Energies 2015, 8, 8086-8109; doi:10.3390/en8088086 OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Article Numerical Analysis on Combustion Characteristic of Leaf Spring Rotary Engine Yan Zhang, Zhengxing Zuo and Jinxiang Liu * School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; E-Mails:
[email protected] (Y.Z.);
[email protected] (Z.Z.) * Author to whom correspondence should be addressed; E-Mail:
[email protected]; Tel./Fax: +86-10-6891-1392. Academic Editors: Paul Stewart and Chris Bingham Received: 19 March 2015 / Accepted: 17 July 2015 / Published: 4 August 2015 Abstract: The purpose of this paper is to investigate combustion characteristics for rotary engine via numerical studies. A 3D numerical model was developed to study the influence of several operative parameters on combustion characteristics. A novel rotary engine called, “Leaf Spring Rotary Engine”, was used to illustrate the structure and principle of the engine. The aims are to (1) improve the understanding of combustion process, and (2) quantify the influence of rotational speed, excess air ratio, initial pressure and temperature on combustion characteristics. The chamber space changed with crankshaft rotation. Due to the complexity of chamber volume, an equivalent modeling method was presented to simulate the chamber space variation. The numerical simulations were performed by solving the incompressible, multiphase Unsteady Reynolds-Averaged Navier–Stokes Equations via the commercial code FLUENT using a transport equation-based combustion model; a realizable turbulence model and finite-rate/eddy-dissipation model were used to account for the effect of local factors on the combustion characteristics.