Hydrochemistry of Ice-Covered Lakes and Ponds in the Untersee Oasis (Queen Maud Land, Antarctica)

Total Page:16

File Type:pdf, Size:1020Kb

Hydrochemistry of Ice-Covered Lakes and Ponds in the Untersee Oasis (Queen Maud Land, Antarctica) Hydrochemistry of ice-covered lakes and ponds in the Untersee Oasis (Queen Maud Land, Antarctica) Benoit Faucher Thesis submitted to the University of Ottawa in partial Fulfillment of the requirements for the Doctorate of Philosophy in Geography Department of Geography, Environment, and Geomatics Faculty of Arts University of Ottawa © Benoit Faucher, Ottawa, Canada, 2021 ABSTRACT Several thousand coastal perennially ice-covered oligotrophic lakes and ponds have been identified on the Antarctic continent. To date, most hydrochemical studies on Antarctica’s ice- covered lakes have been undertaken in the McMurdo Dry Valleys (more than 20 lakes/ponds studied since 1957) because of their proximity to the McMurdo research station and the New Zealand station Scott Base. Yet, little attention has been given to coastal ice-covered lakes situated in Antarctica’s central Queen Maud Land region, and more specifically in the Untersee Oasis: a polar Oasis that encompasses two large perennially ice-covered lakes (Lake Untersee & Lake Obersee), and numerous small ice-covered morainic ponds. Consequently, this PhD research project aims to describe and understand the distribution, ice cover phenology, and contemporary hydrochemistry of perennially ice-covered lakes and ponds located in the Untersee Oasis and their effect on the activity of the benthic microbial ecosystem. Lake Untersee, the largest freshwater coastal lake in central Queen Maud Land, was the main focus of this study. Its energy and water mass balance was initially investigated to understand its current equilibrium and how this perennially well-sealed ice-covered lake may evolve under changing climate conditions. Results suggest that Lake Untersee’s mass balance was in equilibrium between the late 1990s and 2018, and the lake is mainly fed by subglacial meltwater (55-60%) and by subaqueous melting of glacier ice (40-45%). A recursive stable water isotope (δD-δ18O) evolution model for well-sealed perennial ice-covered lakes that takes into account the effect of changing chemistry in residual waters on δD-δ18O values was then developed and determined that Lake Untersee is in isotopic steady-state. Modeling results also showed that Untersee most likely did not receive additional inputs from surface streams during the last 300– 500 years at the time of sampling, in November-December 2017. However, in mid-January 2019, Untersee experienced a glacial lake outburst flood (GLOF) that increased the water level by 2 m (contributing 1.75×107 m3 of water), modifying its water chemistry and inorganic carbon load. High-resolution grain size and carbon isotope analyses of the benthic microbial mats suggest that GLOFs occurred periodically over the Holocene and that those events sporadically increased the primary productivity of its benthic microbial ecosystem. Finally, ice-covered ponds in the Oasis were identified and sampled to compare their morphometric properties, hydrochemical properties, and microbial mat activity with Lake Untersee. It was discovered that the Untersee Oasis ponds offer the full spectrum of ice cover types (i.e., perennial well-sealed, perennial and moat forming, ii and seasonally ice-covered) and that their hydrochemical properties depend on ice cover type. Empirical pond data was used to determine how Lake Untersee and the ponds themselves will evolve as they transition under a warming climate from well-sealed to moat forming and from moat forming to seasonally ice-covered. iii RÉSUMÉ Plusieurs milliers de lacs et étangs côtiers recouverts de glace ont été identifiés en Antarctique. Jusqu'à présent, la plupart des études hydrochimiques sur les lacs couverts de glace de l'Antarctique ont été entreprises dans les vallées sèches de McMurdo (plus de 20 lacs/étangs étudiés depuis 1957) en raison de leur proximité avec la station de recherche de McMurdo (américaine) et la base Scott (néo-zélandaise). Cependant, peu d'attention a été accordée aux lacs côtiers couverts de glace situés dans la région centrale de la Terre de la Reine Maud, en Antarctique, et plus particulièrement dans l'Oasis Untersee : une oasis polaire qui comprend deux grands lacs couverts de glace pérenne (le lac Untersee et le lac Obersee), et de nombreux petits étangs morainiques couverts de glace. Par conséquent, l'objectif de ce projet de recherche doctorale est de décrire et comprendre la distribution, la phénologie de la couverture de glace et l'hydrochimie contemporaine des lacs et des étangs couverts de glace pérenne situés dans l'oasis d'Untersee, ainsi que leur effet sur l'activité primaire de leur écosystème microbien benthique. Le lac Untersee, le plus grand lac côtier d'eau douce de la partie centrale de la Terre de la Reine Maud, a été le sujet principal de cette étude. Le bilan de masse énergétique et hydrologique de ce dernier a été étudié dans un premier temps afin de comprendre son équilibre actuel et la manière dont ce lac recouvert de glace bien scellée pourrait évoluer dans le contexte de changements climatiques globaux. Les résultats suggèrent que le bilan de masse hydrologique du lac Untersee était en équilibre entre la fin des années 1990 et 2018, et que le lac est principalement alimenté par les eaux de fonte sous-glaciaires (55-60%), et par la fonte subaquatique de glaciers (40-45%). Un modèle récursif d'évolution des isotopes stables de l'eau (δD-δ18O) pour les lacs couverts de glace pérenne qui sont bien scellés et qui tient compte de l'effet de l'évolution de la chimie des eaux résiduelles sur les valeurs δD-δ18O a ensuite été développé et a permis de déterminer que le lac Untersee est en équilibre isotopique. Les résultats de la modélisation ont également montré que le lac Untersee n'a fort probablement pas reçu d'apport supplémentaire d’eaux de surface au cours des 300 à 500 dernières années, au moment de l'échantillonnage (en novembre-décembre 2017). Cependant, à la mi-janvier 2019, le lac Untersee a été affecté par une inondation glaciaire qui a augmenté le niveau d'eau de 2 m (apportant 1,75×107 m3 d'eau) modifiant son hydrochimie ainsi que sa charge en carbone inorganique dissous. Des analyses à haute résolution de la taille des grains et des isotopes du carbone de carottes prélevées sur des stromatolites benthiques suggèrent que de telles inondations se sont produites périodiquement au iv cours de l'Holocène, et que ces événements ont sporadiquement augmenté la productivité primaire de son écosystème microbien benthique. Enfin, des étangs couverts de glace dans l'Oasis ont été identifiés et échantillonnés afin de comparer leurs propriétés morphométriques et hydrochimiques, ainsi que leur activité microbienne, avec le lac Untersee. Il fut découvert que les étangs de l'Oasis Untersee offrent tous les types de couvertures de glace (c.-à-d., couvertures de glace pérennes bien scellées, pérennes et formant des douves, et couvertures saisonnières) et qu'ils présentent des propriétés hydrochimiques variées qui dépendent du type de couverture de glace. Ainsi, les données sur les étangs ont été utilisées pour déterminer comment le lac Untersee et les étangs eux- mêmes évolueront, alors qu'ils entameront une transition, sous l'effet d'un réchauffement climatique, de type de couverture de glace. v REMERCIEMENTS J’aimerais débuter par remercier le professeur Denis Lacelle d’avoir agi en tant que superviseur de thèse et mentor pour ce projet de recherche doctorale. Merci Denis de m’avoir inclus dans le projet de recherche du Lac Untersee et de m’avoir guidé à travers mes études supérieures durant les six dernières années. Merci aussi de m’avoir avoir encouragé à élargir mes horizons de carrière, que ce soit par l’entremise de conférences à travers le monde, de campagnes de travail de terrain dans l’Arctique avec d’autres étudiant(e)s, d’expériences d’enseignement à l’Université d’Ottawa et en Chine, ou d’expériences de travail au sein de la fonction publique. Ta passion pour la recherche est contagieuse. Je crois aussi que chacun(e) de tes étudiant(e)s diplômés peux s’accorder pour dire que tu tiens réellement à notre succès, donc merci énormément aussi pour ceci. Bref, merci pour tout ! J’espère pouvoir continuer de collaborer avec toi dans le futur, dans le cadre d’autres projets. J’aimerais aussi remercier Dale T. Andersen, l’investigateur principal du projet de recherche du lac Untersee, qui m’a permis d’aller faire du travail de terrain en Antarctique à trois reprises avec celui-ci. Dale, merci d’avoir transmis toutes ces connaissances en lien avec la limnologie polaire. Merci aussi pour ta confiance envers moi lorsque nous étions sur le terrain et désolé encore pour les pièces de motoneige cassées. Ce fut toujours divertissant de t’entendre parler, lors de nos soupers sur le terrain, de tes expéditions antérieures effectuées dans l’Arctique et en Antarctique. J’espère aussi pouvoir continuer à collaborer avec toi dans d’autres projets futurs. Merci aussi au professeur émérite Bernard Lauriol d’avoir agi en tant que mentor durant les huit dernières années. C’est réellement en ayant fait un mémoire de baccalauréat sous votre supervision en 2014 que j’ai développé cette passion pour la recherche. Je n’aurais jamais complété des études supérieures n’eut été de cette merveilleuse expérience. Au plaisir de continuer à travailler avec vous dans les années à suivre ! Je tiens aussi à offrir des remerciements aux membres du comité d’évaluation pour cette thèse, les professeurs Ian D. Clark, Antoni Lewkowicz, Luke Copland et Warwick F. Vincent. Merci pour votre support tout au long de mon doctorat et pour vos commentaires/suggestions en lien avec les manuscrits présentés dans cette thèse. Merci aussi à Jean Bjornson pour son support à travers mes études supérieures. Ce fut un plaisir d’échanger avec toi sur mes projets de recherche et d’obtenir d’excellents conseils de ta part vi sur de potentielles approches méthodologiques.
Recommended publications
  • Geochemistry This
    TORONTOTORONTO Vol. 8, No. 4 April 1998 Call for Papers GSA TODAY — page C1 A Publication of the Geological Society of America Electronic Abstracts Submission — page C3 Antarctic Neogene Landscapes—In the 1998 Registration Refrigerator or in the Deep Freeze? Annual Issue Meeting — June GSA Today Introduction The present Molly F. Miller, Department of Geology, Box 117-B, Vanderbilt Antarctic landscape undergoes very University, Nashville, TN 37235, [email protected] slow environmental change because it is almost entirely covered by a thick, slow-moving ice sheet and thus effectively locked in a Mark C. G. Mabin, Department of Tropical Environmental Studies deep freeze. The ice sheet–landscape system is essentially stable, and Geography, James Cook University, Townsville, Queensland 4811, Australia, [email protected] Antarctic—Introduction continued on p. 2 Atmospheric Transport of Diatoms in the Antarctic Sirius Group: Pliocene Deep Freeze Arjen P. Stroeven, Department of Quaternary Research, Stockholm University, S-106 91 Stockholm, Sweden Lloyd H. Burckle, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964 Johan Kleman, Department of Physical Geography, Stockholm University, S-106, 91 Stockholm, Sweden Michael L. Prentice, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 INTRODUCTION How did young diatoms (including some with ranges from the Pliocene to the Pleistocene) get into the Sirius Group on the slopes of the Transantarctic Mountains? Dynamicists argue for emplacement by a wet-based ice sheet that advanced across East Antarctica and the Transantarctic Mountains after flooding of interior basins by relatively warm marine waters [2 to 5 °C according to Webb and Harwood (1991)].
    [Show full text]
  • Landscape Evolution and Preservation of Ice Over One Million Years Old Quantified with Cosmogenic Nuclides 26Al, 10Be, and 21Ne, Ong Valley, Antarctica Theodore C
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects 2014 Landscape evolution and preservation of ice over one million years old quantified with cosmogenic nuclides 26Al, 10Be, and 21Ne, Ong Valley, Antarctica Theodore C. Bibby University of North Dakota Follow this and additional works at: https://commons.und.edu/theses Part of the Geology Commons Recommended Citation Bibby, Theodore C., "Landscape evolution and preservation of ice over one million years old quantified with cosmogenic nuclides 26Al, 10Be, and 21Ne, Ong Valley, Antarctica" (2014). Theses and Dissertations. 20. https://commons.und.edu/theses/20 This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. LANDSCAPE EVOLUTION AND PRESERVATION OF ICE OVER ONE MILLION YEARS OLD QUANTIFIED WITH COSMOGENIC NUCLIDES 26AL, 10BE, AND 21NE, ONG VALLEY, ANTARCTICA by Theodore C. Bibby Bachelor of Science, Florida State University, 2009 A Dissertation Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Doctor of Philosophy Grand Forks, North Dakota December 2014 Copyright 2014 Theodore C. Bibby ii This dissertation, submitted by Theodore C. Bibby in partial fulfillment of the requirements for the Degree of Doctor of Philosophy from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done and is hereby approved.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Metagenomic Profiling of the Methane-Rich Anoxic Waters of Lake Untersee As an Ocean Worlds Analog
    Ocean Worlds (2019) 6025.pdf METAGENOMIC PROFILING OF THE METHANE-RICH ANOXIC WATERS OF LAKE UNTERSEE AS AN OCEAN WORLDS ANALOG. N. Y. Wagner1, A. S. Hahn2,3, D. Andersen4, C. Roy5, M. B. Wilhelm6, M. Vanderwilt1, S. S. Johnson1, 1 Johnson Biosignatures Lab, Georgetown University, 2 Department of Microbiology and Immunology, University of British Columbia, 3 Koonkie Cloud Services Inc., 4 Carl Sagan Center, SETI Institute, 5 Department of Geography, McGill Uni- versity, 6NASA Ames Research Center. Untersee, Central Dronning Maud Land, East Antarcti- Introduction: Under ocean worlds conditions on En- ca.” Limnology and Oceanography, vol. 51, no. 2, 2006, celadus, it has been shown that biological methane produc- pp.1180–1194, [4] Bevington, James, et al. “The Thermal tion may be possible [1]. Also, the possibility of methano- Structure of the Anoxic Trough in Lake Untersee, Antarcti- genesis on Europa has been hypothesized [2]. Given the po- ca.”Antarctic Science, vol. 30, no. 6, 2018, pp. 333–344. tential for methanogenesis on the icy moons of Saturn and Jupiter, we are exploring the range of life capable of survival in an extremely methane-rich terrestrial analog. Lake Untersee as an Ocean Worlds Analog: Lake Un- tersee is located in Queen Maud Land, East Antarctica. It is perennially covered in 3 meters of ice and closed off from the outside world by the Anuchin glacier. The lake contains Figure 1. Depth profile of the aerobic and anoxic basins of an aerobic basin and anoxic basin (Figure 1). The aerobic Lake Untersee [4]. basin has been measured to be up to 169m deep with a con- stant temperature of 0.25˚C.
    [Show full text]
  • CARES ACT GRANT AMOUNTS to AIRPORTS (Pursuant to Paragraphs 2-4) Detailed Listing by State, City and Airport
    CARES ACT GRANT AMOUNTS TO AIRPORTS (pursuant to Paragraphs 2-4) Detailed Listing By State, City And Airport State City Airport Name LOC_ID Grand Totals AK Alaskan Consolidated Airports Multiple [individual airports listed separately] AKAP $16,855,355 AK Adak (Naval) Station/Mitchell Field Adak ADK $30,000 AK Akhiok Akhiok AKK $20,000 AK Akiachak Akiachak Z13 $30,000 AK Akiak Akiak AKI $30,000 AK Akutan Akutan 7AK $20,000 AK Akutan Akutan KQA $20,000 AK Alakanuk Alakanuk AUK $30,000 AK Allakaket Allakaket 6A8 $20,000 AK Ambler Ambler AFM $30,000 AK Anaktuvuk Pass Anaktuvuk Pass AKP $30,000 AK Anchorage Lake Hood LHD $1,053,070 AK Anchorage Merrill Field MRI $17,898,468 AK Anchorage Ted Stevens Anchorage International ANC $26,376,060 AK Anchorage (Borough) Goose Bay Z40 $1,000 AK Angoon Angoon AGN $20,000 AK Aniak Aniak ANI $1,052,884 AK Aniak (Census Subarea) Togiak TOG $20,000 AK Aniak (Census Subarea) Twin Hills A63 $20,000 AK Anvik Anvik ANV $20,000 AK Arctic Village Arctic Village ARC $20,000 AK Atka Atka AKA $20,000 AK Atmautluak Atmautluak 4A2 $30,000 AK Atqasuk Atqasuk Edward Burnell Sr Memorial ATK $20,000 AK Barrow Wiley Post-Will Rogers Memorial BRW $1,191,121 AK Barrow (County) Wainwright AWI $30,000 AK Beaver Beaver WBQ $20,000 AK Bethel Bethel BET $2,271,355 AK Bettles Bettles BTT $20,000 AK Big Lake Big Lake BGQ $30,000 AK Birch Creek Birch Creek Z91 $20,000 AK Birchwood Birchwood BCV $30,000 AK Boundary Boundary BYA $20,000 AK Brevig Mission Brevig Mission KTS $30,000 AK Bristol Bay (Borough) Aleknagik /New 5A8 $20,000 AK
    [Show full text]
  • August 2017 Posidonius P & Luther
    A PUBLICATION OF THE LUNAR SECTION OF THE A.L.P.O. EDITED BY: Wayne Bailey [email protected] 17 Autumn Lane, Sewell, NJ 08080 RECENT BACK ISSUES: http://moon.scopesandscapes.com/tlo_back.html FEATURE OF THE MONTH – AUGUST 2017 POSIDONIUS P & LUTHER Sketch and text by Robert H. Hays, Jr. - Worth, Illinois, USA March 5, 2017 01:28-01:48; UT, 15 cm refl, 170x, seeing 7-8/10. I drew these craters on the evening of March 4/5, 2017 while the moon was hiding some Hyades stars. This area is in northeast Mare Serenitatis west of Posidonius itself. Posidonius P is the largest crater on this sketch. The smaller crater south of P is Posidonius F and Posidonius G is the tiny pit to the north. There is a halo around Posidonius G, but this crater is noticeably north of the halo's center. A very low round swelling is northeast of Posidonius G. Luther is the crater well to the west of Posidonius P. All four of these craters are crisp, symmetric features, differing only in size. There are an assortment of elevations near Luther. The peak Luther alpha is well to the west of Luther, and showed dark shadowing at this time. All of the other features near Luther are more subtle than Luther alpha. One mound is between Luther and Luther alpha. Two more mounds are north of Luther, and a low ridge is just east of this crater. A pair of very low mounds are south of Luther. These are the vaguest features depicted here, and may be too conspicuous on the sketch.
    [Show full text]
  • Algal Toxic Compounds and Their Aeroterrestrial, Airborne and Other Extremophilic Producers with Attention to Soil and Plant Contamination: a Review
    toxins Review Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review Georg G¨аrtner 1, Maya Stoyneva-G¨аrtner 2 and Blagoy Uzunov 2,* 1 Institut für Botanik der Universität Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria; [email protected] 2 Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 blvd. Dragan Tsankov, 1164 Sofia, Bulgaria; mstoyneva@uni-sofia.bg * Correspondence: buzunov@uni-sofia.bg Abstract: The review summarizes the available knowledge on toxins and their producers from rather disparate algal assemblages of aeroterrestrial, airborne and other versatile extreme environments (hot springs, deserts, ice, snow, caves, etc.) and on phycotoxins as contaminants of emergent concern in soil and plants. There is a growing body of evidence that algal toxins and their producers occur in all general types of extreme habitats, and cyanobacteria/cyanoprokaryotes dominate in most of them. Altogether, 55 toxigenic algal genera (47 cyanoprokaryotes) were enlisted, and our analysis showed that besides the “standard” toxins, routinely known from different waterbodies (microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins, BMAA, etc.), they can produce some specific toxic compounds. Whether the toxic biomolecules are related with the harsh conditions on which algae have to thrive and what is their functional role may be answered by future studies. Therefore, we outline the gaps in knowledge and provide ideas for further research, considering, from one side, Citation: G¨аrtner, G.; the health risk from phycotoxins on the background of the global warming and eutrophication and, ¨а Stoyneva-G rtner, M.; Uzunov, B.
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]
  • US Geological Survey Scientific Activities in the Exploration Of
    Prepared in cooperation with United States Antarctic Program, National Science Foundation U.S. Geological Survey Scientific Activities in the Exploration of Antarctica: 1995–96 Field Season By Tony K. Meunier Richard S. Williams, Jr., and Jane G. Ferrigno, Editors W 0° E 60°S Fimbul Riiser-Larsen Ice Shelf Ice Shelf Lazarev Brunt Ice Shelf Ice Shelf Weddell Larsen Sea Ice Shelf Filchner Ice Shelf ANTARCTIC 80 S T ° PENINSULA R Amery Ronne A Wordie Ice N Ice Shelf Ice Shelf Shelf S A N EAST West George VI T A Ice Shelf Sound R Amundsen-Scott 90°W WEST C 90°E T South Pole Station Abbot I ANTARCTICA C Ice Shelf M ANTARCTICA O Leverett Glacier U N T A Shackleton Glacier Ross IN Shackleton S Ice Shelf Ice Shelf Skelton Glacier Getz Taylor Glacier Ice Shelf Sulzberger McMurdo McMurdo Dry Valleys Ice Shelf Station Voyeykov Ice Shelf Cook Ice Shelf 0 1000 KILOMETERS W 180° E Open-File Report 2006–1114 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2007 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report.
    [Show full text]
  • The Continental Shelf of Antarctica: Implications of the Requirement to Make a Submission to the CLCS Under Article 76 of the LOS Convention
    The Continental Shelf of Antarctica: Implications of the Requirement to Make a Submission to the CLCS under Article 76 of the LOS Convention Alex G. Oude Elferink* Netherlands Institute for the Law of the Sea, Utrecht University, The Netherlands ABSTRACT This article looks at the question of how the obligation of states parties to the United Nations Convention on the Law of the Sea to submit information on the outer limit of their continental shelf to the Commission on the Limits of the Continental Shelf and the regime established by the Antarctic Treaty can be reconciled. Under the latter Treaty states have 'agreed to disagree' about the legal status of Antarctica. The establishment of an outer limit of the continental shelf on the basis of the recommendations of the Commission on the Limits of the Continental Shelf would pose a threat to this agreement to disagree as it would recognise the existence of coastal states and maritime zones. The article sets out the options of the states involved to deal with this issue. It is concluded that there are a number of approaches which safeguard the rights of coastal states under the United Nations Convention on the Law of the Sea and the agreement to disagree of the Antarctic Treaty. Introduction The Antarctic continent and the adjacent sea areas are governed by a special treaty regime. Reconciling this regime with the general international law of the sea has posed considerable challenges. At present, such a reconciliation has to be found in respect of the requirements for the establishment of the outer limits of An earlier version of this article was presented at the Southern Ocean Law of the Sea and Maritime Disputes Workshop, Faculty of Law, University of Sydney, Australia, 19 October 2001.
    [Show full text]
  • WHO OWNS ANTARCTICA: GOVERNING the SOUTHERNMOST CONTINENT at the END of TREATY SYSTEM Bachelor’S Thesis Programme: International Relations
    TALLINN UNIVERISTY OF TEHCNOLOGY School of Business and Governance Department of Law Emmanuel Isiedo Uwuchukwu WHO OWNS ANTARCTICA: GOVERNING THE SOUTHERNMOST CONTINENT AT THE END OF TREATY SYSTEM Bachelor’s thesis Programme: International Relations Supervisor: Vlad Alex Vernygora, MA Tallinn 2019 I declare that I have compiled the paper independently and all works, important standpoints and data by other authors have been properly referenced and the same paper has not been previously been presented for grading. The document length is ……….. words from the introduction to the end of conclusion. Emmanuel Uwuchukwu …………………………… (signature, date) Student code:166334TASB Student e-mail address: [email protected] Supervisor: Vlad Vernygora, MA; The paper conforms to requirements in force …………………………………………… (signature, date) Co-supervisor: The paper conforms to requirements in force …………………………………………… (signature, date) Chairman of the Defence Committee: Permitted to the defence ………………………………… (name, signature, date) TABLE OF CONTENTS ABSTRACT .................................................................................................................................... 4 LIST OF ABBREVATIONS ........................................................................................................... 5 INTRODUCTION ........................................................................................................................... 6 1. HISTORICAL PRE-CONDITIONS OF THE ANTARTIC TREATY .................................... 10 1.1. The International
    [Show full text]
  • Extremophile Hunt Begins 8 February 2008
    Extremophile Hunt Begins 8 February 2008 Hoover, "is that you don't have to have a 'Goldilocks' zone with perfect temperature, a certain pH level, and so forth, for life to thrive." Researchers have found microbes living in ice, in boiling water, in nuclear reactors. These "strange" extremophiles may in fact be the norm for life elsewhere in the cosmos. "With our research this year, we hope to identify some new limits for life in terms of temperature and pH levels. This will help us decide where to search for life on other planets and how to recognize alien life if we actually find it." Spirochaeta americana, extreme-loving microbes from California's Mono Lake. Hoover et al discovered them Hoover has already made some new friends in cold during a previous extremophile-hunting expedition. places. Earlier Hoover teams have found new species and genera of anaerobic microbial extremophiles in the ice and permafrost of Alaska, Siberia, Patagonia, and Antarctica. A team of scientists has just left the country to explore a very strange lake in Antarctica; it is filled "I found one extremophile in penguin guano," with, essentially, extra-strength laundry detergent. recalls Hoover. "When I stooped to pick it up, Jim No, the researchers haven't spilled coffee on their Lovell, my research partner then, said, 'What the lab coats. They are hunting for extremophiles -- heck are you doing now, Richard?' But it paid off." tough little creatures that thrive in conditions too extreme for most other living things. Most incredible, though, was the revelation a few years ago that some extremophiles the researchers Antarctica's Lake Untersee, fed by glaciers, always found in an Alaskan tunnel actually came to life as covered with ice, and very alkaline, is one of the the ice around them melted.
    [Show full text]