Magnetic Resonance Imaging Biomarker Calibration Service: Proton Spin Relaxation Times
Total Page:16
File Type:pdf, Size:1020Kb
NIST Special Publication 250-97 Magnetic Resonance Imaging Biomarker Calibration Service: Proton Spin Relaxation Times Michael A. Boss Andrew M. Dienstfrey Zydrunas Gimbutas Kathryn E. Keenan Anthony B. Kos Jolene D. Splett Karl F. Stupic Stephen E. Russek This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.250-97 NIST Special Publication 250-97 Magnetic Resonance Imaging Biomarker Calibration Service: Proton Spin Relaxation Times Michael A. Boss Kathryn E. Keenan Karl F. Stupic Stephen E. Russek Applied Physics Division Physical Measurement Laboratory Andrew M. Dienstfrey Zydrunas Gimbutas Applied and Computational Mathematics Division Information Technology Laboratory Anthony B. Kos Quantum Electromagnetics Division Physical Measurement Laboratory Jolene D. Splett Statistical Engineering Division Information Technology Laboratory This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.250-97 May 2018 U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary National Institute of Standards and Technology Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedural or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. National Institute of Standards and Technology Special Publication 250-97 Natl. Inst. Stand. Technol. Spec. Publ. 250-97, 35 pages (May 2018) CODEN: NSPUE2 This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.250-97 Abstract This document describes a calibration service to measure proton spin relaxation times, T1 and T2, of materials used in phantoms (calibration artifacts) to verify the accuracy of magnetic resonance imaging (MRI)-based quantitative measurements. Proton spin relaxation times are used as image-based biomarkers to assess the state of tissue and quantify the presence of contrast agents. A biomarker, as defined by the U.S. Food and Drug Administration definition, refers to “a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or biological responses to a therapeutic intervention.”[1] Spin relaxation times are This publication is available free of charge from: phenomenological parameters that must to be carefully defined and measured to enable rigorous quantification and their use as biomarkers for clinical decision making. The relaxation times, in addition to being dependent on local material properties, are dependent on environmental parameters such as temperature and magnetic field strength, which must to be controlled and precisely measured. Key words Biomarker; MRI; magnetic resonance imaging; T1; T2; NMR; nuclear magnetic resonance; proton spin relaxation times. https://doi.org /10.6028/NIST.SP. 250 - 97 i Table of Contents 1. Introduction .................................................................................................................... 1 2. Calibration Service Summary ................................................................................................. 1 3. Theory of Measurement ........................................................................................................... 2 3.1. System Basics and Measurement Principle .......................................................................... 2 3.2. Measurement Equations ....................................................................................................... 4 This publication is available free of charge from: 3.3. Model Errors ........................................................................................................................ 6 4. Measurement System ................................................................................................................ 7 4.1 NMR system ........................................................................................................................ 8 4.2 Fiber optic temperature probe and temperature control system ......................................... 10 5. Standard Operating Procedures ............................................................................................ 11 5.1 System Startup ................................................................................................................... 11 5.3 Data Acquisition ................................................................................................................ 12 5.4 Data Analysis ..................................................................................................................... 13 6. Uncertainty Evaluation .......................................................................................................... 15 6.1. Overview of Measurement System Uncertainties .............................................................. 17 6.2 Non-Ideal Pulse Sequence (NPS) ...................................................................................... 19 https://doi.org 6.3 Local Environment Variation (LE) .................................................................................... 20 6.4 Non-ideal Material properties (NM) .................................................................................. 21 7. Monte Carlo Uncertainty Calculation .................................................................................. 22 8. Quality Control ....................................................................................................................... 26 /10.6028/NIST.SP. 9. Summary ................................................................................................................................. 27 References........................................................................................................................................ 28 Appendix A: Lack of Fit Test ........................................................................................................ 29 250 List of Tables - 97 Table 1. Phase cycling scheme. ........................................................................................................... 12 Table 2. Results of Monte Carlo calculations of bias (mean) and standard deviation associated with T1, T2 measurements. ............................................................................................................................ 26 List of Figures Fig. 1. (a) Synthesized data from an inversion recovery experiment. (b) Residuals showing structure indicative that the model is not appropriate............................................................................................ 7 ii Fig. 2. Schematic diagram of the NIST NMR measurement system .................................................... 8 Fig. 3. (a) Nutation data for a MnCl2 solution (T2-9) at 20 °C. Red line is a fit using a model where the RF amplitude and coil sensitivity function are given by the graph in (b). ..................................... 10 Fig. 4. Screen shot of sample temperature control software with the temperature monitored for 20 min. ....................................................................................................................................................... 11 Fig. 5. Sample capillary and fiber optic thermometer inserted into NMR tube. .................................. 12 This publication is available free of charge from: Fig. 6. Inversion recovery data for a NiCl2 solution. ............................................................................ 14 Fig. 7. T2 measurement of same sample as used in Fig. 6. ................................................................... 15 Fig. 8. NMR system schematic with labeled sources of uncertainty .................................................... 18 Fig. 9. Schematic of Monte Carlo calculation.. .................................................................................... 23 Fig. 10. T1 and T2 distributions from Monte Carlo calculations. .......................................................... 24 https://doi.org /10.6028/NIST.SP. 250 - 97 iii 1. Introduction 1 This calibration service provides traceable measurements of the proton spin relaxation times, T1 and T2, of materials used in magnetic resonance imaging (MRI) phantoms (calibration artifacts) at a specified field strength and temperature. T1 is the longitudinal relaxation time, the exponential time constant required for the nuclear magnetization to relax back to its equilibrium value along the static magnetic field direction. T2 is the transverse relaxation time, the exponential time constant required for the precessional component of the nuclear magnetization, transverse to the static field, to relax back to zero. Precise definitions of T1, T2 are given in Sec. 3. Here, we restrict measurements to water-proton This publication is available free of charge from: magnetic moment relaxation in aqueous solutions. The measurements are based on a variable-field, variable-temperature, nuclear magnetic resonance (NMR) system. NMR and MRI systems are qualitatively similar; however, given the smaller sample volumes in NMR systems, key parameters such as radio frequency (RF) field intensity, magnetic field distortions, and the timing of RF pulses can be better controlled