C-12(J=1-0) On-The-Fly Mapping Survey of the Virgo Cluster Spirals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Multivariate Statistical Analysis of Spiral Galaxy Luminosities. I. Data and Results
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server A Multivariate Statistical Analysis of Spiral Galaxy Luminosities. I. Data and Results Alice Shapley California Institute of Technology, Pasadena CA, 91125, USA G. Fabbiano Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 P. B. Eskridge Ohio State University, Dept. of Astronomy, 140 W 18th Ave, Columbus, OH 43210 ABSTRACT We have performed a multiparametric analysis of luminosity data for a sample of 234 normal spiral and irregular galaxies observed in X-rays with the Einstein Observatory. This sample is representative of S and Irr galaxies, with a good coverage of morphological types and absolute magnitudes. In addition to X-ray and optical data, we have compiled H-band magnitudes, IRAS near- and far-infrared, and 6cm radio continuum observations for the sample from the literature. We have also performed a careful compilation of distance estimates. We have explored the effect of morphology by dividing the sample into early (S0/a-Sab), intermediate (Sb-Sbc), and late-type (Sc-Irr) subsamples. The data were analysed with bivariate and multivariate survival analysis techniques that make full use of all the information available in both detections and limits. We find that most pairs of luminosities are correlated when considered individually, and this is not due to a distance bias. Different luminosity-luminosity correlations follow different power-law relations. Contrary to previous reports, the LX LB correlation follows a power-law with exponent − larger than 1. Both the significances of some correlations and their power-law relations are morphology dependent. -
Download This Article in PDF Format
A&A 598, A114 (2017) Astronomy DOI: 10.1051/0004-6361/201629213 & c ESO 2017 Astrophysics Bars as seen by Herschel and Sloan Guido Consolandi1, Massimo Dotti1, Alessandro Boselli2, Giuseppe Gavazzi1, and Fabio Gargiulo1 1 Dipartimento di Fisica G. Occhialini, Università di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy e-mail: [email protected] 2 Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille), UMR 7326, 13388 Marseille, France Received 30 June 2016 / Accepted 30 December 2016 ABSTRACT We present an observational study of the effect of bars on the gas component and on the star formation properties of their host galaxies in a statistically significant sample of resolved objects, the Herschel Reference Sample. The analysis of optical and far-infrared images allows us to identify a clear spatial correlation between stellar bars and the cold-gas distribution mapped by the warm dust emission. We find that the infrared counterparts of optically identified bars are either bar-like structures or dead central regions in which star formation is strongly suppressed. Similar morphologies are found in the distribution of star formation directly traced by Hα maps. The sizes of such optical and infrared structures correlate remarkably well, hinting at a causal connection. In the light of previous observations and of theoretical investigations in the literature, we interpret our findings as further evidence of the scenario in which bars drive strong inflows toward their host nuclei: young bars are still in the process of perturbing the gas and star formation clearly delineates the shape of the bars; old bars on the contrary already removed any gas within their extents, carving a dead region of negligible star formation. -
AGN Feedback in the Hot Halo of NGC 4649
AGN Feedback in the Hot Halo of NGC 4649 A. Paggi1 G. Fabbiano1, D.-W. Kim1, S. Pellegrini2, F. Civano3, J. Strader4 and B. Luo5 1Harvard-Smithsonian Center for Astrophysics; 2Department of Astronomy, University of Bologna; 3Department of Physics and Yale Center for Astronomy and Astrophysics, Yale University; 4Department of Physics and Astronomy, Michigan State University; 5Department of Astronomy & Astrophysics, The Pennsylvania State University X-ray View of Galaxy Ecosystems - Boston - 7/9/2014 Outline ● Image + spectral analysis of ISM in NGC 4649 with deep Chandra observations ● Evidences of significant structures and cavities morphologically related with radio emission ● Non-thermal pressure component connected with radio emission ● Jet power from cavities ● Conclusions X-ray View of Galaxy Ecosystems - Boston - 7/9/2014 AGN disturbances ● Evidence of the interaction of AGNs with the surrounding hot gas in nearby galaxies and clusters has been observed as morphological disturbances in the X-ray halos in the form of ripples and cavities (e.g., Fabian et al. 2000, 2003; Forman et al. 2005). MS0735.6+7421 (McNamara et al. 2005). Perseus cluster (Fabian et al. 2006). ● AGN-induced disturbances have also been observed in the hot interstellar medium (ISM) in the halos of a number of normal elliptical galaxies (e.g,. Diehl & Statler 2007), and interpreted as a consequence of the thermal X-ray emitting gas being displaced by the AGN jets. X-ray View of Galaxy Ecosystems - Boston - 7/9/2014 NGC 4649 ● A.k.a. M60, nearby (~17 Mpc) X-ray bright, giant elliptical galaxy located in a group at the eastern edge of Virgo cluster. -
Radio Continuum and CO Emission in Star-Forming Galaxies
A&A 385, 412–424 (2002) Astronomy DOI: 10.1051/0004-6361:20020140 & c ESO 2002 Astrophysics Radio continuum and CO emission in star-forming galaxies M. Murgia1,A.Crapsi1,2, L. Moscadelli3, and L. Gregorini1,4 1 Istituto di Radioastronomia del CNR, Via Gobetti 101, 40129, Bologna, Italy 2 Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125, Firenze, Italy 3 Osservatorio Astronomico di Cagliari, Loc. Poggio dei Pini, Strada 54, 09012 Capoterra (CA), Italy 4 Dipartimento di Fisica, Universit`a di Bologna, Via B. Pichat 6/2, 40127 Bologna, Italy Received 30 October 2001 / Accepted 23 January 2002 Abstract. We combine the radio continuum images from the NRAO VLA Sky Survey with the CO-line observations from the extragalactic CO survey of the Five College Radio Astronomy Observatory to study the relationship between molecular gas and the star formation rate within the disks of 180 spiral galaxies at 4500 resolution. We find a tight correlation between these quantities. On average, the ratio between the radio continuum and the CO emission is constant, within a factor of 3, both inside the same galaxy and from galaxy to galaxy. The mean star formation efficiency deduced from the radio continuum corresponds to convert 3.5% of the available molecular gas into stars on a time scale of 108 yr and depends weakly on general galaxy properties, such as Hubble type or nuclear activity. A comparison is made with another similar analysis performed using the Hα luminosity as star formation indicator. The overall agreement we find between the two studies reinforces the use of the radio luminosity as star formation rate indicator not only on global but also on local scales. -
Chemistry and Star Formation in the Host Galaxies of Type Ia Supernovae
Chemistry and Star Formation in the Host Galaxies of Type Ia Supernovae The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Gallagher, Joseph S., Peter M. Garnavich, Perry Berlind, Peter Challis, Saurabh Jha, and Robert P. Kirshner. 2005. “Chemistry and Star Formation in the Host Galaxies of Type Ia Supernovae.” The Astrophysical Journal 634 (1): 210–26. https:// doi.org/10.1086/491664. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41399918 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Astrophysical Journal, 634:210–226, 2005 November 20 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. CHEMISTRY AND STAR FORMATION IN THE HOST GALAXIES OF TYPE Ia SUPERNOVAE Joseph S. Gallagher and Peter M. Garnavich Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556-5670 Perry Berlind F. L. Whipple Observatory, 670 Mount Hopkins Road, P.O. Box 97, Amado, AZ 85645 Peter Challis Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Saurabh Jha Department of Astronomy, 601 Campbell Hall, University of California, Berkeley, CA 94720-3411 and Robert P. Kirshner Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Received 2005 March 4; accepted 2005 July 22 ABSTRACT We study the effect of environment on the properties of Type Ia supernovae by analyzing the integrated spectra of 57 local Type Ia supernova host galaxies. -
Virgo the Virgin
Virgo the Virgin Virgo is one of the constellations of the zodiac, the group tion Virgo itself. There is also the connection here with of 12 constellations that lies on the ecliptic plane defined “The Scales of Justice” and the sign Libra which lies next by the planets orbital orientation around the Sun. Virgo is to Virgo in the Zodiac. The study of astronomy had a one of the original 48 constellations charted by Ptolemy. practical “time keeping” aspect in the cultures of ancient It is the largest constellation of the Zodiac and the sec- history and as the stars of Virgo appeared before sunrise ond - largest constellation after Hydra. Virgo is bordered by late in the northern summer, many cultures linked this the constellations of Bootes, Coma Berenices, Leo, Crater, asterism with crops, harvest and fecundity. Corvus, Hydra, Libra and Serpens Caput. The constella- tion of Virgo is highly populated with galaxies and there Virgo is usually depicted with angel - like wings, with an are several galaxy clusters located within its boundaries, ear of wheat in her left hand, marked by the bright star each of which is home to hundreds or even thousands of Spica, which is Latin for “ear of grain”, and a tall blade of galaxies. The accepted abbreviation when enumerating grass, or a palm frond, in her right hand. Spica will be objects within the constellation is Vir, the genitive form is important for us in navigating Virgo in the modern night Virginis and meteor showers that appear to originate from sky. Spica was most likely the star that helped the Greek Virgo are called Virginids. -
And Ecclesiastical Cosmology
GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc. -
May 2013 BRAS Newsletter
www.brastro.org May 2013 What's in this issue: PRESIDENT'S MESSAGE .............................................................................................................................. 2 NOTES FROM THE VICE PRESIDENT ........................................................................................................... 3 MESSAGE FROM THE HRPO ...................................................................................................................... 4 OBSERVING NOTES ..................................................................................................................................... 5 DEEP SKY OBJECTS ................................................................................................................................... 6 MAY ASTRONOMICAL EVENTS .................................................................................................................... 7 TREASURER’S NOTES ................................................................................................................................. 8 PREVIOUS MEETING MINUTES .................................................................................................................... 9 IMPORTANT NOTE: This month's meeting will be held on Saturday, May 18th at LIGO. PRESIDENT'S MESSAGE Hi Everyone, April was quite a busy month and the busiest day was International Astronomy Day. As you may have heard, we had the highest attendance at our Astronomy Day festivities at the HRPO ever. Approximately 770 people attended this year -
Classification of Galaxies Using Fractal Dimensions
UNLV Retrospective Theses & Dissertations 1-1-1999 Classification of galaxies using fractal dimensions Sandip G Thanki University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Thanki, Sandip G, "Classification of galaxies using fractal dimensions" (1999). UNLV Retrospective Theses & Dissertations. 1050. http://dx.doi.org/10.25669/8msa-x9b8 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. -
RA Dec Max @ @ Rise Tran Sets 2000.0 2000.0 Alt° Time Azm
RA Dec Max @ @ Rise Tran Sets Size M# Seq Type Cons mv Remarks Observed / Details 2000.0 2000.0 Alt° time Azm° @ @ @ (arcmin) A large, face-on, faint, illusive spiral. One of the most difficult of the Messier objects especially in M74 1 G-SAc Psc 1 hr 37m 15° 47' 29.12 18:09 255.94 xx:xx xx:xx 21:27 10.2 10.2x9.5 small telescopes and for northern marathoners due to its low altitude at sunset in March. A bright, compact Seyfert galaxy with a star-like nucleus - use high power. The closest Messier to the ecliptic (next is M78). Tough for northern M77 2 G-SABab Cet 2 hr 43m 0° 1' 24.2 18:09 231.09 xx:xx xx:xx 21:01 8.9 7x6 marathoners due to its low altitude at sunset in March. (There is a 64.3 minute RA gap between M77 and M45.) A large diffuse spiral - requires a dark sky. This face- on spiral can be difficult to see due to it's large size. M33 3 G-SAcd Tri 1 hr 34m 30° 39' 40.27 18:09 267.98 04:15 xx:xx 23:28 6.7 73x45 Use low power (may be easier to spot in finder or binoculars). !! The Andromeda Galaxy - the brightest galaxy in M31 4 G-SAb And 0 hr 43m 41° 16' 40.38 18:09 287.43 xx:xx xx:xx xx:xx 4.8 178 the sky, 4° wide. Look for dust lanes. (The smallest Messier RA gap is between M31 and M32.) The closest companion to M31 - located slightly S M32 5 G-E5pec And 0 hr 43m 40° 52' 40.11 18:09 287.04 xx:xx xx:xx xx:xx 8.7 8x6 of M31 and visible in the same low power field. -
Arxiv:Astro-Ph/0011440 23 Nov 2000 ?? 3(81.4 81
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server A&A manuscript no. (will be inserted by hand later) ASTRONOMY Your thesaurus codes are: AND 03 (08.19.04; 08.19.5 SN 1991T; 11.09.1 NGC 4527; 12.04.3) ASTROPHYSICS The brightness of SN 1991T and the uniformity of decline-rate and colour corrected absolute magnitudes of supernovae Ia ? ¾ ?? ¿ ¿ 4 T. Richtler½ ,J.B.Jensen ,J.Tonry , B. Barris , and G. Drenkhahn ½ Universidad de Concepci´on, Departamento de F´ısica, Casilla 160-C, Concepci´on, Chile, ([email protected]) ¾ Gemini Observatory, 670 N. A`ohoku Place Hilo, HI 96720, ([email protected]) ¿ Institute for Astronomy, University of Hawaii 2680 Woodlawn Drive, Honolulu, HI 96822 4 Max-Planck-Institut f¨ur Astrophysik, Postfach 1317, 85741 Garching bei M¨unchen, Germany ([email protected]) Received ... / Accepted ... Abstract. We present a distance to NGC 4527, the host galaxy appropriate corrections, exhibit a surprisingly high degree of of the type Ia SN 1991T, measured by surface brightness fluctu- uniformity in their maximum brightness. ations. This supernova has been labelled “peculiar” both on the A few supernovae, however, seem to deviate in the sense grounds of its spectroscopic behaviour and its apparent overlu- that they are either too bright or too dim. Since at high redshifts, minosity with respect to other supernovae. The distance mod- selection effects towards the bright end of the supernovae lumi- :¾6 ¦ ¼:¼9 ulus to NGC 4527 and thus to SN 1991T is ¿¼ .This nosity distribution are probably present, the apparently over- relatively short distance largely removes the discrepancy with luminous supernovae are of particular interest. -
Events: No General Meeting in April
The monthly newsletter of the Temecula Valley Astronomers Apr 2020 Events: No General Meeting in April. Until we can resume our monthly meetings, you can still interact with your astronomy associates on Facebook or by posting a message to our mailing list. General information: Subscription to the TVA is included in the annual $25 membership (regular members) donation ($9 student; $35 family). President: Mark Baker 951-691-0101 WHAT’S INSIDE THIS MONTH: <[email protected]> Vice President: Sam Pitts <[email protected]> Cosmic Comments Past President: John Garrett <[email protected]> by President Mark Baker Treasurer: Curtis Croulet <[email protected]> Looking Up Redux Secretary: Deborah Baker <[email protected]> Club Librarian: Vacant compiled by Clark Williams Facebook: Tim Deardorff <[email protected]> Darkness – Part III Star Party Coordinator and Outreach: Deborah Baker by Mark DiVecchio <[email protected]> Hubble at 30: Three Decades of Cosmic Discovery Address renewals or other correspondence to: Temecula Valley Astronomers by David Prosper PO Box 1292 Murrieta, CA 92564 Send newsletter submissions to Mark DiVecchio th <[email protected]> by the 20 of the month for Members’ Mailing List: the next month's issue. [email protected] Website: http://www.temeculavalleyastronomers.com/ Like us on Facebook Page 1 of 18 The monthly newsletter of the Temecula Valley Astronomers Apr 2020 Cosmic Comments by President Mark Baker One of the things commonly overlooked about Space related Missions is time, and of course, timing…!!! Many programs take a decade just to get them in place and off the ground, and many can take twice that long…just look at the James Webb Telescope!!! So there’s the “time” aspect of such endeavors…what about timing?? I mentioned last month that July is looking like a busy month for Martian Missions… here’s a refresher: 1) The NASA Mars 2020 rover Perseverance and its helicopter drone companion (aka Lone Ranger and Tonto, as I called them) is still on schedule.