A Dirichlet Process Mixture Model of Discrete Choice 19 January, 2018 Rico Krueger (corresponding author) Research Centre for Integrated Transport Innovation, School of Civil and Environmental Engineering, UNSW Australia, Sydney NSW 2052, Australia
[email protected] Akshay Vij Institute for Choice, University of South Australia 140 Arthur Street, North Sydney NSW 2060, Australia
[email protected] Taha H. Rashidi Research Centre for Integrated Transport Innovation, School of Civil and Environmental Engineering, UNSW Australia, Sydney NSW 2052, Australia
[email protected] arXiv:1801.06296v1 [stat.AP] 19 Jan 2018 1 Abstract We present a mixed multinomial logit (MNL) model, which leverages the truncated stick- breaking process representation of the Dirichlet process as a flexible nonparametric mixing distribution. The proposed model is a Dirichlet process mixture model and accommodates discrete representations of heterogeneity, like a latent class MNL model. Yet, unlike a latent class MNL model, the proposed discrete choice model does not require the analyst to fix the number of mixture components prior to estimation, as the complexity of the discrete mixing distribution is inferred from the evidence. For posterior inference in the proposed Dirichlet process mixture model of discrete choice, we derive an expectation maximisation algorithm. In a simulation study, we demonstrate that the proposed model framework can flexibly capture differently-shaped taste parameter distributions. Furthermore, we empirically validate the model framework in a case study on motorists’ route choice preferences and find that the proposed Dirichlet process mixture model of discrete choice outperforms a latent class MNL model and mixed MNL models with common parametric mixing distributions in terms of both in-sample fit and out-of-sample predictive ability.