Crustal Structure of Central Lake Baikal: Insights Into Intracontinental Rifting Uri S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The East African Rift System in the Light of KRISP 90
ELSEVIER Tectonophysics 236 (1994) 465-483 The East African rift system in the light of KRISP 90 G.R. Keller a, C. Prodehl b, J. Mechie b,l, K. Fuchs b, M.A. Khan ‘, P.K.H. Maguire ‘, W.D. Mooney d, U. Achauer e, P.M. Davis f, R.P. Meyer g, L.W. Braile h, 1.0. Nyambok i, G.A. Thompson J a Department of Geological Sciences, University of Texas at El Paso, El Paso, TX 79968-0555, USA b Geophysikalisches Institut, Universitdt Karlwuhe, Hertzstrasse 16, D-76187Karlsruhe, Germany ’ Department of Geology, University of Leicester, University Road, Leicester LEl 7RH, UK d U.S. Geological Survey, Office of Earthquake Research, 345 Middlefield Road, Menlo Park, CA 94025, USA ’ Institut de Physique du Globe, Universite’ de Strasbourg, 5 Rue Ret& Descartes, F-67084 Strasbourg, France ‘Department of Earth and Space Sciences, University of California at Los Angeles, Los Angeles, CA 90024, USA ’ Department of Geology and Geophysics, University of Wuconsin at Madison, Madison, WI 53706, USA h Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN 47907, USA i Department of Geology, University of Nairobi, P.O. Box 14576, Nairobi, Kenya ’ Department of Geophysics, Stanford University, Stanford, CA 94305, USA Received 21 September 1992; accepted 8 November 1993 Abstract On the basis of a test experiment in 1985 (KRISP 85) an integrated seismic-refraction/ teleseismic survey (KRISP 90) was undertaken to study the deep structure beneath the Kenya rift down to depths of NO-150 km. This paper summarizes the highlights of KRISP 90 as reported in this volume and discusses their broad implications as well as the structure of the Kenya rift in the general framework of other continental rifts. -
Pyroxenite Xenoliths in Basalts of the Roca Negra Volcano, Catalonia
RUSSIAN JOURNAL OF EARTH SCIENCES, VOL. 15, ES1004, doi:10.2205/2015ES000550, 2015 Pyroxenite xenoliths in basalts of the Roca Negra volcano, Catalonia A. F. Grachev1 Received 17 May 2015; accepted 22 May 2015; published 10 June 2015. Newly obtained data on the whole-rock, trace-element, and He, Sr, and Nd isotopic composition of xenoliths in basalts of the Roca Negra Quaternary volcano in Catalonia, Spain, are used in discussing the problem of mantle metasomatism that produced pyroxenite xenoliths of unusual mineralogical and isotopic-geochemical composition. KEYWORDS: Xenoliths; basalt; mantle metasomatism; chemical geodynamics; Catalonia. Citation: Grachev, A. F. (2015), Pyroxenite xenoliths in basalts of the Roca Negra volcano, Catalonia, Russ. J. Earth. Sci., 15, ES1004, doi:10.2205/2015ES000550. Introduction which a post-rifting episode of passive thermal subsidence began [Catalan and Davila, 2001]. Similar to several other areas of intraplate basaltoid vol- The Roca Negra volcano is a monogenic cinder cone in canism (such as Mongolia, the Vitim Plateau in south- Catalonia, northeastern Spain, where young volcanic rocks central Siberia, Massif Central in France, Bohemian Mas- are known to occur within a relatively small area. Basalt sifs, etc.), this territory is classed with regions of pre-rifting outcrops cluster in three fields: Garrotxa (Olot), Ampurdan, tectonic regime with typical combinations of low-thickness and Selva (Figure 1). The first K{Ar dates of the rocks sedimentary rocks of the platform type and products of fis- led Donville [Donville, 1973] to distinguish three episodes sure eruptions [Grachev, 2000; Grachev and Devyatkin, 1997; of magmatism in this area: at 10{7.7 (Ampurdan), 5.5{2.0 Grachev et al., 1981]. -
Deep Seated Magmas and Their Mantle Roots: Introduction
Geoscience Frontiers 8 (2017) 617e619 HOSTED BY Contents lists available at ScienceDirect China University of Geosciences (Beijing) Geoscience Frontiers journal homepage: www.elsevier.com/locate/gsf Editorial Deep seated magmas and their mantle roots: Introduction In the last decade there has been a considerable effort to bet- including diamonds, based on theoretical and petrological data; ter understand the joint evolution of mafic and ultramafic (7) thermodynamic and mathematic modeling of heterophase magmatic systems and their deep mantle roots, through inte- interaction at the top of mantle plumes; (8) oxygen fugacity of grated petrological and thermo-barometric studies. Magma gen- mantle rocks, and fluctuations and their mechanisms; and (9) ver- eration is regarded as the result of complex processes including tical motions of the melts and solids including ascent of mantle melting, creation of channels for melt transfer, and interaction plumes. with the wall-rocks. Complexities in magmatic systems involve The ten papers in this special issue concern various aspects of metasomatism and the creation of metasomatic fronts, branching ancient and modern magmatic systems, including studies on the and splitting of magma volumes during their evolution, and var- composition and spatial distribution in the territories of the Sibe- iable compositional development during transfer to upper crys- rian platform and adjacent areas, the geochronology and geochem- tallizing horizons. Intrusions and formation of intermediate istry of intra-plate magmas in varying geodynamic settings, and magmatic chambers in the upper mantle Moho or in the lower their relationship to plume and superplume events, particularly crust are often accompanied by melt differentiation according the Devonian superplume. -
Meso- and Cenozoic Tectonics of the Central Asian Mountain Belt: Effects of Lithospheric Plate Interaction and Mantle Plumes
ltuenuuional GeokJgy Review, Vol. 38, 1996, p. 430-466. Copyright III 1996 by V. H. Winston & Son, Inc. All rights reserved. Meso- and Cenozoic Tectonics of the Central Asian Mountain Belt: Effects of Lithospheric Plate Interaction and Mantle Plumes N. L. DOBRETSOV, M. M. BUSLOV, United Institute of Geology, Geophysics, and Mineralogy, Siberian Branch, Russian Academy of Sciences, Novosibirsk-90, 630090, Russia D. DELVAUX, Royal Museum for Central Africa, B-3080 Teruuren, Belgium N. A. BERZIN, AND V. D. ERMIKOV United Institute of Geology, Geophysics, and Mineralogy, Siberian Branch, Russian Academy ofSciences, Novosibirsk-90, 630090, Russia Abstract This paper reviews and integrates new results on: (I) the Late Paleozoic and Mesozoic evolution of Central Asia; (2) Cenozoic mountain building and intramontane basin formation in the Altay-Sayan area; (3) comparison of the tectonic evolutionary paths of the Altay, Baikal, and Tien Shan regions; (4) Cenozoic tectonics and mantle-plume magmatic activity; and (5) the geodynamics and tectonic evolution of Central Asia as a function of the India-Himalaya collision. It provides a new and more complete scenario for the formation of the Central Asian intracontinental mountain belt, compared with the generally accepted model of the "indenta tion" of the Indian plate into the Eurasian plate. The new model is based on the hypothesis of a complex interaction of lithospheric plates and mantle-plume magmatism. Compilation and comparison of new and published structural, geomorphological, paleomagnetic, isotopic, fission-track, and plume magmatism data from the Baikal area, the Altay, Mongolia, Tien Shan, Pamir, and Tibet show that the main stages of their orogenic evolution and basin sedimentation are closely related in time and space. -
Corel Ventura
Russian Geology and Geophysics 48 (2007) 1–17 www.izdatgeo.ru/index.php?action=journal&id=4 Moho depths and three-dimensional velocity structure of the crust and upper mantle beneath the Baikal region, from local tomography A.V. Yakovlev, I.Yu. Kulakov, S.A. Tychkov Institute of Geology and Mineralogy, Siberian Branch of the RAS, 3 prosp. Koptyuga, Novosibirsk, 630090, Russia Received 11 September 2005, accepted 2 March 2006 Available online xx January 2007 Abstract We studied the 3D velocity structure of the crust and uppermost mantle beneath the Baikal region using tomographic inversion of ∼25,000 P and S arrivals from more than 1200 events recorded by 86 stations of three local seismological networks. Simultaneous iterative inversion with a new algorithm for source location yielded 3D images of P and S velocity anomalies in the crust and upper mantle, a 2D model of Moho depths, and corrections to source coordinates and origin times. The resolving power of the algorithm, its stability against variations in the starting model, and the reliability of the final results were checked in several tests. The 3D velocity structure shows a well-pronounced low-velocity zone in the crust and uppermost mantle beneath the southwestern flank of the Baikal rift which matches the area of Cenozoic volcanism and a high velocity zone beneath the Siberian craton. The Moho depth pattern fits the surface tectonic elements with thinner crust along Lake Baikal and under the Busiyngol and Tunka basins and thicker crust beneath the East Sayan and Transbaikalian mountains and under the Primorsky ridge on the southern craton border. -
Asymmetric Upwarp of the Asthenosphere Beneath the Baikal Rift Zone, Siberia
Missouri University of Science and Technology Scholars' Mine Geosciences and Geological and Petroleum Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works Engineering 01 Aug 1994 Asymmetric Upwarp of the Asthenosphere beneath the Baikal Rift Zone, Siberia Stephen S. Gao Missouri University of Science and Technology, [email protected] Paul M. Davis Kelly H. Liu Missouri University of Science and Technology, [email protected] Philip D. Slack et. al. For a complete list of authors, see https://scholarsmine.mst.edu/geosci_geo_peteng_facwork/95 Follow this and additional works at: https://scholarsmine.mst.edu/geosci_geo_peteng_facwork Part of the Geology Commons Recommended Citation S. S. Gao et al., "Asymmetric Upwarp of the Asthenosphere beneath the Baikal Rift Zone, Siberia," Journal of Geophysical Research, vol. 99, no. B8, pp. 15319-15330, American Geophysical Union (AGU), Aug 1994. The definitive version is available at https://doi.org/10.1029/94JB00808 This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 99, NO. B8, PAGES 15,319-15,330, AUGUST 10, 1994 Asymmetric upwarp of the asthenosphere beneath the Baikal rift zone, Siberia S. Gao,1 P. M. Davis,1 H. Liu,1 P. D. Slack,1 Y. A. Zorin,2 N. -
Heat Flow of Central Asia
Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 Heat Flow of Central Asia Raisa P. Dorofeeva and Svetlana V. Lysak 664033 Irkutsk, Lermontov str., 128, Institute of the Earth’s Crust SB RAS [email protected] Keywords: heat flow, temperature, seismicity, earthquakes, Fields), in central (26 boreholes in 11 fields) and southern rifting, Central Asia. (15 boreholes in 5 fields) Mongolia, and at 10 hot springs, which added 28 heat flow data points. Since 1986, ABSTRACT geothermal research was included in the activities of the Russian-Mongolian Geophysical Expedition at the Institute Revisions have been made to the geothermal data in Central of the Earth’s Crust in Irkutsk. V.A. Golubev obtained 52 Asia. These data concern the south Siberian platform (64 new heat flow data points from the bottom of Lake boreholes, average flow of 38±4 mW/m2), the Baikal rift 2 Hovsgol. R.P. Dorofeeva and A.A. Sintsov, in cooperation zone (72 boreholes, average flow of 71±21 mW/m ), the with Mongolian technicians, measured temperatures in 55 Trans-Baikal area with a moderate rate of mountain boreholes in 32 new fields and studied core samples in situ formation (57 boreholes, average flow of 51±5 mW/m2), and in laboratory. They measured thermal conductivity and Mongolia (32 boreholes, heat flow varying from 40 – 64 2 geothermal gradients and estimated heat production of mW/m ), and China (about 300 boreholes). rocks having abundances of U, Th, and K abundances Heat flows in continental East China, which includes four (Dorofeeva and Sintsov 1990, Dorofeeva et al. -
USGS Open-File Report 2009-1133, V. 1.2, Table 3
Table 3. (following pages). Spreadsheet of volcanoes of the world with eruption type assignments for each volcano. [Columns are as follows: A, Catalog of Active Volcanoes of the World (CAVW) volcano identification number; E, volcano name; F, country in which the volcano resides; H, volcano latitude; I, position north or south of the equator (N, north, S, south); K, volcano longitude; L, position east or west of the Greenwich Meridian (E, east, W, west); M, volcano elevation in meters above mean sea level; N, volcano type as defined in the Smithsonian database (Siebert and Simkin, 2002-9); P, eruption type for eruption source parameter assignment, as described in this document. An Excel spreadsheet of this table accompanies this document.] Volcanoes of the World with ESP, v 1.2.xls AE FHIKLMNP 1 NUMBER NAME LOCATION LATITUDE NS LONGITUDE EW ELEV TYPE ERUPTION TYPE 2 0100-01- West Eifel Volc Field Germany 50.17 N 6.85 E 600 Maars S0 3 0100-02- Chaîne des Puys France 45.775 N 2.97 E 1464 Cinder cones M0 4 0100-03- Olot Volc Field Spain 42.17 N 2.53 E 893 Pyroclastic cones M0 5 0100-04- Calatrava Volc Field Spain 38.87 N 4.02 W 1117 Pyroclastic cones M0 6 0101-001 Larderello Italy 43.25 N 10.87 E 500 Explosion craters S0 7 0101-003 Vulsini Italy 42.60 N 11.93 E 800 Caldera S0 8 0101-004 Alban Hills Italy 41.73 N 12.70 E 949 Caldera S0 9 0101-01= Campi Flegrei Italy 40.827 N 14.139 E 458 Caldera S0 10 0101-02= Vesuvius Italy 40.821 N 14.426 E 1281 Somma volcano S2 11 0101-03= Ischia Italy 40.73 N 13.897 E 789 Complex volcano S0 12 0101-041 -
Structure and Evolution of the Baikal Rift: a Synthesis Carole Petit, Jacques Déverchère
Structure and evolution of the Baikal rift: A synthesis Carole Petit, Jacques Déverchère To cite this version: Carole Petit, Jacques Déverchère. Structure and evolution of the Baikal rift: A synthesis. Geo- chemistry, Geophysics, Geosystems, AGU and the Geochemical Society, 2006, 7, pp.Q11016. 10.1029/2006GC001265. hal-00115831 HAL Id: hal-00115831 https://hal.archives-ouvertes.fr/hal-00115831 Submitted on 15 Feb 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Article Geochemistry 3 Volume 7, Number 11 Geophysics 21 November 2006 GeosystemsG Q11016, doi:10.1029/2006GC001265 G ISSN: 1525-2027 AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Click Here for Full Article Structure and evolution of the Baikal rift: A synthesis Carole Petit Laboratoire de Tectonique, Universite´ Pierre et Marie Curie – Paris6, UMR CNRS 7072, Tour 46-00 E2, Boıˆte 129, 4 Place Jussieu, F-75252 Paris Cedex, France ([email protected]) Jacques De´verche`re UMR CNRS 6536 Domaines Oce´aniques, Universite´ de Bretagne Occidentale, Technopoˆle Brest-Iroise, Place Nicolas Copernic, F-29280 Plouzane´, France [1] Active continental rifts are spectacular manifestations of the deformation of continents but are not very numerous at the surface of the Earth. -
Tectonic Stress Field in Rift Systems – a Comparison of Rhinegraben, Baikal Rift and East African Rift
Tectonic stress field in rift systems – a comparison of Rhinegraben, Baikal Rift and East African Rift Andreas Barth (1), Damien Delvaux (2) and Friedemann Wenzel (1) 1) Karlsruhe Institute of Technology, University of Karlsruhe, Geophysical Institute, Hertzstr. 16, D-76187 Karlsruhe, Germany, [email protected], [email protected] 2) Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium, [email protected] Abstract Crustal stress pattern provide important information for the understanding of regional tectonics and for the modelling of seismic hazard. Especially for small rifts (e.g. Upper Rhine Graben) and beside larger rift structures (e.g. Baikal Rift, East African Rift System) only limited information on the stress orientations is available. We refine existing stress models by using new focal mechanisms combined with existing solutions to perform a formal stress inversion. We review the first-order stress pattern given by previous models for the Upper Rhine Graben, the Baikal Rift, and the East African Rift System. Due to the new focal mechanisms we resolve second-order features in areas of high data density. The resulting stress orientations show dominant extensional stress regimes along the Baikal and East African Rift but strike-slip regimes in the Upper Rhine Graben and the interior of the Amurian plate. Introduction Stress field orientations are valuable constraints for understanding rift kinematics and rift development. They can be used to deduce boundary conditions for kinematic models (Buchmann & Connolly, 2007; Petit & Fournier, 2005). Moreover, data from regions adjacent to rift structures can reveal spatial changes from the rift-related stress field. -
Rift Zones As a Case Study for Advancing Geothermal Occurrence Models
PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2013 SGP-TR-198 RIFT ZONES AS A CASE STUDY FOR ADVANCING GEOTHERMAL OCCURRENCE MODELS Daniel King1,3 and Elisabet Metcalfe2,3 1AAAS Science & Technology Policy Fellow 2SRA International, Inc. 3Geothermal Technologies Office, U.S. Department of Energy 1000 Independence Ave. SW Washington, DC, 20585, USA e-mail: [email protected] or fully characterized. If geothermal electricity ABSTRACT generation is to increase significantly in the U.S., new blind hydrothermal resources must be identified To search efficiently for blind geothermal systems, and characterized. Unfortunately, geologic structure general geographic regions must first be identified and formation data are often sparse or incomplete, based upon gross characteristics which together introducing a high level of risk to a geothermal imply favorable heat flow, fluid flow, and industry seeking blind systems. To increase the permeability. Geothermal occurrence models seek to success rate of costly exploratory drilling, upfront strategically identify those promising locations to investment in exploration and resource focus exploration efforts and investment. In so doing, characterization is necessary. An essential such models can increase the expected success rate of component of early stage exploration is a geothermal exploratory drilling, reduce risk, and attract occurrence model (e.g., Walker et al., 2005) to investment. Among the most promising tectonic provide the framework for the set of characteristics to settings for blind geothermal systems are rift zones. be sought during exploration. A broader overview of Rift zones occur where lithospheric plates are thinned the technology pathways necessary to achieve cost by tectonic extension and convection at zones of reduction through improved exploration technologies upwelling hot material. -
Alkaline Magmatism and the Problems of Mantle Sources
0 Russian Academy of Sciences Vinogradov Institute of Geochemistry Siberian Branch Russian Foundation of Basic Research Alkaline magmatism and the problems of mantle sources (Щелочной магматизм и проблемы мантийных источников ) PROCEEDING of International Workshop «Alkaline magmatism and the problems of mantle sources» Edited by Dr. N.V. Vladykin IRKUTSK 2001 1 The Organiziring Committee: academician: V.I. Kovalenko L.N. Kogarko N.L. Dobretsov F.A. Letnikov I.D. Rjabchikov Corresponding member: M.I. Kuzmin I.V. Gordienko Dr. N.V.Vladykin Editor – in-chief N.V. Vladykin 20-30 august 2001 Irkutsk Russia 2 TABLE OF CONTENTS 1. Kogarko L.N. Alkaline magmatism in the history of the Earth 5 2. Vladykin N.V. The Aldan Province of K-alkaline rocks and carbonatites: problems of magmatism, genesis and deep sources 17 3. Kryvdik S.G. Alkaline magmatism of the Ukrainian shield 42 4. Perepelov A.B., Volynets O.N., Anoshin G.N., Puzankov Yu.M., Antipin V.S., Kablukov A.V. Western Kamchatka alkali-potassic basaltoid volcanism: geological and geochemical review 53 5. Morikiyo T., Miyazaki T., Kagami H., Vladykin N. V., Chernysheva E. A., Panina L.I., Podgornych N. M. Sr, Nd, C and O isotope characteristics of Siberian carbonatites 71 6. Sharygin V.V. Lamproites: a review of magmatic inclusions in minerals 88 7. Mitchell R.H. The classification of melilitite clan 120 8. Mahotkin I.L., Podkuiko Yu.A., Zhuravlev D.Z. Early paleozoic kimberlite- melnoite magmatism of thePri-Polar Urals and the geodynamic formation model 157 9. Ashchepkov I.V., Vladykin N.V., Gerasimov P.A., Saprykin A.I., Khmelnikova O.S., Anoshin G.N.