B.S. Marine Biology B.A. Marine Affairs Undergraduate

Total Page:16

File Type:pdf, Size:1020Kb

B.S. Marine Biology B.A. Marine Affairs Undergraduate UNDERGRADUATE MARINE PROGRAMS B.S. MARINE BIOLOGY B.A. MARINE AFFAIRS PROGRAM DIRECTOR’S WELCOME MARINE AFFAIRS COORDINATOR’S WELCOME n behalf of the faculty in the Marine Biology pro- Queensland in Australia, University of Maryland, Univer- he University of New Haven is proud to offer you the marine communications, marine resource management, gram at UNH, I would like to thank you for taking sity of Miami, University of Rhode Island, and University opportunity to obtain a Bachelor of Arts in Marine marine media relations, marine law enforcement, inter- Othe time to learn about us. The Marine Biology of Connecticut. Still others opt for veterinary school. T Affairs! In this exceptional program, students national marine affairs, maritime business, and coastal program is a hands-on, research-focused, organismal- identify and investigate human uses of coastal and marine conservation and development. Finally, this is an exciting time in the growth of the based program. The program’s required coursework environments and resources and learn to think critically Marine Biology program at UNH. Our anticipated new In an ever-changing world that is faced with the challenges covers both invertebrate and vertebrate marine animals, about emerging complex issues in marine and coastal coastal marine center, just a few minutes from campus, of population growth and environmental change, it is our marine botany, oceanography, and marine ecology. Addi- conservation and management. One unique characteristic “Graduates of the will provide a state-of-the-art wet lab, where under- responsibility to form professionals with a diverse back- “In this exceptional tional required courses are more specialized and allow of our program is that students are required to choose graduate students and faculty will be able to conduct ground who can skillfully address and communicate to the students to focus on their main areas of interest, which a minor in a non-science field such as arts, humanities, program have gone large-scale research projects. public the complexities of marine and coastal conservation program, students identify may include aquaculture, marine pathology, the science social sciences, business, and criminal justice. The Marine of marine conservation, marine animal behavior, the and management. Therefore, it is with great enthusiasm I hope you will take the time to visit with us so that you Affairs curriculum strategically helps students follow their and investigate human on to successful molecular biology of marine organisms, and the effects that I welcome you to the Marine Affairs program at the can see the UNH Marine Biology program up close — individual professional interests while developing a solid, of climate change on marine organisms and systems. University of New Haven! and so that we can show you Long Island Sound! science-based knowledge foundation. uses of coastal and careers in aquaculture, All students are required to complete a year-long senior Sincerely, research project that focuses directly on a topic related Sincerely, In keeping with the University’s commitment to providing marine environments aquariums, conservation, to their career goals. high-quality experiential learning, the Marine Affairs pro- gram offers many opportunities for hands-on training. Our Our dedicated faculty members work with each of and resources and learn and education.” our students to prepare them for their post-graduate students benefit greatly from collaborative efforts between Dr. Carmela Cuomo Dr. Tarsila Seara to think critically about life. Graduates of the program have gone on to success- the University and outside institutions and organizations. It Professor and Director, Marine Biology Program is our mission to provide students with the tools they need Assistant Professor & Coordinator, Marine Affairs Program ful careers in aquaculture, aquariums, conservation, emerging complex issues in WELCOMEand education. Many of our graduates pursue master’s to become prepared professionals or competitive candi- or Ph.D. degrees in marine-related fields at universi- dates for graduate school in fields such as marine policy, marine and coastal conser- ties including Stony Brook University, The University of marine law, marine journalism, underwater photography, vation and management.” FACULTY FACILITIES AND RESOURCES Because the University of New Haven is a small, private institution, our Meet our Full-time faculty: faculty members have the ability to be highly engaged with students. They Students in our programs get practical, hands-on, career-launching experience thanks Carmela Cuomo, Ph.D. Jean-Paul Simjouw, Ph.D. to a wealth of natural resources in the area and superb lab facilities. You will get up close are dedicated to undergraduate education — devoting many hours both Yale University Old Dominion University inside and outside of the classroom to providing academic assistance and personal with marine life in: John Kelly, Ph.D. Tarsila Seara, Ph.D. and guidance. University of California, Davis University of Rhode Island .. Connecticut’s Long Island Sound and its coastal regions — an area that is a marine The members of our faculty are regionally, nationally, and internationally Amy Carlile, Ph.D. biologist’s paradise University of Washington recognized for expertise in their fields and have been published in some .. The Connecticut Audubon Coastal Center at Milford Point, with which UNH has an associa- of the most highly acclaimed publications related to their specialty. Practitioners in Residence: tion. This preserve is one of our field stations and encompasses a 600-acre salt marsh and Active in externally funded research, they are pleased to offer students large beachfront, both located on Long Island Sound at the mouth of the Housatonic River Gail Hartnett, Ph.D. opportunities to participate with them on projects. Yale University .. UNH’s own marsh — the Banca Marsh — in Branford, Connecticut, where students study Noteworthy: Karin Jakubowski, M.M.A. coastal marsh dynamics and eco-communities .. Dr. Carmela Cuomo, nationally and internationally recognized University of Rhode Island .. The Gerace Tropical Research Station on San Salvador Island in the Bahamas, where for her work in aquaculture, environmental pollution, and mod- “I am specifically interested in how humans use and interact with students can take our tropical marine biology course — with UNH faculty ern and ancient hypoxic environments, serves on several federal marine and coastal environments and the management actions .. The Sound School in New Haven, with which UNH is also associated. The school’s and state scientific advisory committees, including the EPA and to mitigate harmful interactions. My most recent project has acquaculture facilities are available to our students for projects, courses, and internships NOAA and is the former Science Director for the Atlantic States analyzed challenges and opportunities associated with marine Marine Fisheries Commission. tourism. I have documented the degree to which snorkelers and .. The Bridgeport Regional Aquaculture School, another first-class facility available .. Dr. Amy Carlile, recognized for her work in algal biogeography, divers engage in behavior that could be damaging to coral reefs to our students for projects, courses, and internships has described a new family of green algae, the Cloniophoraceae, and have developed a methodology to assess the vulnerability .. The aquariums at Mystic and Norwalk, Connecticut, where many UNH students conduct a new red algal species from Belize, and is working on two new of select reefs to such recreational activities.” — Karin research and engage in internships species from Egypt. Affiliated Faculty: .. Dr. John Kelly, recognized for his work on the migration and .. UNH’s own laboratories, stocked with modern equipment for the study of marine science physiology of marine vertebrates, has worked with the Nature Roman Zajac, Ph.D. Paul R. Bartholomew, Ph.D. .. National Marine Fisheries Service (NMFS) Milford Labs — a government aquaculture Conservancy and other groups to improve our understanding of University of Connecticut Practitioner in Residence laboratory in which many UNH students and several faculty members conduct research. Atlantic salmon, green sturgeon, and great white sharks. University of British Columbia Courses for the B.S. in Marine Biology include the University core requirements plus the following: B.S. IN MARINE BIOLOGY REQUIRED COURSES MARN 1101 Introduction to Marine Plus 3 of the following Biology Field Techniques restricted electives: MARN 1102 Seminar in Marine Biology MARN 3330 Coastal Resources MARN 2200 Oceanography with Lab & Management MARN 2260 Marine Vertebrate Zoology MARN 3331 Marine Conservation with Lab & Restoration MARN 3300 Marine Ecology with Lab MARN 4410 Aquaculture I — Marine Aquaculture MARN 3310 Marine Botany with Lab and Biotechnology MARN 3320 Marine Pollution MARN 4411 Aquaculture II MARN 4501 Marine Biology Senior MARN 4420 Marine Biogeochemistry Thesis I with Lab MARN 4502 Marine Biology Senior MARN 3361 Animal Behavior Thesis II MARN 4310 Algal Research Methods BIOL 2250 Invertebrate Zoology with Lab MARA 3204 Global Change BIOL 2253 Biology I for Science Majors MARN 4400 Tropical Marine Ecology with Lab MARN 4590ST Special Topics in Marine BIOL 2254 Biology II for Science Majors Sciences with Lab CHEM 2221 Instrumental Methods As one of the most complex coastal estuarine systems in the world, Long Island used by marine scientists, but
Recommended publications
  • BS Marine Biology Course Descriptions
    UNIVERSITY OF TEXAS RIO GRANDE VALLEY BS Marine Biology Course Descriptions A – GENERAL EDUCATION CORE – 42 HOURS Students must fulfill the General Education Core requirements. The courses listed in this section satisfy both degree requirements and General Education core requirements. MATH 1343 Introduction to Biostatistics Topics include introduction to biostatistics; biological and health studies and designs; probability and statistical inferences; one- and two-sample inferences for means and proportions; one-way ANOVA and nonparametric procedures. Prerequisites: College Ready TSI status in Mathematics. OR MATH 1388 Honors Topics include introduction to biostatistics; biological and health studies and designs; probability and statistical inferences; one- and two-sample inferences for means and proportions; one-way ANOVA and nonparametric procedures. Prerequisites: College Ready TSI status in mathematics and admission to the honors program CHEM 1311 General Chemistry I Fundamentals of atomic structure, electronic structure and periodic table, nomenclature, the stoichiometry reactions, gas laws, thermochemistry, chemical bonding, and structure and geometry of molecules. Prerequisites: MATH 1314, MATH 1414, MATH 1342, MATH 1343, MATH 1388, MATH 2412, MATH 2413, or MATH 2487 with a grade of “C” or higher.” CHEM 1312 General Chemistry II This course presents the properties of liquids and solids, solutions-acid-base theory, chemical kinetics, equilibrium, chemical thermodynamics, electrochemistry, nuclear chemistry, and representative organic compounds. Prerequisites: CHEM 1311 PHIL 1366 Philosophy and History of Science and Technology This course is designed to use history and philosophy in the service of science and engineering education. It does this by examining a selection of notable episodes in the history of science and Techno-Science.
    [Show full text]
  • Marine, Estuarine and Freshwater Biology Major (B.S.)
    University of New Hampshire 1 MEFB 401 Marine Estuarine and Freshwater Biology: 1 MARINE, ESTUARINE AND Freshmen Seminar MEFB 503 Introduction to Marine Biology 4 FRESHWATER BIOLOGY MEFB 525 Introduction to Aquatic Botany 4 MAJOR (B.S.) MEFB 527 Aquatic Animal Diversity 4 Choose one Freshwater course: 4 http://colsa.unh.edu/dbs/mefb/marine-estuarine-and-freshwater-biology- MEFB 717 Lake Ecology bs or MEFB 719Field Studies in Lake Ecology Choose one Physiology/Function course: 4-5 Description ZOOL 625 Principles of Animal Physiology & ZOOL 626 and Animal Physiology Laboratory The Major in Marine, Estuarine and Freshwater Biology is intended to or ZOOL 773 Physiology of Fish give students interested in the fields of marine and freshwater biology Choose one Marine or Estuarine course: 4 the background to pursue careers, including potential advanced study, in MEFB 725 Marine Ecology this area of biology. The major builds on a broad set of basic scientific or ZOOL 750 Biological Oceanography courses represented by a core curriculum in math, chemistry, physics and biology. The background in basic science is combined with a series of MEFB Electives: Choose 3 required and elective courses in the aquatic sciences from watershed Evolution, Systematics and Biodiversity to ocean. The goal is to provide a solid foundation of knowledge in BIOL 566 Systematic Botany 4 freshwater, estuarine and marine biology while having the flexibility to GEN 713 Microbial Ecology and Evolution 4 focus on particular areas of scientific interest from molecular biology to MEFB 625 Introduction to Marine Botany 4 ecosystem studies. Students will have the opportunity to specialize in areas of their own interest, such as aquaculture and fisheries or animal MEFB 722 Marine Phycology 4 behavior.
    [Show full text]
  • Coral Reef Algae
    Coral Reef Algae Peggy Fong and Valerie J. Paul Abstract Benthic macroalgae, or “seaweeds,” are key mem- 1 Importance of Coral Reef Algae bers of coral reef communities that provide vital ecological functions such as stabilization of reef structure, production Coral reefs are one of the most diverse and productive eco- of tropical sands, nutrient retention and recycling, primary systems on the planet, forming heterogeneous habitats that production, and trophic support. Macroalgae of an astonish- serve as important sources of primary production within ing range of diversity, abundance, and morphological form provide these equally diverse ecological functions. Marine tropical marine environments (Odum and Odum 1955; macroalgae are a functional rather than phylogenetic group Connell 1978). Coral reefs are located along the coastlines of comprised of members from two Kingdoms and at least over 100 countries and provide a variety of ecosystem goods four major Phyla. Structurally, coral reef macroalgae range and services. Reefs serve as a major food source for many from simple chains of prokaryotic cells to upright vine-like developing nations, provide barriers to high wave action that rockweeds with complex internal structures analogous to buffer coastlines and beaches from erosion, and supply an vascular plants. There is abundant evidence that the his- important revenue base for local economies through fishing torical state of coral reef algal communities was dominance and recreational activities (Odgen 1997). by encrusting and turf-forming macroalgae, yet over the Benthic algae are key members of coral reef communities last few decades upright and more fleshy macroalgae have (Fig. 1) that provide vital ecological functions such as stabili- proliferated across all areas and zones of reefs with increas- zation of reef structure, production of tropical sands, nutrient ing frequency and abundance.
    [Show full text]
  • Primary Production of Microphytobenthos in the Ems-Dollard Estuary*
    Vol. 14: 185-196. 1984 MARINE ECOLOGY - PROGRESS SERIES Published January 2 Mar. Ecol. Prog. Ser. I Primary production of microphytobenthos in the Ems-Dollard Estuary* Franciscus Colijn and Victor N. de Jonge Biological Research Ems-Dollard Estuary (BOEDE), Marine Botany Research Group, University of Groningen, Kerklaan 30, 751 1 NN Haren. The Netherlands ABSTRACT: From 1976 through 1978 primary production of microphytobenthos was measured at 6 stations on intertidal flats in the Ems-Dollard estuary using the 14C method. The purpose of the measurements was to estimate the annual primary production at different sites in the estuary and to investigate the factors that influence the rates of primary production. Therefore benthic chlorophyll a and a set of environmental factors were measured. Only primary production correlated sigruficantly with chlorophyll a concentration in the superficial (0.5 cm) sediment layer; other factors (temperature. in situ irradiance) did not correlate with primary production, primary production rate or assimilation number. Annual primary production ranged from ca. 50 g C m-' to 250 g C m-2 and was closely related to elevation of the tidal flat station. However, highest values were also recorded at the station closest to a waste water discharge point in the inner part of the estuary. Annual primary production can be roughly estimated from the mean annual content of chlorophyll a in the sediment. Use of different calculation methods results in annual primary production values that do not differ greatly from each other. Also productivity rates did not differ much over most of the estuary, except at the innermost station which showed a high production rate in combination with high microalgal biomass; this could not be explained by the high elevation of the station alone.
    [Show full text]
  • BS in MARINE BIOLOGY -- MARINE CONSERVATION OPTION
    B.S. in MARINE BIOLOGY -- MARINE CONSERVATION OPTION -- Catalog 2018-2019 (75 total hours) The Marine Conservation option provides a B.S. Marine Biology degree plan that is designed for students primarily interested in the biological aspects of conservation science in marine environments (e.g., community ecology, population biology, biogeography, conservation genetics and assessment of threatened or endangered species and habitats). A major in Marine Biology can be declared after completing 24 credit hours and BIO 201 and BIO 202, or equivalent courses, with a grade of ‘C’ (2.00) or better in both courses. Core Requirements: (28 hours total) _____ 201 Principles of Biology: Cells (4) _____ 202 Principles of Biology: Biodiversity (4) ***BIO 201 and 202 are the prerequisite courses for all biology courses numbered 300 and above*** _____ 335 Genetics with lab (3) (1), prerequisites: BIO 201 and BIO 202 _____ Physiology, chosen from one of the following bullets: • 325 Molecular Biology of the Cell with lab (3) (1), prerequisites: BIO 201, BIO 202, and CHM 211/CHML 211 • 340 Plant Physiology (4), prerequisites: BIO 201, BIO 202, and CHM 102 • 345 Animal Physiology with lab (3) (1), prerequisites: BIO 201, BIO 202, and CHM 102 _____ 362 Marine Biology (4), prerequisite or corequisite: BIO 366 _____ 366 Ecology with lab (3) (1), prerequisite: BIO 201 and BIO 202 _____ 466 Conservation Biology (3); prerequisites: BIO 201 and BIO 202 _____ 495 Seminar (1), prerequisites: BIO or MBY major; BIO 201, 202, 335, 366, and a physiology course _____ Applied Learning -- To satisfy the applied learning requirement for the B.S.
    [Show full text]
  • THE PRIMARY PRODUCTION of a BRITISH COLUMBIA FJORD By
    THE PRIMARY PRODUCTION OF A BRITISH COLUMBIA FJORD by MALVERN GILMARTIN B. A., Pomona College, 195^ M. Sc., University of Hawaii, 1956 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of BIOLOGY AND BOTANY We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA June, i960 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of _kcy£b<9FM cwdl Wat Jinterstlg of ^rtttsb (Eoiuittiita GRADUATE STUDIES FACULTY OF GRADUATE STUDIES Field of Study: Biological Oceanography Phycology M. S. Doty mil Experimental Marine Botany M. S. Doty Marine Ecology : , S. Townsley Oceanography A. H. Banner PROGRAMME OF THE Taxonomy of Marine Invertebrates S. Townsley Marine Benthonic Organisms and their Environment, FINAL ORAL EXAMINATION FOR THE DEGREE OF R. F. Scagel Marine Phytoplankton R. F. Scagel DOCTOR OF PHILOSOPHY Marine Zooplankton R. F. Scagel of Biological Oceanography R. F. Scagel & W. A. Clemens MALVERN GILMARTIN JR. Other Studies: B.A. Pomona College, 1954 M.Sc. University of Hawaii, 1956 Biometry J. Sawyer IN ROOM 3332, BIOLOGICAL SCIENCES BUILDING Synoptic Oceanography G.
    [Show full text]
  • Marine Plants in Coral Reef Ecosystems of Southeast Asia by E
    Global Journal of Science Frontier Research: C Biological Science Volume 18 Issue 1 Version 1.0 Year 2018 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Online ISSN: 2249-4626 & Print ISSN: 0975-5896 Marine Plants in Coral Reef Ecosystems of Southeast Asia By E. A. Titlyanov, T. V. Titlyanova & M. Tokeshi Zhirmunsky Institute of Marine Biology Corel Reef Ecosystems- The coral reef ecosystem is a collection of diverse species that interact with each other and with the physical environment. The latitudinal distribution of coral reef ecosystems in the oceans (geographical distribution) is determined by the seawater temperature, which influences the reproduction and growth of hermatypic corals − the main component of the ecosystem. As so, coral reefs only occupy the tropical and subtropical zones. The vertical distribution (into depth) is limited by light. Sun light is the main energy source for this ecosystem, which is produced through photosynthesis of symbiotic microalgae − zooxanthellae living in corals, macroalgae, seagrasses and phytoplankton. GJSFR-C Classification: FOR Code: 060701 MarinePlantsinCoralReefEcosystemsofSoutheastAsia Strictly as per the compliance and regulations of : © 2018. E. A. Titlyanov, T. V. Titlyanova & M. Tokeshi. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Marine Plants in Coral Reef Ecosystems of Southeast Asia E. A. Titlyanov α, T. V. Titlyanova σ & M. Tokeshi ρ I. Coral Reef Ecosystems factors for the organisms’ abundance and diversity on a reef.
    [Show full text]
  • Syllabus Lecture-Updated 11/19/08 Marine Botany BSC 4404-001 M/W 11:00-11:50 Room: General Classroom South GS-103 Lecturer: Dr
    Syllabus Lecture-Updated 11/19/08 Marine Botany BSC 4404-001 M/W 11:00-11:50 Room: General Classroom South GS-103 Lecturer: Dr. Marguerite Koch: TAs Ms. Monique Salazar & Maria Merrill I) Microalgal Ecology/Systematics (*Readings) August 25 Introduction August 27 Physical Aspects of the Ocean Environment (MB 32-34) September 1 **Labor Day Holiday** September 3 Physical Aspects of the Ocean Environment (cont.) September 8 Chemical Characteristics of Seawater (MB 35-44) September 10 Chemical Characteristics of Seawater (cont.) (Title Term Paper Due) September 15 Microalgal Characterization (MB 1-5) September 17 Microalgal Evolution September 22 The Algae of the Phytoplankton (MB 168-191) September 24 The Algae of the Phytoplankton September 29 The Algae of the Phytoplankton (cont.) October 1 Phytoplankton Primary Productivity (MB 191-207) (Turn in reference list 20) October 6 Phytoplankton Primary Productivity/Climate Change Effects (MB 191-207) October 8 Zooplankton Grazing -Finish lectures & Review October 13 Midterm Exam October 15 Review Midterm Exam II) Macroalgal (Seaweed) & Marine Vascular Plant Ecology/Systematics October 20 Macroalgal Thallus Morphology & Algal resources (MB 113-167; MB 389-401) October 22 Thallus growth & Reproductive Structures (cont.) (Paper Outline Due) October 27 Life history and Reproduction of Macroalgae October 29 Establishment and Morphogenesis of Macroalgae Adult Thallus Form November 3 Functional Form Model November 5 Ecological Effects/Algae on Coral Reefs (MB 338-367) November 10 Coral Bleaching/ Coral/Algal
    [Show full text]
  • MARINE SCIENCE Program
    MARINE SCIENCE Program AR Enabled 1. Download HP Reveal App 2. Open and point phone at image 3. Watch program video stockton.edu/nams Marine Science Program | MARS ABOUT THE PROGRAM Stockton University is located adjacent to the Jacques Cousteau National Estuarine Research Reserve (Mullica River-Great Bay estuary) and is one of only a few undergraduate institutions in the U.S. that offers a degree program in Marine Science alongside a dedicated, easily accessible field facility (Stockton Marine Field Station) www.stockton.edu/marine. With direct access to the Field Station only 10 minutes away, the program is well situated to provide superior field, teaching, and undergraduate research opportunities that form the backbone of the curriculum. Stockton’s Marine Science (MARS) program encompasses two general areas of study: Marine Biology and Oceanography. A number of field and laboratory courses, seminars, independent studies, internships, and research team opportunities are offered, with a strong emphasis on gaining experience in the field. The program is interdisciplinary and requires student competence in several areas of science. Upper-level students have the opportunity to design and implement their own independent study projects and are strongly encouraged to present results at the NAMS Undergraduate Research Symposium and regional conferences. Teacher (K-12) and GIS certifications are available through affiliated Stockton programs. The Marine Sciences tracks of study: Marine Biology, BA and BS, Oceanography, BA and BS Program Highlights • Small course sections taught primarily by full-time faculty (not by graduate assistants). • Every student is assigned a faculty member as their academic adviser (preceptor) • Faculty encourage and supervise internships and research projects.
    [Show full text]
  • Section 3.3 Marine Habitats
    3.3 Marine Habitats MARIANA ISLANDS TRAINING AND TESTING FINAL EIS/OEIS MAY 2015 TABLE OF CONTENTS 3.3 MARINE HABITATS ................................................................................................................... 3.3-3 3.3.1 INTRODUCTION ............................................................................................................................... 3.3-3 3.3.2 AFFECTED ENVIRONMENT ................................................................................................................. 3.3-8 3.3.2.1 Soft Shores ............................................................................................................................... 3.3-9 3.3.2.2 Rocky Shores .......................................................................................................................... 3.3-10 3.3.2.3 Vegetated Shores ................................................................................................................... 3.3-10 3.3.2.4 Aquatic Beds .......................................................................................................................... 3.3-11 3.3.2.5 Soft Bottoms .......................................................................................................................... 3.3-11 3.3.2.6 Hard Bottoms ......................................................................................................................... 3.3-12 3.3.2.7 Artificial Structures ...............................................................................................................
    [Show full text]
  • Bio 275 - Marine Ecology (4 Cr.)
    Revised 11/2010 NOVA COLLEGE-WIDE COURSE CONTENT SUMMARY BIO 275 - MARINE ECOLOGY (4 CR.) Course Description Applies ecosystem concepts to marine habitats. Includes laboratory and field work. Lecture 3 hours. Recitation and laboratory 3 hours. Total 6 hours per week. General Course Purpose This is a one semester course designed to introduce the students to the basic principles and concepts of marine ecology. It serves as a lab science elective. It includes study of the interrelationships between marine organism and their physical environment. It also explores the interactions between organisms, especially within and among populations. The course will provide a basic understanding of the effects of human activities on coastal and oceanic environments. Course Prerequisites/Co-requisites Prerequisites are any two of the following courses: BIO 101, 102, 110, 120, or division approval. Course Objectives The basic objective of this course is to provide students with a basic knowledge of marine ecology and the response mechanisms to environmental changes that effect the marine environment. Students should be able to demonstrate through examinations, field work and laboratory experiments, their understanding of the interrelationships of marine organisms with their environment. Major Topics to be Covered Lecture Topics Description of the Marine Environment Principles of Oceanography Biogeography Biogeochemical Cycles Land-Ocean Interaction Marine Botany I: Microalgae Marine Botany II: Macroalgae Marine Botany III: Vascular plants Marine
    [Show full text]
  • Marine Biology @ University of Washington
    MARINE BIOLOGY @ UNIVERSITY OF WASHINGTON Are you interested in studying marine biology at the University of Washington (UW)? The UW currently offers a minor in marine biology. Students are encouraged to declare the OVERVIEW marine biology minor during their freshmen or sophomore years • 35 credits minimum and immediately join a community of researchers and students interested in marine organisms, ecosystems, and conservation. All • Core coursework (19 credits) marine biology minors participate in hands-on learning in tandem • Approved electives (13 credits) with their coursework through labs and fieldtrips, research with • Integrative experience (3 credits, faculty, and other exciting opportunities. The minor combines may not be used for student’s major courses from three UW departments and our marine station on requirements) San Juan Island: • Minimum of 2.0 cumulative GPA in all minor coursework OCEANOGRAPHY studies the marine environment and its inter- actions with the earth, the biosphere, and the atmosphere. The • Minimum 15 credits at the 300—400 field examines the larger picture of the marine world, the global level processes governing the distribution, abundances, and interactions • At least 18 credits may not overlap of life, chemicals, geological formations, and motion in the seas. with student's major requirements; 5 credits may overlap with other AQUATIC & FISHERY SCIENCES (AFS) studies aquatic environ- minor requirements ments, the distribution and abundance of marine and freshwater species, and the sustainable use of ocean resources. AFS students DeClArInG A MInor explore the biology of aquatic organisms, the ecology of aquatic In MArIne BIoloGy communities and habitats, and the issues surrounding resource conservation and management.
    [Show full text]