Understanding the Self-Assembly Process and Behavior of Metal- Seamed Pyrogallol[4]Arene Nanocapsules
Total Page:16
File Type:pdf, Size:1020Kb
UNDERSTANDING THE SELF-ASSEMBLY PROCESS AND BEHAVIOR OF METAL-SEAMED PYROGALLOL[4]ARENE NANOCAPSULES A Dissertation Presented to The Faculty of the Graduate School University of Missouri-Columbia In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By ANDREW V. MOSSINE Dr. Jerry L. Atwood, Dissertation Supervisor MAY 2014 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled UNDERSTANDING THE SELF-ASSEMBLY PROCESS AND BEHAVIOR OF METAL-SEAMED PYROGALLOL[4]ARENE NANOCAPSULES Presented by Andrew V. Mossine A candidate for the degree of doctor of philosophy of Chemistry, And hereby certify that, in their opinion, it is worthy of acceptance Professor Jerry L. Atwood (CHAIR) Professor Stephen Lombardo (OUTSIDE MEMBER) Professor Carol A. Deakyne (MEMBER) Professor Silvia Jurisson (MEMBER) Professor Timothy Glass (MEMBER) ACKNOWLEDGMENTS First of all, I would like to thank Dr. Jerry Atwood for giving me the opportunity to be a part of his group, not only as a graduate student, but also as a fresh and untested undergraduate more than five years ago. This early research experience certainly solidified my resolve to attend graduate school, but it also showed me what a joy research can be. Dr. Atwood’s valuable advice, faith in my abilities, and his encouragement to think independently has allowed me to not only grow as a researcher but also as a person. I am also extremely grateful to Dr. Silvia Jurisson, both for the opportunity to collaborate with her group, but also for giving me the chance to take part in the NIBIB training grant program, which allowed me to broaden my research experience by traveling to Washington D.C. for an internship at the NIH. I would also like to express my gratitude to Dr. Carol Deakyne for all of the collaborative projects that we have worked on together, as well as the invaluable discussions pertaining to my projects and a genuine interest in our group’s work as a whole. I also want to express particular thanks to Dr. Charles Barnes for trusting me enough to use (and not break) the scXRD instrument, for helping me refine the painfully problematic structures that I’d bring him, and all the while for trying to teach me a thing or two about X-ray crystallography. I can honestly say that very little of this work would have been possible without his assistance. On a related note, a big thank you also goes to Dr. Lesa Beamer, both for the inter-group collaboration as well as for teaching me the basics of protein crystallography. ii I’d also like to thank both past and present members of the Atwood lab, specifically Dr. Harshita Kumari, Dr. Drew Fowler, and Dr. Nick Power. You’ve all been there to encourage me, collaborate with me, but also check me when I went astray or started yet-another pet project without finishing the previous one. Thanks also to my other committee members, Drs. Timothy Glass and Stephen Lombardo, as well as to all of the staff at the Department of Chemistry at MU. And finally, a very special thank you goes to my immediate family; my parents Val and Olga Mossine, and my brothers Paul and Michael, and to my wonderful and loving wife Kelli. You’ve all been there for me, through thick and thin, and your love, support and patience is what gets me through the toughest of days. Thank you all! iii TABLE OF CONTENTS ACKNOWLEDGMENTS .............................................................................................................. ii LIST OF FIGURES ..................................................................................................................... xiii LIST OF GRAPHS ..................................................................................................................... xxii LIST OF TABLES ..................................................................................................................... xxiv LIST OF ABBREVIATIONS AND DEFINITIONS .............................................................. xxviii ABSTRACT ................................................................................................................................ xxx Chapter 1: Pyrogallol[4]arenes in the context of supramolecular chemistry .................................. 1 1.1 Supramolecular chemistry ..................................................................................................... 1 1.2 Non-covalent forces relevant to supramolecular chemistry .................................................. 2 1.2.1 Ionic and Ion-dipole interactions: ...................................................................................... 3 1.2.2 Dipole-dipole interactions: ................................................................................................. 4 1.2.3 Hydrogen bonding: ............................................................................................................. 4 1.2.4 Other non-covalent forces: ................................................................................................. 6 1.2.5 Coordinative bonding: ........................................................................................................ 6 1.3 Macrocyclic building blocks ................................................................................................. 7 1.3.1 Crown ethers and similar molecules: ................................................................................. 8 1.3.2 Cyclodextrins ................................................................................................................ 11 1.3.3 Cucurbiturils ................................................................................................................. 13 1.3.4 Calixarenes ................................................................................................................... 15 1.3.4.1 Brief history of the calixarenes .............................................................................. 15 1.3.4.2 Synthesis of calixarenes ......................................................................................... 17 1.3.4.3 Uses of calixarenes ................................................................................................ 19 iv 1.3.5 Resorcinarenes .......................................................................................................... 20 1.4 Pyrogallol[4]arenes ............................................................................................................. 22 1.4.1 Pyrogallol[4]arenes: synthesis and structural discussion ............................................. 24 1.4.2 Other uses for pyrogallol[4]arenes ............................................................................... 33 1.5 Metal-seamed pyrogallol[4]arene nanocapsules ................................................................. 34 1.5.1 Copper hexamer: initial discovery and structural discussion ....................................... 35 Figure 1.12: Structures of the Ga-seamed “rugby ball” (A) and a mixed Ga3+/Cu2+ nanocapsule (B). .................................................................................................................... 39 1.5.2 Gallium Hexamer: The rugby ball ................................................................................ 39 1.5.3 The Zinc Dimer and the octametal belt ........................................................................ 42 1.5.4 PgC frameworks based on alkali salts .......................................................................... 45 1.6 Preface to my graduate work: My undergraduate lab experience at the Atwood Lab ........ 47 1.7 Thesis Outline/Objectives: .................................................................................................. 51 Chapter 2: Synthesis and structure of novel PgC-metal seamed MONCs .................................... 55 2.1 Introduction ......................................................................................................................... 55 2.2.1 PgC1CuDMSO dimer ................................................................................................... 60 2.2.2 PgC3CuDMSO dimer ................................................................................................... 63 2.2.3 An alternate method of producing PgC3-Cu dimers using metal exchange. ................ 65 2.2.4 Synthesis of a copper dimer bearing acetone ligands and an acetone guest ................. 68 2.2.5 Synthesis of a copper-seamed hexamer from DMSO .................................................. 70 2.2.6 Copper-seamed hexamer from acetone and pyridine ................................................... 73 2.2.7 Copper-seamed MONCs: summary.............................................................................. 75 v 2.3 Nickel-seamed MONCs ...................................................................................................... 77 2.3.1 PgC2Ni dimer bearing asymmetric pyridine ligands. .................................................. 77 2.3.2 PgC3Ni dimer with solely penta-coordinate nickel centers ......................................... 81 2.3.3 PgC3Ni dimer recrystallized in pyridine ...................................................................... 85 2.3.4 Synthesis of PgC3Ni dimer in methanol ...................................................................... 88 2.3.5 Synthesis/in situ crystallization of the PgC3Ni dimer in DMSO ................................. 90 2.3.6 In situ synthesis/crystallization of two examples of PgC3NiPy dimers in methanol ..