Certreq-BSDA-2012.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Top 15 ERP Software Vendors – 2010
Top 15 ERP Software Vendors – 2010 Profiles of the Leading ERP Vendors Find the best ERP system for your company. For more information visit Business-Software.com/ERP. About ERP Software Enterprise resource planning (ERP) is not a new concept. It was introduced more than 40 years ago, when the first ERP system was created to improve inventory control and management at manufacturing firms. Throughout the 70’s and 80’s, as the number of companies deploying ERP increased, its scope expanded quite a bit to include various production and materials management functions, although it was designed primarily for use in manufacturing plants. In the 1990’s, vendors came to realize that other types of business could benefit from ERP, and that in order for a business to achieve true organizational efficiency, it needed to link all its internal business processes in a cohesive and coordinated way. As a result, ERP was transformed into a broad-reaching environment that encompassed all activities across the back office of a company. What is ERP? An ERP system combines methodologies with software and hardware components to integrate numerous critical back-office functions across a company. Made up of a series of “modules”, or applications that are seamlessly linked together through a common database, an ERP system enables various departments or operating units such as Accounting and Finance, Human Resources, Production, and Fulfillment and Distribution to coordinate activities, share information, and collaborate. Key Benefits for Your Company ERP systems are designed to enhance all aspects of key operations across a company’s entire back-office – from planning through execution, management, and control. -
TCPDUMP Caution
TCPDUMP q Refer to book ”Open Source Network Administration” m Online sample chapter: http://www.phptr.com/articles/article.asp?p=170902&seqNum=4 q Some tools are not based directly on the data being transmitted on a network, but information related to that data. m For example, network bandwidth values m System logs on network equipment q Sometimes needs to examine the packets themselves. m Diagnose some particularly tricky network problems q Widely used open source tool for directly analyzing packets: tcpdump m http://www.tcpdump.org/ Network Analyzer 1-1 Caution q Before you use tcpdump or other analyzer: m Will be able to see some private data m Consult/research Legal implication first m Respect the privacy of other users Network Analyzer 1-2 1 What Tcpdump can do for you q View the entire data portion of an Ethernet frame or other link layer protocol m An IP packet m An ARP packet m Or any protocol at a higher layer than Ethernet. q Very useful m Tcpdump is to a network administrator like a microscope to a biologist. m Give a very clear picture of a specific part of your network m Can be used when the problem is simply that something is not working properly. Network Analyzer 1-3 What tcpdump can do for you? q Case1 : Web browser can not load pages from a server – it hangs. m Problem with client? Server? Or between? m Run tcpdump while loading • Watch every stage to see the following – DNS query – HTTP request to server – Server respond q Case 2: help debug denial of service attacks. -
Avoiding the Top 10 Software Security Design Flaws
AVOIDING THE TOP 10 SOFTWARE SECURITY DESIGN FLAWS Iván Arce, Kathleen Clark-Fisher, Neil Daswani, Jim DelGrosso, Danny Dhillon, Christoph Kern, Tadayoshi Kohno, Carl Landwehr, Gary McGraw, Brook Schoenfield, Margo Seltzer, Diomidis Spinellis, Izar Tarandach, and Jacob West CONTENTS Introduction ..................................................................................................................................................... 5 Mission Statement ..........................................................................................................................................6 Preamble ........................................................................................................................................................... 7 Earn or Give, but Never Assume, Trust ...................................................................................................9 Use an Authentication Mechanism that Cannot be Bypassed or Tampered With .................... 11 Authorize after You Authenticate ...........................................................................................................13 Strictly Separate Data and Control Instructions, and Never Process Control Instructions Received from Untrusted Sources ........................................................................................................... 14 Define an Approach that Ensures all Data are Explicitly Validated .............................................16 Use Cryptography Correctly .................................................................................................................... -
I3: Maximizing Packet Capture Performance
I3: Maximizing Packet Capture Performance Andrew Brown Agenda • Why do captures drop packets, how can you tell? • Software considerations • Hardware considerations • Potential hardware improvements • Test configurations/parameters • Performance results Sharkfest 2014 What is a drop? • Failure to capture a packet that is part of the traffic in which you’re interested • Dropped packets tend to be the most important • Capture filter will not necessarily help Sharkfest 2014 Why do drops occur? • Applications don’t know that their data is being captured • Result: Only one chance to capture a packet • What can go wrong? Let’s look at the life of a packet Sharkfest 2014 Internal packet flow • Path of a packet from NIC to application (Linux) • Switch output queue drops • Interface drops • Kernel drops Sharkfest 2014 Identifying drops • Software reports drops • L4 indicators (TCP ACKed lost segment) • L7 indicators (app-level sequence numbers revealed by dissector) Sharkfest 2014 When is (and isn’t) it necessary to take steps to maximize capture performance? • Not typically necessary when capturing traffic of <= 1G end device • More commonly necessary when capturing uplink traffic from a TAP or SPAN port • Some sort of action is almost always necessary at 10G • Methods described aren’t always necessary • Methods focus on free solutions Sharkfest 2014 Software considerations - Windows • Quit unnecessary programs • Avoid Wireshark for capturing ˗ Saves to TEMP ˗ Additional processing for packet statistics • Uses CPU • Uses memory over time, can lead -
HECO-UNIX-Top Cladding Screw Into the Timber
HECO-UNIX -top Cladding Screw THE UNIQUE CLADDING SCREW WITH CONTRACTION EFFECT APPLICATION EXAMPLES Façade construction Secure and reliable façade fixing Louvred façades 1 2 3 The variable pitch of the HECO-UNIX full The smaller thread pitch means that the Gap free axial fixing of the timber board thread takes hold boards are clamped firmly together via the HECO-UNIX full thread PRODUCT CHARACTERISTICS The HECO-UNIX-top Cladding Screw into the timber. The façade is secured axially via with contraction effect the thread, which increases the pull-out strength. HECO-UNIX-top full thread This results in fewer fastening points and an Timber façades are becoming increasingly popular ultimately more economical façade construction. Contraction effect thanks to the full in both new builds and renovations. This applica - Thanks to the full thread, the sole function of thread with variable thread pitch tion places high demands on fastenings. The the head is to fit the screw drive. As such, the Axial fixing of component façade must be securely fixed to the sub-structure HECO-UNIX-top façade screw has a small and the fixings should be invisible or attractive raised head, which allows simple, concealed Reduced spreading effect thanks to to look at. In addition, the structure must be installation preventing any water penetration the HECO-TOPIX ® tip permanently sound if it is constantly exposed to through the screw. The screws are made of the weather. The HECO-UNIX-top façade screw stainless steel A2, which safely eliminates the Raised countersunk head is the perfect solution to all of these requirements. -
Programmer's Guide
Programmer’s Guide Release 2.2.0 January 16, 2016 CONTENTS 1 Introduction 1 1.1 Documentation Roadmap...............................1 1.2 Related Publications..................................2 2 Overview 3 2.1 Development Environment..............................3 2.2 Environment Abstraction Layer............................4 2.3 Core Components...................................4 2.4 Ethernet* Poll Mode Driver Architecture.......................6 2.5 Packet Forwarding Algorithm Support........................6 2.6 librte_net........................................6 3 Environment Abstraction Layer7 3.1 EAL in a Linux-userland Execution Environment..................7 3.2 Memory Segments and Memory Zones (memzone)................ 11 3.3 Multiple pthread.................................... 12 3.4 Malloc.......................................... 14 4 Ring Library 19 4.1 References for Ring Implementation in FreeBSD*................. 20 4.2 Lockless Ring Buffer in Linux*............................ 20 4.3 Additional Features.................................. 20 4.4 Use Cases....................................... 21 4.5 Anatomy of a Ring Buffer............................... 21 4.6 References....................................... 28 5 Mempool Library 31 5.1 Cookies......................................... 31 5.2 Stats.......................................... 31 5.3 Memory Alignment Constraints............................ 31 5.4 Local Cache...................................... 32 5.5 Use Cases....................................... 33 6 -
The Qosbox: Quantitative Service Differentiation in BSD Routers∗
The QoSbox: Quantitative Service Differentiation in BSD Routers∗ Nicolas Christin Jorg¨ Liebeherr Information Networking Institute and The Edward S. Rogers Sr. Department of CyLab Japan Electrical and Computer Engineering Carnegie Mellon University University of Toronto 1-3-3-17 Higashikawasaki-cho 10 King’s College Road Chuo-ku, Kobe 650-0044, Japan Toronto, ON M5S 3G4, Canada [email protected] [email protected] Abstract We describe the design and implementation of the QoSbox, a configurable IP router that provides per-hop service differentiation on loss, delays and throughput to classes of traffic. The novel aspects of the QoSbox are that (1) the QoSbox does not rely on any external component (e.g., no traffic shaping and no admission control) to provide the desired service differentiation, but instead, (2) dynamically adapts packet forwarding and dropping decisions as a function of the instantaneous traffic arrivals and allows for temporary relaxation of some service objectives; also, (3) the QoSbox can enforce both absolute and proportional service differentiation on queuing delays, loss rates, and throughput at the same time. We focus on a publicly available implementation of the QoSbox in BSD-based PC-routers. We evaluate our implementation in a testbed of BSD routers over a FastEthernet network, and we sketch how the QoSbox can be implemented in high speed architectures. Keywords: Quality-of-Service Implementations, Service Differentiation, PC-Routers, BSD, High-Speed Networks. ∗Most of this work was done while both authors were with the University of Virginia. This work was supported in part by the National Science Foundation through grants ANI-9730103 and ANI-0085955. -
BSD UNIX Toolbox 1000+ Commands for Freebsd, Openbsd
76034ffirs.qxd:Toolbox 4/2/08 12:50 PM Page iii BSD UNIX® TOOLBOX 1000+ Commands for FreeBSD®, OpenBSD, and NetBSD®Power Users Christopher Negus François Caen 76034ffirs.qxd:Toolbox 4/2/08 12:50 PM Page ii 76034ffirs.qxd:Toolbox 4/2/08 12:50 PM Page i BSD UNIX® TOOLBOX 76034ffirs.qxd:Toolbox 4/2/08 12:50 PM Page ii 76034ffirs.qxd:Toolbox 4/2/08 12:50 PM Page iii BSD UNIX® TOOLBOX 1000+ Commands for FreeBSD®, OpenBSD, and NetBSD®Power Users Christopher Negus François Caen 76034ffirs.qxd:Toolbox 4/2/08 12:50 PM Page iv BSD UNIX® Toolbox: 1000+ Commands for FreeBSD®, OpenBSD, and NetBSD® Power Users Published by Wiley Publishing, Inc. 10475 Crosspoint Boulevard Indianapolis, IN 46256 www.wiley.com Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana Published simultaneously in Canada ISBN: 978-0-470-37603-4 Manufactured in the United States of America 10 9 8 7 6 5 4 3 2 1 Library of Congress Cataloging-in-Publication Data is available from the publisher. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permis- sion should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions. -
What Is UNIX? the Directory Structure Basic Commands Find
What is UNIX? UNIX is an operating system like Windows on our computers. By operating system, we mean the suite of programs which make the computer work. It is a stable, multi-user, multi-tasking system for servers, desktops and laptops. The Directory Structure All the files are grouped together in the directory structure. The file-system is arranged in a hierarchical structure, like an inverted tree. The top of the hierarchy is traditionally called root (written as a slash / ) Basic commands When you first login, your current working directory is your home directory. In UNIX (.) means the current directory and (..) means the parent of the current directory. find command The find command is used to locate files on a Unix or Linux system. find will search any set of directories you specify for files that match the supplied search criteria. The syntax looks like this: find where-to-look criteria what-to-do All arguments to find are optional, and there are defaults for all parts. where-to-look defaults to . (that is, the current working directory), criteria defaults to none (that is, select all files), and what-to-do (known as the find action) defaults to ‑print (that is, display the names of found files to standard output). Examples: find . –name *.txt (finds all the files ending with txt in current directory and subdirectories) find . -mtime 1 (find all the files modified exact 1 day) find . -mtime -1 (find all the files modified less than 1 day) find . -mtime +1 (find all the files modified more than 1 day) find . -
Pf3e Index.Pdf
INDEX Note: Pages numbers followed by f, n, priority-based queues, 136–145 or t indicate figures, notes, and tables, match rule for queue assignment, respectively. 137–138 overview, 134–135 Symbols performance improvement, 136–137 # (hash mark), 13, 15 queuing for servers in DMZ, ! (logical NOT) operator, 42 142–144 setting up, 135–136 A on FreeBSD, 135–136 on NetBSD, 136 Acar, Can Erkin, 173 on OpenBSD, 135 ACK (acknowledgment) packets transitioning to priority and class-based bandwidth allocation, queuing system, 131–133 139–140 anchors, 35–36 HFSC algorithm, 124, 126, 142 authpf program, 61, 63 priority queues, 132, 137–138 listing current contents of, 92 two-priority configuration, loading rules into, 92 120–121, 120n1 manipulating contents, 92 adaptive.end value, 188 relayd daemon, 74 adaptive firewalls, 97–99 restructuring rule set with, 91–94 adaptive.start value, 188 tagging to help policy routing, 93 advbase parameter, 153–154 ancontrol command, 46n1 advskew parameter, 153–154, 158–159 antispoof tool, 27, 193–195, 194f aggressive value, 192 ARP balancing, 151, 157–158 ALTQ (alternate queuing) framework, atomic rule set load, 21 9, 133–145, 133n2 authpf program, 59–63, 60 basic concepts, 134 basic authenticating gateways, class-based bandwidth allocation, 60–62 139–140 public networks, 62–63 overview, 135 queue definition, 139–140 tying queues into rule set, 140 B handling unwanted traffic, 144–145 bandwidth operating system-based queue actual available, 142–143 assignments, 145 class-based allocation of, 139–140 overloading to -
Of Mobile Devices: a Survey on Network Traffic Analysis
1 The Dark Side(-Channel) of Mobile Devices: A Survey on Network Traffic Analysis Mauro Conti, Senior Member, IEEE, QianQian Li, Alberto Maragno, and Riccardo Spolaor*, Member, IEEE. Abstract—In recent years, mobile devices (e.g., smartphones elements enable both smartphones and tablets to have the and tablets) have met an increasing commercial success and same functionalities typically offered by laptops and desktop have become a fundamental element of the everyday life for computers. billions of people all around the world. Mobile devices are used not only for traditional communication activities (e.g., voice According to the statistics reported in [1], smartphone calls and messages) but also for more advanced tasks made users were 25:3% of the global population in 2015, and this possible by an enormous amount of multi-purpose applications percentage is expected to grow till 37% in 2020. Similarly, the (e.g., finance, gaming, and shopping). As a result, those devices statistics about tablets reported in [2] indicate a global penetra- generate a significant network traffic (a consistent part of the overall Internet traffic). For this reason, the research community tion of 13:8% in 2015, expected to reach 19:2% in 2020. The has been investigating security and privacy issues that are related driving forces of this tremendous success are the ubiquitous to the network traffic generated by mobile devices, which could Internet connectivity, thanks to the worldwide deployment of be analyzed to obtain information useful for a variety of goals cellular and Wi-Fi networks, and a large number of apps (ranging from fine-grained user profiling to device security and available in the official (and unofficial) marketplaces. -
Mandoc: Becoming the Main BSD Manual Toolbox
mandoc: becoming the main BSD manual toolbox BSDCan 2015, June 13, Ottawa Ingo Schwarze <[email protected]> Cynthia Livingston’sOTTB “Bedifferent” (c) 2013 C. Livingston (with permission) > Ingo Schwarze: mandoc page 2: INTROI BSDCan 2015, June 13, Ottawa Brief history of UNIX documentation • The key point: All documentation in one place and one format. Easy to find, uniform and easy to read and write. Be correct, complete, concise. • 1964: RUNOFF/roffmarkup syntax by Jerome H. Saltzer,MIT. Unobtrusive,diff(1)-friendly,easy to hand-edit, simple tools, high quality output. • 1971: Basic manual structure by Ken Thompson and Dennis Ritchie for the AT&T Version 1 UNIX manuals, Bell Labs. • 1979: man(7) physical markup language for AT&T Version 7 UNIX. • 1989: mdoc(7) semantic markup by Cynthia Livingston for 4.3BSD-Reno. Powerful, self-contained, portable. • 1989: GNU troffbyJames Clarke. • 2001: mdoc(7) rewrite by Werner Lemberg and Ruslan Ermilovfor groff-1.17. • 2008: mandoc(1) started by Kristaps Dzonsons. • 2010: mandoc(1) is the only documentation formatter in the OpenBSD base system. • 2014: mandoc(1) used by default in OpenBSD, FreeBSD, NetBSD, illumos. 16:19:30 What is the mandoc toolbox? → < > Ingo Schwarze: mandoc page 3: INTROIIBSDCan 2015, June 13, Ottawa What is the mandoc toolbox? User perspective:man(1), the manual viewer One comprehensive tool! Normal operation always proceeds in three steps: 1. Find one or more manuals in the file system or using a database by manual name — man(1) — or by search query — apropos(1) =man -k The result of this step can be printed out with man -w.