Miniaturized Orb-Weaving Spiders: Behavioural Precision Is Not Limited by Small Size William G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Araneae, Anapidae)
Proc. 16th Europ. ColI. Arachnol. 151-164 Siedlce, 10.03.1997 Egg sac structure and further biological observations in Comaroma simonii1 Bertkau (Araneae, Anapidae) Christian KROPF Natural History Museum Berne, Department oflnvertebrates, Bernastrasse 15, CH-3005 Berne, Switzerland. Key words: Araneae, Anapidae, Comaroma, behaviour, ecology, reproduction. ABSTRACT Specimens of Comaroma simonii Bertkau from Styria (Austria) were kept in the laboratory in order to investigate biological details. Egg sacs were built at the end of June and the beginning of July. They were white-coloured, round in shape with a diameter of 1.47 mm on the average (n = 5) and were attached to vertical surfaces. Each egg sac contained three eggs of pale yellow colour. Normally the egg sac is protected by a silken funnel ending in a tube that points toward the ground underneath. It is assumed that this functions as a means of protection against egg predators and parasites. Spiderlings hatched after 27 days; they most probably moulted twice before leaving the cocoon on the 35th day. They built webs closely resembling those of the adults. Juveniles and sub adults showed no sclerotization of the body and were rarely found in the natural.habitat. There, vertical and horizontal migrations probably occur as a means of avoiding wetness or drying out, respectively. The sex ratio of all collected specimens was 98 females to 54 males. C. simonii is regarded as a 'k-strategist' and an eurychronous species. INTRODUCTION The biology of Anapidae is insufficiently known. For example, data on egg sacs or juveniles are fragmentary (Hickman 1938, 1943; Platnick & Shadab 1978; Coddington 1986; Eberhard 1987). -
A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views. -
Accepted Manuscript
Accepted Manuscript Molecular phylogenetics of the spider family Micropholcommatidae (Arachni‐ da: Araneae) using nuclear rRNA genes (18S and 28S) Michael G. Rix, Mark S. Harvey, J. Dale Roberts PII: S1055-7903(07)00386-7 DOI: 10.1016/j.ympev.2007.11.001 Reference: YMPEV 2688 To appear in: Molecular Phylogenetics and Evolution Received Date: 10 July 2007 Revised Date: 24 October 2007 Accepted Date: 9 November 2007 Please cite this article as: Rix, M.G., Harvey, M.S., Roberts, J.D., Molecular phylogenetics of the spider family Micropholcommatidae (Arachnida: Araneae) using nuclear rRNA genes (18S and 28S), Molecular Phylogenetics and Evolution (2007), doi: 10.1016/j.ympev.2007.11.001 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Molecular phylogenetics of the spider family Micropholcommatidae (Arachnida: Araneae) using nuclear rRNA genes (18S and 28S) Michael G. Rix1,2*, Mark S. Harvey2, J. Dale Roberts1 1The University of Western Australia, School of Animal Biology, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia. E-mail: [email protected] E-mail: [email protected] 2Western Australian Museum, Department of Terrestrial Zoology, Locked Bag 49, Welshpool D.C., Perth, WA 6986, Australia. -
The Symphytognathoid Spiders of the Gaoligongshan, Yunnan, China (Araneae, Araneoidea): Systematics and Diversity of Micro-Orbweavers
A peer-reviewed open-access journal ZooKeys 11: 9-195 (2009) doi: 10.3897/zookeys.11.160Th e symphytognathoid spidersMONOGRAPH of the Gaoligongshan, Yunnan, China 9 www.pensoftonline.net/zookeys Launched to accelerate biodiversity research The symphytognathoid spiders of the Gaoligongshan, Yunnan, China (Araneae, Araneoidea): Systematics and diversity of micro-orbweavers Jeremy A. Miller1,2, †, Charles E. Griswold1, ‡, Chang Min Yin3, § 1 Department of Entomology, California Academy of Sciences, 55 Music Concourse Drive, Golden Gate Park, San Francisco, CA 94118, USA 2 Department of Terrestrial Zoology, Nationaal Natuurhistorisch Museum Naturalis, Postbus 9517 2300 RA Leiden, Th e Netherlands 3 College of Life Sciences, Hunan Normal Univer- sity, Changsha, Hunan Province, 410081, P. R. China † urn:lsid:zoobank.org:author:3B8D159E-8574-4D10-8C2D-716487D5B4D8 ‡ urn:lsid:zoobank.org:author:0676B242-E441-4715-BF20-1237BC953B62 § urn:lsid:zoobank.org:author:180E355A-4B40-4348-857B-B3CC9F29066C Corresponding authors: Jeremy A. Miller ([email protected]), Charles E. Griswold ([email protected]), Chang Min Yin ([email protected]) Academic editor: Rudy Jocqué | Received 1 November 2008 | Accepted 7 April 2009 | Published 1 June 2009 urn:lsid:zoobank.org:pub:C631A347-306E-4773-84A4-E4712329186B Citation: Miller JA, Griswold CE, Yin CM (2009) Th e symphytognathoid spiders of the Gaoligongshan, Yunnan, China (Araneae, Araneoidea): Systematics and diversity of micro-orbweavers. ZooKeys 11: 9-195. doi: 10.3897/zoo- keys.11.160 Abstract A ten-year inventory of the Gaoligongshan in western Yunnan Province, China, yielded more than 1000 adult spider specimens belonging to the symphytognathoid families Th eridiosomatidae, Mysmenidae, Anapidae, and Symphytognathidae. Th ese specimens belong to 36 species, all herein described as new. -
Onetouch 4.0 Sanned Documents
Anna. Rev. Ecol. Swf. 1991. 22:565-92 SYSTEMATICS AND EVOLUTION OF SPIDERS (ARANEAE)* • Jonathan A. Coddington Department of Entomology, National Museum of Natural History. Smithsonian Institution, Washington, DC 20560 Herbert W. Levi Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138 KEY WORDS: taxonomy, phytogeny, cladistics, biology, diversity INTRODUCTION In the last 15 years understanding of the higher systematics of Araneae has changed greatly. Large classical superfamilies and families have turned out to be poly- or paraphyletic; posited relationships were often based on sym- plesiomorphies. In this brief review we summarize current taxonomic and phylogenetic knowledge and suggest where future efforts might profitably be concentrated. We lack space to discuss fully all the clades mentioned, and the cited numbers of described taxa are only approximate. Other aspects of spider biology have been summarized by Barth (7), Eberhard (47), Jackson & Parks (72), Nentwig (105), Nyffeler & Benz (106), Riechert & Lockley (134), Shear (149) and Turnbull (160). Diversity, Paleontology, Descriptive Work, Importance The order Araneae ranks seventh in global diversity after the five largest insect orders (Coleoptera, Hymenoptera, Lepidoptera, Diptera, Hemiptera) and Acari among the arachnids (111) in terms of species described or an- *The US government has the right to retain a nonexclusive, royalty free license in and to any copyright covering this paper. 565 566 CODDINGTON & LEVI ticipated. Spiders are among the most diverse groups on earth. Among these taxa, spiders are exceptional for their complete dependence on predation as a trophic strategy. In contrast, the diversity of insects and mites may result from their diversity in dietary strategies•notably phytophagy and parasitism (104). -
Cues Guiding Uloborid Construction Behavior Support Orb Web Monophyly
2015. Journal of Arachnology 43:371–387 Cues guiding uloborid construction behavior support orb web monophyly William G. Eberhard1,2 and Gilbert Barrantes2: 1Smithsonian Tropical Research Institute; 2Escuela de Biologı´a, Universidad de Costa Rica, Ciudad Universitaria, Costa Rica. E-mail: [email protected] Abstract. Behavior can provide useful traits for testing phylogenetic hypotheses, and some details of orb web construction behavior have been especially useful in characterizing higher-level groups in spiders. The cues used to guide construction behavior and behavioral responses to these cues hold similar promise, but have never been used in phylogenetic studies. Here we use several techniques to test the hypothesis that orb webs in the two major branches of orb-weaving araneomorph spiders (Araneoidea and Deinopoidea) are monophyletic, using both the cues that guide orb construction and the spiders’ responses to these cues. If orb webs evolved only once, the expectation is that these traits should be similar in members of both evolutionary lines. This prediction was supported: species in the two groups use several of the same cues, and respond to them in similar ways. These cues include two identical reference stimuli for positioning sticky spiral lines; supplies of silk available in their glands that affect the positioning of sticky spiral loops; and at least one stimulus related to the size of the available space for the orb, which is used to trigger similar modifications of seven independent orb design traits. Neither group used tension-related cues to guide sticky spiral placement. These comparisons reinforce previous conclusions supporting orb web monophyly that were derived from morphological, molecular, and behavioral traits. -
Phylogeny of the Orb-Web Building Spiders (Araneae, Orbiculariae: Deinopoidea, Araneoidea)
Zoological Journal of the Liniieaii Society (1998), 123: 1•99. With 48 figures CP) Phylogeny of the orb-web building spiders (Araneae, Orbiculariae: Deinopoidea, Araneoidea) CHARLES E. GRISWOLD'*, JONATHAN A. GODDINGTON", GUSTAVO HORMIGA' AND NIKOLAJ SCHARFE* ^Department of Entomology, California Academy of Sciences, Golden Gate Park, San Francisco, CA 94118, U.S.A.; 'Department of Entomology, National Museum of Natural History, NHB- 105, Smithsonian Institution, Washington, D.C. 20560, U.S.A.; ^Department of Biological Sciences, George Washington University, Washington, DC 20052, U.S.A.; ^^oological Museum, Universitetsparken 15, Copenhagen, Denmark Received February 1996; accepted for publication JamiaTy 1997 This phylogenetic analysis of 31 exemplar taxa treats the 12 families of Araneoidea (Anapidae, Araneidae, Cyatholipidae, Lin)phiidae, Mysmenidae, Nesticidae, Pimoidae, Sym- phytognathidae, Synotaxidae, Tetragnathidae, Theridiidae, and Theridiosomatidae). The data set comprises 93 characters: 23 from male genitalia, 3 from female genitalia, 18 from céphalothorax morphology, 6 from abdomen morphology, 14 from limb morpholog)', 15 from the spinnerets, and 14 from web architecture and other behaviour. Criteria for tree choice were minimum length parsimony and parsimony under implied weights. The outgroup for Araneoidea is Deinopoidea (Deinopidae and Uloboridae). The preferred shortest tree specifies the relationships ((Uloboridae, Deinopidae) (Araneidae (Tetragnathidae ((Theri- diosomatidae (Mysmenidae (Symphytognathidae, Anapidae))) -
Biota Colombiana Vol
Biota Colombiana Vol. 14 - Diciembre de 2013 Suplemento especial - Artículos de datos Una publicación de /A publication of: Instituto Alexander von Humboldt y SiB Colombia En asocio con /In collaboration with: BIOTA COLOMBIANA Instituto de Ciencias Naturales de la Universidad Nacional de Colombia Instituto de Investigaciones Marinas y Costeras - Invemar Missouri Botanical Garden ISNN 0124-5376 Volumen 14 Diciembre 2013 Suplemento especial - Artículos de datos Especies de Anacroneuria (Insecta: Plecoptera: Perlidae) de Colombia, depositadas en el Museo de Entomología de la Universidad del Valle (Cali, Colombia) - Hormigas en cultivos de TABLA DE CONTENIDO / TABLE OF CONTENTS naranja (Citrus sinensis (L.) Osbeck) de la costa Caribe de Colombia - Listado de las arañas de Colombia (Arachnida: Araneae) - Avifauna en un área perturbada del bosque andino Presentación - Brigitte L. G. Baptiste, Carlos A. Lasso, Juan Carlos Bello y Danny Vélez........................................................... 1 en el Parque Nacional Natural Farallones de Cali, corregimiento de Pance, Valle del Cauca Especies de Anacroneuria (Insecta: Plecoptera: Perlidae) de Colombia, depositadas en el Museo de Entomología de la (Colombia) - El Censo Neotropical de Aves Acuáticas en Colombia (CNAA): 2002 - 2011 - Universidad del Valle (Cali, Colombia) - María del Carmen Zúñiga, Bill P. Stark, Carmen Elisa Posso y Eliana Garzón.......... 5 Quirópteros del Parque Natural Regional El Vínculo y su zona de amortiguación (Buga, Valle Hormigas en cultivos de naranja (Citrus sinensis L. Osbeck) de la costa Caribe de Colombia - Juan Carlos Abadía del Cauca, Colombia) - Especies de Anacroneuria (Insecta: Plecoptera: Perlidae) de Colombia, Lozano, Ángela María Arcila Cardona y Patricia Chacón de Ulloa.............................................................................................. 13 depositadas en el Museo de Entomología de la Universidad del Valle (Cali, Colombia) - Listado de las arañas de Colombia (Arachnida: Araneae) - Javier C. -
Three New Spider Species of Anapidae (Araneae) from China
2012. The Journal of Arachnology 40:159–166 Three new spider species of Anapidae (Araneae) from China Yucheng Lin1,2 and Shuqiang Li1,3: 1Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China; 2School of Life Sciences, Sichuan University, Chengdu 610064, China Abstract. Three new species of the family Anapidae are reported from caves and tropical rainforest of southern China: Gaiziapis encunensis, Minanapis menglunensis and Sinanapis longituba. The genus Minanapis is recorded for the first time from China. Keywords: Anapid, tropical rainforest, cave spiders, taxa The family Anapidae was erected by Simon (1895). Anapid copulatory duct; Cm 5 cymbium; CO 5 copulatory opening; members are small (usually less than 3 mm in body length), Co 5 conductor; DS 5 dorsal scutum; EF 5 epigynal furrow; three-clawed, ecribellate, haplogyne, cryptozoic spiders with Em 5 embolus; FA 5 femoral apophysis; FD 5 fertilization six or eight eyes situated on an elevated ocular region. They duct; Fe 5 femur; LS 5 labral spur; MA 5 median apophysis; usually live in leaf litter and moss on the rainforest floor and PA 5 patellar apophysis; Pa 5 patella; POG 5 postgenital build orb webs with a diameter of less than 3 cm (Murphy plate; S 5 spermatheca; Ti 5 tibia; Tu 5 tegulum and VS 5 et al. 2000). Some also inhabit caves. This family was redefined ventral scutum. by Platnick and Shadab (1978, 1979). Platnick and Forster (1989) supposed that the labral spur and the glandular TAXONOMY openings at anterolateral corners of the carapace were two Family Anapidae Simon 1895 synapomorphies for the family Anapidae. -
Lopardo Et Al, 2011 Cladistics 27
Cladistics Cladistics 27 (2011) 278–330 10.1111/j.1096-0031.2010.00332.x Morphology to the rescue: molecular data and the signal of morphological characters in combined phylogenetic analyses—a case study from mysmenid spiders (Araneae, Mysmenidae), with comments on the evolution of web architecture Lara Lopardoa,*, , Gonzalo Giribetb and Gustavo Hormigaa aDepartment of Biological Sciences, The George Washington University, 2023 G Street NW, Washington, DC 20052, USA; bMuseum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA Accepted 10 June 2010 Abstract The limits and the interfamilial relationships of the minute orb-weaving symphytognathoid spiders have remained contentious and poorly understood. The circumscription and diagnosis of the symphytognathoid family Mysmenidae have always been elusive, and its monophyly has never been thoroughly tested. We combine sequence data from six genes with a morphological dataset in a total-evidence phylogenetic analysis (ca. 6100 characters, 109 taxa: 74 mysmenids), and explore the phylogenetic signal of the combined dataset, individual genes, and gene combinations with different parsimony methods and model-based approaches. Several support values and parameter-sensitivity schemes are explored to assess stability of clades. Mysmenidae monophyly is supported by ca. 20 morphological and ca. 420 molecular synapomorphies. Mysmenidae is monophyletic under all combined analyses that include morphology. Almost no gene or gene combination supports Mysmenidae monophyly. Symphytognathoids are delimited to include: (Theridiosomatidae (Mysmenidae (Synaphridae (Anapidae + Symphytognathidae)))). Micropholcommatids are a lineage nested within the anapid clade and thus are synonymized with Anapidae (Micropholcommatinae New Rank). We provide morphological diagnoses for all symphytognathoid families and discuss the behavioural evolutionary implications of our hypotheses of relationships. -
The Spider Tree of Life: Phylogeny of Araneae Based on Target‐Gene
Cladistics Cladistics 33 (2017) 574–616 10.1111/cla.12182 The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling Ward C. Wheelera,*, Jonathan A. Coddingtonb, Louise M. Crowleya, Dimitar Dimitrovc,d, Pablo A. Goloboffe, Charles E. Griswoldf, Gustavo Hormigad, Lorenzo Prendinia, Martın J. Ramırezg, Petra Sierwaldh, Lina Almeida-Silvaf,i, Fernando Alvarez-Padillaf,d,j, Miquel A. Arnedok, Ligia R. Benavides Silvad, Suresh P. Benjamind,l, Jason E. Bondm, Cristian J. Grismadog, Emile Hasand, Marshal Hedinn, Matıas A. Izquierdog, Facundo M. Labarquef,g,i, Joel Ledfordf,o, Lara Lopardod, Wayne P. Maddisonp, Jeremy A. Millerf,q, Luis N. Piacentinig, Norman I. Platnicka, Daniele Polotowf,i, Diana Silva-Davila f,r, Nikolaj Scharffs, Tamas Szuts} f,t, Darrell Ubickf, Cor J. Vinkn,u, Hannah M. Woodf,b and Junxia Zhangp aDivision of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th St., New York, NY 10024, USA; bSmithsonian Institution, National Museum of Natural History, 10th and Constitution, NW Washington, DC 20560-0105, USA; cNatural History Museum, University of Oslo, Oslo, Norway; dDepartment of Biological Sciences, The George Washington University, 2029 G St., NW Washington, DC 20052, USA; eUnidad Ejecutora Lillo, FML—CONICET, Miguel Lillo 251, 4000, SM. de Tucuman, Argentina; fDepartment of Entomology, California Academy of Sciences, 55 Music Concourse Drive, Golden State Park, San Francisco, CA 94118, USA; gMuseo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’—CONICET, Av. Angel Gallardo 470, C1405DJR, Buenos Aires, Argentina; hThe Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA; iLaboratorio Especial de Colecßoes~ Zoologicas, Instituto Butantan, Av. -
Grade Changes in Brain-Body Allometry
Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Insect Physiology, Vol. 40, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institutions administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institutions website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: William G. Eberhard and William T. Wcislo, Grade Changes in BrainBody Allometry: Morphological and Behavioural Correlates of Brain Size in Miniature Spiders, Insects and Other Invertebrates. In Jérôme Casas, editor: Advances in Insect Physiology, Vol. 60, Burlington: Academic Press, 2011, pp. 155-214. ISBN: 978-0-12-387668-3 © Copyright 2011 Elsevier Ltd. Academic Press. Author's personal copy Grade Changes in Brain–Body Allometry: Morphological and Behavioural Correlates of Brain Size in Miniature Spiders, Insects and Other Invertebrates William G. Eberhard*,† and William T. Wcislo* *Smithsonian