On Fractional Schrödinger Equation and Its Application

Total Page:16

File Type:pdf, Size:1020Kb

On Fractional Schrödinger Equation and Its Application International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 1 ISSN 2229-5518 On Fractional Schrödinger Equation and Its Application Avik Kumar Mahata Abstract— In the note, recent efforts to derive fractional quantum mechanics are recalled. Time-space fractional Schrödinger equation with and without a Non Local term also been discussed. Applications of a fractional approach to the Schrödinger equation for free electron and potential well are discussed as well. Index Terms— Caputo Fractional Derivative, Fractional Calculus, Fractional Schrödinger Equation, Space Time Fractional Schrödinger Equation, Time- Space fractional Schrödinger like equation, Free Electron, Potential Well. 1. INTRODUCTION Specifically, they present the model of a hydrogen- The fractality concept in Quantum Mechanics like fractional atom called “fractional Bohr atom.” developed throughout the last decade. The term fractional Quantum Mechanics was first introduced Recently Herrmann has applied the fractional by Laskin [1]. The path integrals over the Lévy mechanical approach to several particular problems paths are defined and fractional quantum and statistical mechanics have been developed via new [7-12]. Some other cases of the fractional fractional path integrals approach. A fractional Schrödinger equation were discussed by Naber [13] generalization of the Schrödinger equation, new and Ben Adda & Cresson [14]. relation between the energy and the momentum of non-relativistic fractional quantum-mechanical particle has been established [1]. The concept of 2. FRACTIONAL CALCULUS fractional calculus, originated from Leibniz, has gained increasing interest during last two decades (see e.g. [2] and activity of the Fracalmo research Fractional Calculus is a field of mathematic group [3]). But the concept of fractional calculus was study that grows out of the traditional definitions of originally introduced by Leibniz, which has gained special interest in recent time. Later Laskin [4] the calculus integral and derivative operators in studied the properties of the fractional Schrödinger much the same way fractional exponents is an equation. outgrowth of exponents with integer value. Since Hermiticity of the fractional Hamilton operator the appearance of the idea of differentiation and was proved and also established the parity conservation law for fractional quantum mechanics. integration of arbitrary (not necessary integer) order As physical applications of the fractional there was not any acceptable geometric and physical Schrödinger equation he found the energy spectra of a hydrogenlike atom (fractional “Bohr atom”) and interpretation of these operations for more than 300 of a fractional oscillator in the semiclassical year. In [15], it is shown that geometric approximation. An equation for the fractional probability current density is developed and interpretation of fractional integration is”‘Shadows discussed and also discussed the relationships on the walls”’ and its Physical interpretation is” between the fractional and standard Schrödinger ‘Shadows of the past”’. I will discuss different equations. Later E.Ahmed et al. studied on the order of fractional Schrödinger equation [5]. Muslih & definition of fractional differentiation and Agrawal [6] studied the Schrödinger equation is integration below, studied in a fractional space. ———————————————— 2.1 Different Definition Avik Kumar Mahata is currently pursuing masters degree program in Material Science and Engineering in National Institute of Technology, Trichy, Tamilnadu, INDIA, PH- i) L. Euler (1730) +919786177547, E-mail: [email protected] Euler generalized the formula IJSER © 2013 http://www.ijser.org International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 2 ISSN 2229-5518 The popular definition of fractional calculus = ( − 1) … … ( − + 1)() is this which shows joining of the above two definitions, By using the following property of Gamma 1 () () = ( ) function, ( − ) ( − ) ( ) ( ) ( + 1 = − 1 … … − + vi) The Caputo fractional 1) ( − + 1) derivative The Caputo definition of the fractional derivative To obtain; follows the inverted sequence of operations. An ( + 1) = () ordinary differentiation is followed by the fractional ( − + 1) integration, Gamma function is defined as follows, () = ∫ () , Re(z) >0 1 ()() ( ) = () , ( − ) ( − ) ii) J.B.J Fourier (1820-22) ( − 1 ≤ < ) . By means of integral representation, vii) The fractional Schrödinger equation. 1 () = () cos(px − pz)dp The most general fractional Schrödinger equation 2 He wrote, may be obtained when, () → → = ∫ () ∫ cos px − pz + dp However, special care need to be undertaken in order to introduce canonically conjugate iii) J.Liovilli (1832-1855) observables and . The third definition of Liovilli includes 3. Space Time Fractional Schrödinger Fractional Derivative, Equation ( ) The Feynman path integral formulation of quantum () = (() ( + ℎ) + mechanics is based on a path integral over ( ) ( + 2ℎ) − ⋯ ) Brownian paths. In diffusion theory, this can also be . done to generate the standard diffusion equation; however, there are examples of many phenomena iv) G.F.B Riemann that are only properly described when non- Brownian paths are considered. When this is done, His definition of fractional integral is, the resulting diffusion equation has factional derivatives [16,17]. Due to the strong similarity () = ∫ ( − )()() + between the Schrödinger equation and the standard () diffusion equation one might expect modifications () to the Schrödinger equation generated by considering non-Brownian paths in the path integral v) Riemann-Liovilli definition derivation. This gives the time-factional, space- IJSER © 2013 http://www.ijser.org International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 3 ISSN 2229-5518 fractional and space–time-factional Schrödinger 4. Time-Space fractional Schrödinger equation [4, 19, and 20]. like equation In Quantum Mechanics the famous Schrödinger Lenzi and Oliveira et al. [25] analyze the is given by (in one dimension), following integer Schrödinger equation with a nonlocal term, (,) ℏ (,) ℏ = − + (, )(, ) (,) ℏ (,) ℏ = + ∫ ̅ ∫ ̅( − where ψ(x, t) and V (x, t) denote the wave function ̅, − )̅ (̅, ) (4) and the potential function, respectively. Feynman and Hibbs [21] reformulated the Schrödinger where the last term represents a nonlocal term equation by use of a path integral approach acting on the system and the kernel U(x, t). considering the Gaussian probability distribution. According to literatures [22] and [25], when a Later the time space fractional Schrödinger nonlocal term act on the fractional quantum system equation [22] obtained by Dong and Xu equation (1) can be written as the following, (in one dimension); ℏ ( ) ( ) / ( ) (ℏ) (, ) = ℏ , , = (−ℏ ∆) , + , ℏ / ℏ (,) ℏ(,) ℏ (−ℏ ∆) (, ) + (, ) (1) ( ) ̅ , + ∫ ∫ ̅( − ̅, − )(,) (5) where (, ) and (, ) are wave function and potential energy respectively, = is 5. Solution of simple system by Time “fractional quantum diffusion coefficient” with Fractional Schrodinger Equation physical dimension, 5.1 Free Electron 1− = × × = for = 2 The time fractional Schrödinger equation for And , a free particle is given by, ℏ ℏ ℏ = , = , = , = () = − (6) (2) To solve this equation, apply a Fourier transform on the spatial coordinate, are Plank length, time, mass and energy. And G and c are Gravitational constant and speed of light ((, ) = (, ) respectively and Caputo Fractional , and (−ℏ∆)/ Derivative of order is () () = (7) quantum Riesz fractional derivative [see 23,24] defined by the following, The resulting equation can be rearranged and the results of the second appendix can be used. Namely, (−ℏ∆)/(, ) = ∫ () ℏ || × ℏ the identity for the Mittag-Leffler (26,27) function ℏ ( ) with a complex argument, ∫ , , (1<α≤2) (3) IJSER © 2013 http://www.ijser.org International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 4 ISSN 2229-5518 () = (8) () The interesting result is when time goes to infinity. And we get, / (∞) = ℏ / (14) = { − (−) , } (9) This is the same energy spectrum that is obtained for the non-fractional Schrödinger () equation except for the factor of 1/ and the where = In Eq.(9) the first term is exponent of 1/ . Since is less than one the spacing oscillatory, and the second is decay in the time between energy levels is greater than that given by variable. Inverse Fourier transforming gives the the non-fractional Schrödinger equation. In fact the final solution, smaller the value of the greater the difference (, ) = (, ) = between energy levels. And at t = 0 the spacing between the energy levels is that same as that of the ∫ { − (−), } non-fractional Schrödinger equation. (10) This can be broken into two parts, a Schrödinger like piece divided by , and a decay term that 6. Conclusion goes to zero as time goes to infinity. Note that as goes to one the decay term goes to zero and the Complex systems (CS) are frequent in nature. Schrödinger like term becomes the non-fractional Mathematical methods can be helpful in Schrödinger term. may be chosen so that the understanding them. Motivated by the properties of initial probability is one. Due to the decay term in CS we concluded that Fractional order systems are the solution one may ask what happens
Recommended publications
  • Key Concepts for Future QIS Learners Workshop Output Published Online May 13, 2020
    Key Concepts for Future QIS Learners Workshop output published online May 13, 2020 Background and Overview On behalf of the Interagency Working Group on Workforce, Industry and Infrastructure, under the NSTC Subcommittee on Quantum Information Science (QIS), the National Science Foundation invited 25 researchers and educators to come together to deliberate on defining a core set of key concepts for future QIS learners that could provide a starting point for further curricular and educator development activities. The deliberative group included university and industry researchers, secondary school and college educators, and representatives from educational and professional organizations. The workshop participants focused on identifying concepts that could, with additional supporting resources, help prepare secondary school students to engage with QIS and provide possible pathways for broader public engagement. This workshop report identifies a set of nine Key Concepts. Each Concept is introduced with a concise overall statement, followed by a few important fundamentals. Connections to current and future technologies are included, providing relevance and context. The first Key Concept defines the field as a whole. Concepts 2-6 introduce ideas that are necessary for building an understanding of quantum information science and its applications. Concepts 7-9 provide short explanations of critical areas of study within QIS: quantum computing, quantum communication and quantum sensing. The Key Concepts are not intended to be an introductory guide to quantum information science, but rather provide a framework for future expansion and adaptation for students at different levels in computer science, mathematics, physics, and chemistry courses. As such, it is expected that educators and other community stakeholders may not yet have a working knowledge of content covered in the Key Concepts.
    [Show full text]
  • A Study of Fractional Schrödinger Equation-Composed Via Jumarie Fractional Derivative
    A Study of Fractional Schrödinger Equation-composed via Jumarie fractional derivative Joydip Banerjee1, Uttam Ghosh2a , Susmita Sarkar2b and Shantanu Das3 Uttar Buincha Kajal Hari Primary school, Fulia, Nadia, West Bengal, India email- [email protected] 2Department of Applied Mathematics, University of Calcutta, Kolkata, India; 2aemail : [email protected] 2b email : [email protected] 3 Reactor Control Division BARC Mumbai India email : [email protected] Abstract One of the motivations for using fractional calculus in physical systems is due to fact that many times, in the space and time variables we are dealing which exhibit coarse-grained phenomena, meaning that infinitesimal quantities cannot be placed arbitrarily to zero-rather they are non-zero with a minimum length. Especially when we are dealing in microscopic to mesoscopic level of systems. Meaning if we denote x the point in space andt as point in time; then the differentials dx (and dt ) cannot be taken to limit zero, rather it has spread. A way to take this into account is to use infinitesimal quantities as ()Δx α (and ()Δt α ) with 01<α <, which for very-very small Δx (and Δt ); that is trending towards zero, these ‘fractional’ differentials are greater that Δx (and Δt ). That is()Δx α >Δx . This way defining the differentials-or rather fractional differentials makes us to use fractional derivatives in the study of dynamic systems. In fractional calculus the fractional order trigonometric functions play important role. The Mittag-Leffler function which plays important role in the field of fractional calculus; and the fractional order trigonometric functions are defined using this Mittag-Leffler function.
    [Show full text]
  • Exercises in Classical Mechanics 1 Moments of Inertia 2 Half-Cylinder
    Exercises in Classical Mechanics CUNY GC, Prof. D. Garanin No.1 Solution ||||||||||||||||||||||||||||||||||||||||| 1 Moments of inertia (5 points) Calculate tensors of inertia with respect to the principal axes of the following bodies: a) Hollow sphere of mass M and radius R: b) Cone of the height h and radius of the base R; both with respect to the apex and to the center of mass. c) Body of a box shape with sides a; b; and c: Solution: a) By symmetry for the sphere I®¯ = I±®¯: (1) One can ¯nd I easily noticing that for the hollow sphere is 1 1 X ³ ´ I = (I + I + I ) = m y2 + z2 + z2 + x2 + x2 + y2 3 xx yy zz 3 i i i i i i i i 2 X 2 X 2 = m r2 = R2 m = MR2: (2) 3 i i 3 i 3 i i b) and c): Standard solutions 2 Half-cylinder ϕ (10 points) Consider a half-cylinder of mass M and radius R on a horizontal plane. a) Find the position of its center of mass (CM) and the moment of inertia with respect to CM. b) Write down the Lagrange function in terms of the angle ' (see Fig.) c) Find the frequency of cylinder's oscillations in the linear regime, ' ¿ 1. Solution: (a) First we ¯nd the distance a between the CM and the geometrical center of the cylinder. With σ being the density for the cross-sectional surface, so that ¼R2 M = σ ; (3) 2 1 one obtains Z Z 2 2σ R p σ R q a = dx x R2 ¡ x2 = dy R2 ¡ y M 0 M 0 ¯ 2 ³ ´3=2¯R σ 2 2 ¯ σ 2 3 4 = ¡ R ¡ y ¯ = R = R: (4) M 3 0 M 3 3¼ The moment of inertia of the half-cylinder with respect to the geometrical center is the same as that of the cylinder, 1 I0 = MR2: (5) 2 The moment of inertia with respect to the CM I can be found from the relation I0 = I + Ma2 (6) that yields " µ ¶ # " # 1 4 2 1 32 I = I0 ¡ Ma2 = MR2 ¡ = MR2 1 ¡ ' 0:3199MR2: (7) 2 3¼ 2 (3¼)2 (b) The Lagrange function L is given by L('; '_ ) = T ('; '_ ) ¡ U('): (8) The potential energy U of the half-cylinder is due to the elevation of its CM resulting from the deviation of ' from zero.
    [Show full text]
  • Quantum Mechanics
    Quantum Mechanics Richard Fitzpatrick Professor of Physics The University of Texas at Austin Contents 1 Introduction 5 1.1 Intendedaudience................................ 5 1.2 MajorSources .................................. 5 1.3 AimofCourse .................................. 6 1.4 OutlineofCourse ................................ 6 2 Probability Theory 7 2.1 Introduction ................................... 7 2.2 WhatisProbability?.............................. 7 2.3 CombiningProbabilities. ... 7 2.4 Mean,Variance,andStandardDeviation . ..... 9 2.5 ContinuousProbabilityDistributions. ........ 11 3 Wave-Particle Duality 13 3.1 Introduction ................................... 13 3.2 Wavefunctions.................................. 13 3.3 PlaneWaves ................................... 14 3.4 RepresentationofWavesviaComplexFunctions . ....... 15 3.5 ClassicalLightWaves ............................. 18 3.6 PhotoelectricEffect ............................. 19 3.7 QuantumTheoryofLight. .. .. .. .. .. .. .. .. .. .. .. .. .. 21 3.8 ClassicalInterferenceofLightWaves . ...... 21 3.9 QuantumInterferenceofLight . 22 3.10 ClassicalParticles . .. .. .. .. .. .. .. .. .. .. .. .. .. .. 25 3.11 QuantumParticles............................... 25 3.12 WavePackets .................................. 26 2 QUANTUM MECHANICS 3.13 EvolutionofWavePackets . 29 3.14 Heisenberg’sUncertaintyPrinciple . ........ 32 3.15 Schr¨odinger’sEquation . 35 3.16 CollapseoftheWaveFunction . 36 4 Fundamentals of Quantum Mechanics 39 4.1 Introduction ..................................
    [Show full text]
  • L the Probability Current Or Flux
    Atomic and Molecular Quantum Theory Course Number: C561 L The Probability Current or flux 1. Consider the time-dependent Schr¨odinger Equation and its complex conjugate: 2 ∂ h¯ ∂2 ıh¯ ψ(x, t)= Hψ(x, t)= − 2 + V ψ(x, t) (L.26) ∂t " 2m ∂x # 2 2 ∂ ∗ ∗ h¯ ∂ ∗ −ıh¯ ψ (x, t)= Hψ (x, t)= − 2 + V ψ (x, t) (L.27) ∂t " 2m ∂x # 2. Multiply Eq. (L.26) by ψ∗(x, t), andEq. (L.27) by ψ(x, t): ∂ ψ∗(x, t)ıh¯ ψ(x, t) = ψ∗(x, t)Hψ(x, t) ∂t 2 2 ∗ h¯ ∂ = ψ (x, t) − 2 + V ψ(x, t) (L.28) " 2m ∂x # ∂ −ψ(x, t)ıh¯ ψ∗(x, t) = ψ(x, t)Hψ∗(x, t) ∂t 2 2 h¯ ∂ ∗ = ψ(x, t) − 2 + V ψ (x, t) (L.29) " 2m ∂x # 3. Subtract the two equations to obtain (see that the terms involving V cancels out) 2 2 ∂ ∗ h¯ ∗ ∂ ıh¯ [ψ(x, t)ψ (x, t)] = − ψ (x, t) 2 ψ(x, t) ∂t 2m " ∂x 2 ∂ ∗ − ψ(x, t) 2 ψ (x, t) (L.30) ∂x # or ∂ h¯ ∂ ∂ ∂ ρ(x, t)= − ψ∗(x, t) ψ(x, t) − ψ(x, t) ψ∗(x, t) (L.31) ∂t 2mı ∂x " ∂x ∂x # 4. If we make the variable substitution: h¯ ∂ ∂ J = ψ∗(x, t) ψ(x, t) − ψ(x, t) ψ∗(x, t) 2mı " ∂x ∂x # h¯ ∂ = I ψ∗(x, t) ψ(x, t) (L.32) m " ∂x # (where I [···] represents the imaginary part of the quantity in brackets) we obtain ∂ ∂ ρ(x, t)= − J (L.33) ∂t ∂x or in three-dimensions ∂ ρ(x, t)+ ∇·J =0 (L.34) ∂t Chemistry, Indiana University L-37 c 2003, Srinivasan S.
    [Show full text]
  • Relativistic Quantum Mechanics 1
    Relativistic Quantum Mechanics 1 The aim of this chapter is to introduce a relativistic formalism which can be used to describe particles and their interactions. The emphasis 1.1 SpecialRelativity 1 is given to those elements of the formalism which can be carried on 1.2 One-particle states 7 to Relativistic Quantum Fields (RQF), which underpins the theoretical 1.3 The Klein–Gordon equation 9 framework of high energy particle physics. We begin with a brief summary of special relativity, concentrating on 1.4 The Diracequation 14 4-vectors and spinors. One-particle states and their Lorentz transforma- 1.5 Gaugesymmetry 30 tions follow, leading to the Klein–Gordon and the Dirac equations for Chaptersummary 36 probability amplitudes; i.e. Relativistic Quantum Mechanics (RQM). Readers who want to get to RQM quickly, without studying its foun- dation in special relativity can skip the first sections and start reading from the section 1.3. Intrinsic problems of RQM are discussed and a region of applicability of RQM is defined. Free particle wave functions are constructed and particle interactions are described using their probability currents. A gauge symmetry is introduced to derive a particle interaction with a classical gauge field. 1.1 Special Relativity Einstein’s special relativity is a necessary and fundamental part of any Albert Einstein 1879 - 1955 formalism of particle physics. We begin with its brief summary. For a full account, refer to specialized books, for example (1) or (2). The- ory oriented students with good mathematical background might want to consult books on groups and their representations, for example (3), followed by introductory books on RQM/RQF, for example (4).
    [Show full text]
  • Newtonian Mechanics Is Most Straightforward in Its Formulation and Is Based on Newton’S Second Law
    CLASSICAL MECHANICS D. A. Garanin September 30, 2015 1 Introduction Mechanics is part of physics studying motion of material bodies or conditions of their equilibrium. The latter is the subject of statics that is important in engineering. General properties of motion of bodies regardless of the source of motion (in particular, the role of constraints) belong to kinematics. Finally, motion caused by forces or interactions is the subject of dynamics, the biggest and most important part of mechanics. Concerning systems studied, mechanics can be divided into mechanics of material points, mechanics of rigid bodies, mechanics of elastic bodies, and mechanics of fluids: hydro- and aerodynamics. At the core of each of these areas of mechanics is the equation of motion, Newton's second law. Mechanics of material points is described by ordinary differential equations (ODE). One can distinguish between mechanics of one or few bodies and mechanics of many-body systems. Mechanics of rigid bodies is also described by ordinary differential equations, including positions and velocities of their centers and the angles defining their orientation. Mechanics of elastic bodies and fluids (that is, mechanics of continuum) is more compli- cated and described by partial differential equation. In many cases mechanics of continuum is coupled to thermodynamics, especially in aerodynamics. The subject of this course are systems described by ODE, including particles and rigid bodies. There are two limitations on classical mechanics. First, speeds of the objects should be much smaller than the speed of light, v c, otherwise it becomes relativistic mechanics. Second, the bodies should have a sufficiently large mass and/or kinetic energy.
    [Show full text]
  • Rotation: Moment of Inertia and Torque
    Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn that where the force is applied and how the force is applied is just as important as how much force is applied when we want to make something rotate. This tutorial discusses the dynamics of an object rotating about a fixed axis and introduces the concepts of torque and moment of inertia. These concepts allows us to get a better understanding of why pushing a door towards its hinges is not very a very effective way to make it open, why using a longer wrench makes it easier to loosen a tight bolt, etc. This module begins by looking at the kinetic energy of rotation and by defining a quantity known as the moment of inertia which is the rotational analog of mass. Then it proceeds to discuss the quantity called torque which is the rotational analog of force and is the physical quantity that is required to changed an object's state of rotational motion. Moment of Inertia Kinetic Energy of Rotation Consider a rigid object rotating about a fixed axis at a certain angular velocity. Since every particle in the object is moving, every particle has kinetic energy. To find the total kinetic energy related to the rotation of the body, the sum of the kinetic energy of every particle due to the rotational motion is taken. The total kinetic energy can be expressed as ..
    [Show full text]
  • Photon Wave Mechanics: a De Broglie - Bohm Approach
    PHOTON WAVE MECHANICS: A DE BROGLIE - BOHM APPROACH S. ESPOSITO Dipartimento di Scienze Fisiche, Universit`adi Napoli “Federico II” and Istituto Nazionale di Fisica Nucleare, Sezione di Napoli Mostra d’Oltremare Pad. 20, I-80125 Napoli Italy e-mail: [email protected] Abstract. We compare the de Broglie - Bohm theory for non-relativistic, scalar matter particles with the Majorana-R¨omer theory of electrodynamics, pointing out the impressive common pecu- liarities and the role of the spin in both theories. A novel insight into photon wave mechanics is envisaged. 1. Introduction Modern Quantum Mechanics was born with the observation of Heisenberg [1] that in atomic (and subatomic) systems there are directly observable quantities, such as emission frequencies, intensities and so on, as well as non directly observable quantities such as, for example, the position coordinates of an electron in an atom at a given time instant. The later fruitful developments of the quantum formalism was then devoted to connect observable quantities between them without the use of a model, differently to what happened in the framework of old quantum mechanics where specific geometrical and mechanical models were investigated to deduce the values of the observable quantities from a substantially non observable underlying structure. We now know that quantum phenomena are completely described by a complex- valued state function ψ satisfying the Schr¨odinger equation. The probabilistic in- terpretation of it was first suggested by Born [2] and, in the light of Heisenberg uncertainty principle, is a pillar of quantum mechanics itself. All the known experiments show that the probabilistic interpretation of the wave function is indeed the correct one (see any textbook on quantum mechanics, for 2 S.
    [Show full text]
  • Statics Syllabus
    AME-201 Statics Spring 2011 Instructor Charles Radovich [email protected] Lecture T Th 2:00 pm – 3:20 PM, VKC 152 Office Hours Tue. 3:30 – 5 pm, Wed. 4:30 – 5:30 pm, also by appointment – RRB 202 Textbook Beer, F. and E. Johnston. Vector Mechanics for Engineers: Statics, 9th Edition. McGraw-Hill, Boston, 2009. ISBN-10: 007727556X; ISBN-13: 978-0077275563. Course Description AME-201 STATICS Units: 3 Prerequisite: MATH-125 Recommended preparation: AME-101, PHYS-151 Analysis of forces acting on particles and rigid bodies in static equilibrium; equivalent systems of forces; friction; centroids and moments of inertia; introduction to energy methods. (from the USC Course Catalogue) The subject of Statics deals with forces acting on rigid bodies at rest covering coplanar and non- coplanar forces, concurrent and non-concurrent forces, friction forces, centroid and moments of inertia. Much time will be spent finding resultant forces for a variety of force systems, as well as analyzing forces acting on bodies to find the reacting forces supporting those bodies. Students will develop critical thinking skills necessary to formulate appropriate approaches to problem solutions. Course Objectives Throughout the semester students will develop an understanding of, and demonstrate their proficiency in the following concepts and principles pertaining to vector mechanics, statics. 1. Components of a force and the resultant force for a systems of forces 2. Moment caused by a force acting on a rigid body 3. Principle of transmissibility and the line of action 4. Moment due to several concurrent forces 5. Force and moment reactions at the supports and connections of a rigid body 6.
    [Show full text]
  • Quantum Information Science: Emerging No More
    Quantum Information Science: Emerging No More Carlton M. Caves Center for Quantum Information and Control, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA Final: 2013 January 30 Quantum information science (QIS) is a new field of enquiry, nascent in the 1980s, founded firmly in the 1990s, exploding in the 2010s, now established as a discipline for the 21st Century. Born in obscurity, then known as the foundations of quantum mechanics, the field began in the 60s and 70s with studies of Bell inequalities. These showed that the predictions of quantum mechanics cannot be squared with the belief, called local realism, that physical systems have realistic properties whose pre-existing values are revealed by measurements. The predictions of quantum mechanics for separate systems, correlated in the quantum way that we now call entanglement, are at odds with any version of local realism. Experiments in the early 80s demonstrated convincingly that the world comes down on the side of quantum mechanics. With local realism tossed out the window, it was natural to dream that quantum correlations could be used for faster-than-light communication, but this speculation was quickly shot down, and the shooting established the principle that quantum states cannot be copied. A group consisting of quantum opticians, electrical engineers, and mathematical physicists spent the 60s and 70s studying quantum measurements, getting serious about what can be measured and how well, going well beyond the description of observables that was (and often still is) taught in quantum-mechanics courses. This was not an empty exercise: communications engineers needed a more general description of quantum measurements to describe communications channels and to assess their performance.
    [Show full text]
  • Mechanics Lecture 3 Static Forces, Resultants, Equilibrium of a Particle Dr Philip Jackson
    C.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 3 Static forces, resultants, equilibrium of a particle Dr Philip Jackson http://www.ee.surrey.ac.uk/Teaching/Courses/ee1.el3/ C.2 Mechanics • Mechanics is the study of the relationship between the motion of bodies and the forces applied to them It describes, measures and relates forces with motion • Statics: study of forces, resultant forces, bodies in equilibrium, no acceleration • Kinematics: study of motion, position and time • Dynamics: study of forces and motion C.3 Forces and equilibrium Forces magnitude and direction components of a force Equilibrium static or dynamic forces in balance Preparation What are the fundamental forces? List them What is a component of force? Give one example What is equilibrium? Draw a diagram with 3-4 forces C.4 Four fundamental forces All forces can be described by four fundamental forces: 1. Gravity: long range, v. weak 2. Electromagnetic: responsible for many electrical, magnetic and EM wave phenomena 3. Weak nuclear: short range, radioactive decay 4. Strong nuclear: short range C.5 Statics – what is a force? • A force is a directed action of one body on another • The action “tends to move” the body and depends on the magnitude, direction and point of application of the force • A force is represented by a vector: C.6 Properties of forces: opposition • Forces occur in equal and opposite pairs (Newton’s 3rd law), each having the same line of action and acting on different bodies • In mechanics, we consider two types of forces: – contact forces
    [Show full text]