin interchange of Norden metrics on almost complex manifolds .................... .... 22 §3. Canonical-type connections on almost complex manifolds with Norden metric ................................... ...... 40 §4. Almost contact manifolds with B-metric .............. ....... 49 §5. Canonical-type connection on almost contact manifolds with B-metric ....................................... ........ 62 §6. Classification of affine connections on almost contact manifolds with B-metric .............................. ...... 78 §7. Pair of associated Schouten-van Kampen connections adapted to an almost contact B-metric structure ................. .... 96 §8. Sasaki-like almost contact complex Riemannian manifolds ... 108 4 Contents Chapter II. On manifolds with almost hypercomplex structures and almost contact 3-structures, equipped with metrics of Hermitian-Norden type 129 §9. Almost hypercomplex manifolds with Hermitian-Norden metrics ............................................ ......... 130 §10. Hypercomplex structures with Hermitian-Norden metrics on 4-dimensional Lie algebras ......................... ..... 135 §11. Tangent bundles with complete lift of the base metric and almost hypercomplex Hermitian-Norden structure . .. 144 §12. Associated Nijenhuis tensors on almost hypercomplex manifolds with Hermitian-Norden metrics ............... ... 155 §13. Quaternionic Kähler manifolds with Hermitian-Norden metrics ............................................ ........ 170 §14. Manifolds with almost contact 3-structure and metrics of Hermitian-Norden type ............................... ..... 180 §15. Associated Nijenhuis tensors on manifolds with almost contact 3-structure and metrics of Hermitian-Norden type . 196 Conclusion 208 Contributions of the Dissertation ............................... 208 Publications on the Dissertation ................................ 211 Declaration of Originality ...................................... 213 Acknowledgements .............................................. 214 Bibliography 215 >>> 5 Introduction. Scope of the Topic Introduction Scope of the Topic Among additional tensor structures on a smooth manifold, one of the most studied is almost complex structure, i.e. an endomorphism of the tan- gent bundle whose square, at each point, is minus the identity. The mani- fold must be even-dimensional, i.e. dim = 2n. Usually it is equipped with a Hermitian metric which is a (Riemannian or pseudo-Riemannian) met- ric that preserves the almost complex structure, i.e. the almost complex structure acts as an isometry with respect to the (pseudo-)Riemannian metric. The associated (0,2)-tensor of the Hermitian metric is a 2-form and hence the relationship with symplectic geometry. A relevant counterpart is the case when the almost complex struc- ture acts as an anti-isometry regarding a pseudo-Riemannian metric. Such a metric is known as an anti-Hermitian metric or a Norden met- ric (first studied by and named after A. P. Norden [120, 121]). The Nor- den metric is necessary pseudo-Riemannian of neutral signature whereas the Hermitian metric can be Riemannian or pseudo-Riemannian of sig- nature (2n1, 2n2), n1 + n2 = n. The associated (0,2)-tensor of any Nor- den metric is also a Norden metric. So, in this case we dispose with a pair of mutually associated Norden metrics, known also as twin Nor- den metrics. This manifold can be considered as an n-dimensional mani- fold with a complex Riemannian metric whose real and imaginary parts are the twin Norden metrics. Such a manifold is known as a gener- alized B-manifold [49, 108, 50, 45], an almost complex manifold with Norden metric [147, 35, 34, 14, 23, 123, 124, 131], an almost complex manifold with B-metric [36, 38], an almost complex manifold with anti- Hermitian metric [16, 17, 28] or a manifold with complex Riemannian metric [65, 105, 37, 64]. Supposing a manifold is of an odd dimension, i.e. dim = 2n +1, then 6 Introduction. Scope of the Topic there exists a contact structure. The codimension one contact distribution can be considered as the horizontal distribution of the sub-Riemannian manifold. This distribution allows an almost complex structure which is the restriction of a contact endomorphism on the contact distribution. The vertical distribution is spanned by the corresponding Reeb vector field. Then the odd-dimensional manifold is equipped with an almost contact structure. If we dispose of a Hermitian metric on the contact distribution then the almost contact manifold is called an almost contact metric mani- fold. In another case, when a Norden metric is available on the con- tact distribution then we have an almost contact manifold with B-metric. Any B-metric as an odd-dimensional counterpart of a Norden metric is a pseudo-Riemannian metric of signature (n +1,n). A natural generalization of almost complex structure is almost hyper- complex structure. An almost hypercomplex manifold is a manifold which tangent bundle equipped with an action by the algebra of quaternions in such a way that the unit quaternions define almost complex structures. Then an almost hypercomplex structure on a 4n-dimensional manifold is a triad of anti-commuting almost complex structures whose triple com- position is minus the identity. It is known that, if the almost hypercomplex manifold is equipped with a Hermitian metric, the derived metric structure is a hyper-Hermitian structure. It consists of the given Hermitian metric with respect to the three almost complex structures and the three associated Kähler forms [2]. Almost hypercomplex structures (under the terminology of C. Ehresmann of almost quaternionic structures) with Hermitian metrics were studied in many works, e.g. [29, 122, 13, 150, 134, 18, 3]. An object of our interest is a metric structure on the almost hyper- complex manifold derived by a Norden metric. Then the existence of a Norden metric with respect to one of the three almost complex structures implies the existence of one more Norden metric and a Hermitian metric with respect to the other two almost complex structures. Such a metric is called a Hermitian-Norden metric on an almost hypercomplex manifold. Furthermore, the derived metric structure contains the given metric and three (0,2)-tensors associated by the almost hypercomplex structure – a Kähler form and two Hermitian-Norden metrics for which the roles of the almost complex structures change cyclically. Thus, the derived manifold is called an almost hypercomplex manifold with Hermitian-Norden met- 7 Introduction. Scope of the Topic rics. Manifolds of this type are studied in several papers with the author participation [47, 81, 103, 46, 82, 97]. The notion of almost contact 3-structure is introduced by Y. Y. Kuo in [62] and independently under the name almost coquaternion structure by C. Udrişte in [146]. Later, it is studied by several authors, e.g. [62, 63, 137, 153]. It is well known that the product of a manifold with almost contact 3-structure and a real line admits an almost hypercomplex structure [62, 2]. All authors have previously considered the case when there exists a Riemannian metric compatible with each of the three structures in the given almost contact 3-structure. Then the object of study is the so-called almost contact metric 3-structure (see also [5, 21, 19, 20]). Compatibility of an almost contact 3-structure with a B-metric is not yet considered before the publications that are part of this dissertation. In the present work we launch such a metric structure on a manifold with almost contact 3-structure. >>> 8 Introduction. Purpose of the Dissertation Purpose of the Dissertation The object of study in the present dissertation are some topics in dif- ferential geometry of smooth manifolds with additional tensor structures and metrics of Norden type. There are considered four cases depending on dimension of the manifold: 2n, 2n +1, 4n and 4n +3. The studied tensor structures, which are counterparts in the different related dimen- sions, are: the almost complex structure, the almost contact
Recommended publications
  • The Grassmann Manifold
    The Grassmann Manifold 1. For vector spaces V and W denote by L(V; W ) the vector space of linear maps from V to W . Thus L(Rk; Rn) may be identified with the space Rk£n of k £ n matrices. An injective linear map u : Rk ! V is called a k-frame in V . The set k n GFk;n = fu 2 L(R ; R ): rank(u) = kg of k-frames in Rn is called the Stiefel manifold. Note that the special case k = n is the general linear group: k k GLk = fa 2 L(R ; R ) : det(a) 6= 0g: The set of all k-dimensional (vector) subspaces ¸ ½ Rn is called the Grassmann n manifold of k-planes in R and denoted by GRk;n or sometimes GRk;n(R) or n GRk(R ). Let k ¼ : GFk;n ! GRk;n; ¼(u) = u(R ) denote the map which assigns to each k-frame u the subspace u(Rk) it spans. ¡1 For ¸ 2 GRk;n the fiber (preimage) ¼ (¸) consists of those k-frames which form a basis for the subspace ¸, i.e. for any u 2 ¼¡1(¸) we have ¡1 ¼ (¸) = fu ± a : a 2 GLkg: Hence we can (and will) view GRk;n as the orbit space of the group action GFk;n £ GLk ! GFk;n :(u; a) 7! u ± a: The exercises below will prove the following n£k Theorem 2. The Stiefel manifold GFk;n is an open subset of the set R of all n £ k matrices. There is a unique differentiable structure on the Grassmann manifold GRk;n such that the map ¼ is a submersion.
    [Show full text]
  • On Manifolds of Tensors of Fixed Tt-Rank
    ON MANIFOLDS OF TENSORS OF FIXED TT-RANK SEBASTIAN HOLTZ, THORSTEN ROHWEDDER, AND REINHOLD SCHNEIDER Abstract. Recently, the format of TT tensors [19, 38, 34, 39] has turned out to be a promising new format for the approximation of solutions of high dimensional problems. In this paper, we prove some new results for the TT representation of a tensor U ∈ Rn1×...×nd and for the manifold of tensors of TT-rank r. As a first result, we prove that the TT (or compression) ranks ri of a tensor U are unique and equal to the respective seperation ranks of U if the components of the TT decomposition are required to fulfil a certain maximal rank condition. We then show that d the set T of TT tensors of fixed rank r forms an embedded manifold in Rn , therefore preserving the essential theoretical properties of the Tucker format, but often showing an improved scaling behaviour. Extending a similar approach for matrices [7], we introduce certain gauge conditions to obtain a unique representation of the tangent space TU T of T and deduce a local parametrization of the TT manifold. The parametrisation of TU T is often crucial for an algorithmic treatment of high-dimensional time-dependent PDEs and minimisation problems [33]. We conclude with remarks on those applications and present some numerical examples. 1. Introduction The treatment of high-dimensional problems, typically of problems involving quantities from Rd for larger dimensions d, is still a challenging task for numerical approxima- tion. This is owed to the principal problem that classical approaches for their treatment normally scale exponentially in the dimension d in both needed storage and computa- tional time and thus quickly become computationally infeasable for sensible discretiza- tions of problems of interest.
    [Show full text]
  • INTRODUCTION to ALGEBRAIC GEOMETRY 1. Preliminary Of
    INTRODUCTION TO ALGEBRAIC GEOMETRY WEI-PING LI 1. Preliminary of Calculus on Manifolds 1.1. Tangent Vectors. What are tangent vectors we encounter in Calculus? 2 0 (1) Given a parametrised curve α(t) = x(t); y(t) in R , α (t) = x0(t); y0(t) is a tangent vector of the curve. (2) Given a surface given by a parameterisation x(u; v) = x(u; v); y(u; v); z(u; v); @x @x n = × is a normal vector of the surface. Any vector @u @v perpendicular to n is a tangent vector of the surface at the corresponding point. (3) Let v = (a; b; c) be a unit tangent vector of R3 at a point p 2 R3, f(x; y; z) be a differentiable function in an open neighbourhood of p, we can have the directional derivative of f in the direction v: @f @f @f D f = a (p) + b (p) + c (p): (1.1) v @x @y @z In fact, given any tangent vector v = (a; b; c), not necessarily a unit vector, we still can define an operator on the set of functions which are differentiable in open neighbourhood of p as in (1.1) Thus we can take the viewpoint that each tangent vector of R3 at p is an operator on the set of differential functions at p, i.e. @ @ @ v = (a; b; v) ! a + b + c j ; @x @y @z p or simply @ @ @ v = (a; b; c) ! a + b + c (1.2) @x @y @z 3 with the evaluation at p understood.
    [Show full text]
  • DIFFERENTIAL GEOMETRY COURSE NOTES 1.1. Review of Topology. Definition 1.1. a Topological Space Is a Pair (X,T ) Consisting of A
    DIFFERENTIAL GEOMETRY COURSE NOTES KO HONDA 1. REVIEW OF TOPOLOGY AND LINEAR ALGEBRA 1.1. Review of topology. Definition 1.1. A topological space is a pair (X; T ) consisting of a set X and a collection T = fUαg of subsets of X, satisfying the following: (1) ;;X 2 T , (2) if Uα;Uβ 2 T , then Uα \ Uβ 2 T , (3) if Uα 2 T for all α 2 I, then [α2I Uα 2 T . (Here I is an indexing set, and is not necessarily finite.) T is called a topology for X and Uα 2 T is called an open set of X. n Example 1: R = R × R × · · · × R (n times) = f(x1; : : : ; xn) j xi 2 R; i = 1; : : : ; ng, called real n-dimensional space. How to define a topology T on Rn? We would at least like to include open balls of radius r about y 2 Rn: n Br(y) = fx 2 R j jx − yj < rg; where p 2 2 jx − yj = (x1 − y1) + ··· + (xn − yn) : n n Question: Is T0 = fBr(y) j y 2 R ; r 2 (0; 1)g a valid topology for R ? n No, so you must add more open sets to T0 to get a valid topology for R . T = fU j 8y 2 U; 9Br(y) ⊂ Ug: Example 2A: S1 = f(x; y) 2 R2 j x2 + y2 = 1g. A reasonable topology on S1 is the topology induced by the inclusion S1 ⊂ R2. Definition 1.2. Let (X; T ) be a topological space and let f : Y ! X.
    [Show full text]
  • Manifold Reconstruction in Arbitrary Dimensions Using Witness Complexes Jean-Daniel Boissonnat, Leonidas J
    Manifold Reconstruction in Arbitrary Dimensions using Witness Complexes Jean-Daniel Boissonnat, Leonidas J. Guibas, Steve Oudot To cite this version: Jean-Daniel Boissonnat, Leonidas J. Guibas, Steve Oudot. Manifold Reconstruction in Arbitrary Dimensions using Witness Complexes. Discrete and Computational Geometry, Springer Verlag, 2009, pp.37. hal-00488434 HAL Id: hal-00488434 https://hal.archives-ouvertes.fr/hal-00488434 Submitted on 2 Jun 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Manifold Reconstruction in Arbitrary Dimensions using Witness Complexes Jean-Daniel Boissonnat Leonidas J. Guibas Steve Y. Oudot INRIA, G´eom´etrica Team Dept. Computer Science Dept. Computer Science 2004 route des lucioles Stanford University Stanford University 06902 Sophia-Antipolis, France Stanford, CA 94305 Stanford, CA 94305 [email protected] [email protected] [email protected]∗ Abstract It is a well-established fact that the witness complex is closely related to the restricted Delaunay triangulation in low dimensions. Specifically, it has been proved that the witness complex coincides with the restricted Delaunay triangulation on curves, and is still a subset of it on surfaces, under mild sampling conditions. In this paper, we prove that these results do not extend to higher-dimensional manifolds, even under strong sampling conditions such as uniform point density.
    [Show full text]
  • Hodge Theory
    HODGE THEORY PETER S. PARK Abstract. This exposition of Hodge theory is a slightly retooled version of the author's Harvard minor thesis, advised by Professor Joe Harris. Contents 1. Introduction 1 2. Hodge Theory of Compact Oriented Riemannian Manifolds 2 2.1. Hodge star operator 2 2.2. The main theorem 3 2.3. Sobolev spaces 5 2.4. Elliptic theory 11 2.5. Proof of the main theorem 14 3. Hodge Theory of Compact K¨ahlerManifolds 17 3.1. Differential operators on complex manifolds 17 3.2. Differential operators on K¨ahlermanifolds 20 3.3. Bott{Chern cohomology and the @@-Lemma 25 3.4. Lefschetz decomposition and the Hodge index theorem 26 Acknowledgments 30 References 30 1. Introduction Our objective in this exposition is to state and prove the main theorems of Hodge theory. In Section 2, we first describe a key motivation behind the Hodge theory for compact, closed, oriented Riemannian manifolds: the observation that the differential forms that satisfy certain par- tial differential equations depending on the choice of Riemannian metric (forms in the kernel of the associated Laplacian operator, or harmonic forms) turn out to be precisely the norm-minimizing representatives of the de Rham cohomology classes. This naturally leads to the statement our first main theorem, the Hodge decomposition|for a given compact, closed, oriented Riemannian manifold|of the space of smooth k-forms into the image of the Laplacian and its kernel, the sub- space of harmonic forms. We then develop the analytic machinery|specifically, Sobolev spaces and the theory of elliptic differential operators|that we use to prove the aforementioned decom- position, which immediately yields as a corollary the phenomenon of Poincar´eduality.
    [Show full text]
  • Spinc GEOMETRY of K¨AHLER MANIFOLDS and the HODGE
    SPINc GEOMETRY OF KAHLER¨ MANIFOLDS AND THE HODGE LAPLACIAN ON MINIMAL LAGRANGIAN SUBMANIFOLDS O. HIJAZI, S. MONTIEL, AND F. URBANO Abstract. From the existence of parallel spinor fields on Calabi- Yau, hyper-K¨ahleror complex flat manifolds, we deduce the ex- istence of harmonic differential forms of different degrees on their minimal Lagrangian submanifolds. In particular, when the sub- manifolds are compact, we obtain sharp estimates on their Betti numbers. When the ambient manifold is K¨ahler-Einstein with pos- itive scalar curvature, and especially if it is a complex contact manifold or the complex projective space, we prove the existence of K¨ahlerian Killing spinor fields for some particular spinc struc- tures. Using these fields, we construct eigenforms for the Hodge Laplacian on certain minimal Lagrangian submanifolds and give some estimates for their spectra. Applications on the Morse index of minimal Lagrangian submanifolds are obtained. 1. Introduction Recently, connections between the spectrum of the classical Dirac operator on submanifolds of a spin Riemannian manifold and its ge- ometry were investigated. Even when the submanifold is spin, many problems appear. In fact, it is known that the restriction of the spin bundle of a spin manifold M to a spin submanifold is a Hermitian bun- dle given by the tensorial product of the intrinsic spin bundle of the submanifold and certain bundle associated with the normal bundle of the immersion ([2, 3, 6]). In general, it is not easy to have a control on such a Hermitian bundle. Some results have been obtained ([2, 24, 25]) when the normal bundle of the submanifold is trivial, for instance for hypersurfaces.
    [Show full text]
  • The Chirka-Lindelof and Fatou Theorems for D-Bar Subsolutions
    The Chirka - Lindel¨of and Fatou theorems for ∂J-subsolutions Alexandre Sukhov* * Universit´ede Lille, Laboratoire Paul Painlev´e, U.F.R. de Math´e-matique, 59655 Villeneuve d’Ascq, Cedex, France, [email protected] The author is partially suported by Labex CEMPI. Institut of Mathematics with Computing Centre - Subdivision of the Ufa Research Centre of Russian Academy of Sciences, 45008, Chernyshevsky Str. 112, Ufa, Russia. Abstract. This paper studies boundary properties of bounded functions with bounded ∂J differential on strictly pseudoconvex domains in an almost complex manifold. MSC: 32H02, 53C15. Key words: almost complex manifold, ∂-operator, strictly pseudoconvex domain, the Fatou theorem. Contents 1 Introduction 2 2 Almost complex manifolds and almost holomorphic functions 3 arXiv:1808.04266v1 [math.CV] 10 Aug 2018 2.1 Almostcomplexmanifolds............................ 3 2.2 Pseudoholomorphicdiscs............................. 4 2.3 The ∂J -operator on an almost complex manifold (M,J)............ 6 2.4 Plurisubharmonic functions on almost complex manifolds: the background . 8 2.5 Boundary properties of subsolutions of the ∂-operator in the unit disc . 9 3 The Chirka-Lindel¨of principle for strictly pseudoconvex domains 10 3.1 Localapproximationbyhomogeneousmodels . .. 12 3.2 Caseofmodelstructures . .. .. .. 13 3.3 DeformationargumentandproofofTheorem3.4 . ... 16 4 The Fatou theorem 17 1 1 Introduction The first fundamental results on analytic properties of almost complex structures (in sev- eral variables) are due to Newlander - Nirenberg [9] and Nijenhuis - Woolf [10]. After the seminal work by M.Gromov [7] the theory of pseudoholomorphic curves in almost complex manifolds became one of the most powerful tools of the symplectic geometry and now is rapidly increasing.
    [Show full text]
  • Appendix D: Manifold Maps for SO(N) and SE(N)
    424 Appendix D: Manifold Maps for SO(n) and SE(n) As we saw in chapter 10, recent SLAM implementations that operate with three-dimensional poses often make use of on-manifold linearization of pose increments to avoid the shortcomings of directly optimizing in pose parameterization spaces. This appendix is devoted to providing the reader a detailed account of the mathematical tools required to understand all the expressions involved in on-manifold optimization problems. The presented contents will, hopefully, also serve as a solid base for bootstrap- ping the reader’s own solutions. 1. OPERATOR DEFINITIONS In the following, we will make use of some vector and matrix operators, which are rather uncommon in mobile robotics literature. Since they have not been employed throughout this book until this point, it is in order to define them here. The “vector to skew-symmetric matrix” operator: A skew-symmetric matrix is any square matrix A such that AA= − T . This implies that diagonal elements must be all zeros and off-diagonal entries the negative of their symmetric counterparts. It can be easily seen that any 2× 2 or 3× 3 skew-symmetric matrix only has 1 or 3 degrees of freedom (i.e. only 1 or 3 independent numbers appear in such matrices), respectively, thus it makes sense to parameterize them as a vector. Generating skew-symmetric matrices ⋅ from such vectors is performed by means of the []× operator, defined as: 0 −x 2× 2: = x ≡ []v × () × x 0 x 0 z y (1) − 3× 3: []v = y ≡ z0 − x × z −y x 0 × The origin of the symbol × in this operator follows from its application to converting a cross prod- × uct of two 3D vectors ( x y ) into a matrix-vector multiplication ([]x× y ).
    [Show full text]
  • IMMERSIONS of SURFACES in Spinc -MANIFOLDS with a GENERIC POSITIVE SPINOR
    appeared in Annals of Global Analysis and Geometry 26 (2004), 175{199 and 319 IMMERSIONS OF SURFACES IN SPINc -MANIFOLDS WITH A GENERIC POSITIVE SPINOR Andrzej Derdzinski and Tadeusz Januszkiewicz Abstract: We define and discuss totally real and pseudoholo- morphic immersions of real surfaces in a 4-manifold which, instead of an almost complex structure, carries only a \framed spinc-structure," that is, a spinc-structure with a fixed generic section of its positive half-spinor bundle. In particular, we describe all pseudoholomorphic immersions of closed surfaces in the 4-sphere with a standard framed spin structure. Mathematics Subject Classification (2000): primary 53C27, 53C42; secondary 53C15. Key words: spinc-structure, totally real immersion, pseudoholo- morphic immersion 1. Introduction Almost complex structures on real manifolds of dimension 2n are well- known to be, essentially, a special case of spinc-structures. This amounts to a specific Lie-group embedding U(n) Spinc(2n) (see [6, p. 392] and Remark 7.1 below). The present paper! deals with the case n = 2. The relation just mentioned then can also be couched in the homotopy theorists' language: for a compact four-manifold M with a fixed CW-decomposition, a spinc-structure over M is nothing else than an almost complex structure on the 2-skeleton of M, admitting an extension to its 3-skeleton; the ex- tension itself is not a part of the data. (Kirby [5] attributes the italicized comment to Brown.) Our approach is explicitly geometric and proceeds as follows. Given an almost complex structure J on a 4-manifold M, one can always choose a Riemannian metric g compatible with J, thus replacing J by an almost Hermitian structure (J; g) on M.
    [Show full text]
  • 1. Complex Vector Bundles and Complex Manifolds Definition 1.1. A
    1. Complex Vector bundles and complex manifolds n Definition 1.1. A complex vector bundle is a fiber bundle with fiber C and structure group GL(n; C). Equivalently, it is a real vector bundle E together with a bundle automor- phism J : E −! E satisfying J 2 = −id. (this is because any vector space with a linear map 2 n J satisfying J = −id has an real basis identifying it with C and J with multiplication by i). The map J is called a complex structure on E. An almost complex structure on a manifold M is a complex structure on E. An almost complex manifold is a manifold together with an almost complex structure. n Definition 1.2. A complex manifold is a manifold with charts τi : Ui −! C which are n −1 homeomorphisms onto open subsets of C and chart changing maps τi ◦ τj : τj(Ui \ Uj) −! τi(Ui \ Uj) equal to biholomorphisms. Holomorphic maps between complex manifolds are defined so that their restriction to each chart is holomorphic. Note that a complex manifold is an almost complex manifold. We have a partial converse to this theorem: Theorem 1.3. (Newlander-Nirenberg)(we wont prove this). An almost complex manifold (M; J) is a complex manifold if: [J(v);J(w)] = J([v; Jw]) + J[J(v); w] + [v; w] for all smooth vector fields v; w. Definition 1.4. A holomorphic vector bundle π : E −! B is a complex manifold E together with a complex base B so that the transition data: Φij : Ui \ Uj −! GL(n; C) are holomorphic maps (here GL(n; C) is a complex vector space).
    [Show full text]
  • Differential Forms As Spinors Annales De L’I
    ANNALES DE L’I. H. P., SECTION A WOLFGANG GRAF Differential forms as spinors Annales de l’I. H. P., section A, tome 29, no 1 (1978), p. 85-109 <http://www.numdam.org/item?id=AIHPA_1978__29_1_85_0> © Gauthier-Villars, 1978, tous droits réservés. L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique l’accord avec les conditions générales d’utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Henri Poincare, Section A : Vol. XXIX. n° L 1978. p. 85 Physique’ théorique.’ Differential forms as spinors Wolfgang GRAF Fachbereich Physik der Universitat, D-7750Konstanz. Germany ABSTRACT. 2014 An alternative notion of spinor fields for spin 1/2 on a pseudoriemannian manifold is proposed. Use is made of an algebra which allows the interpretation of spinors as elements of a global minimal Clifford- ideal of differential forms. The minimal coupling to an electromagnetic field is introduced by means of an « U(1 )-gauging ». Although local Lorentz transformations play only a secondary role and the usual two-valuedness is completely absent, all results of Dirac’s equation in flat space-time with electromagnetic coupling can be regained. 1. INTRODUCTION It is well known that in a riemannian manifold the laplacian D := - (d~ + ~d) operating on differential forms admits as « square root » the first-order operator ~ 2014 ~ ~ being the exterior derivative and e) the generalized divergence.
    [Show full text]