Reactivated Tectal Radial Glia in Zebrafish Shuguang Yu1,2, Jie He1*

Total Page:16

File Type:pdf, Size:1020Kb

Reactivated Tectal Radial Glia in Zebrafish Shuguang Yu1,2, Jie He1* RESEARCH ARTICLE Stochastic cell-cycle entry and cell-state- dependent fate outputs of injury- reactivated tectal radial glia in zebrafish Shuguang Yu1,2, Jie He1* 1State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; 2University of Chinese Academy of Sciences, Beijing, China Abstract Gliosis defined as reactive changes of resident glia is the primary response of the central nervous system (CNS) to trauma. The proliferation and fate controls of injury-reactivated glia are essential but remain largely unexplored. In zebrafish optic tectum, we found that stab injury drove a subset of radial glia (RG) into the cell cycle, and surprisingly, proliferative RG responding to sequential injuries of the same site were distinct but overlapping, which was in agreement with stochastic cell-cycle entry. Single-cell RNA sequencing analysis and functional assays further revealed the involvement of Notch/Delta lateral inhibition in this stochastic cell-cycle entry. Furthermore, the long-term clonal analysis showed that proliferative RG were largely gliogenic. Notch inhibition of reactive RG, not dormant and proliferative RG, resulted in an increased production of neurons, which were short-lived. Our findings gain new insights into the proliferation and fate controls of injury-reactivated CNS glia in zebrafish. DOI: https://doi.org/10.7554/eLife.48660.001 *For correspondence: Introduction [email protected] Traumatic brain injury (TBI) is one clinically principal type of central nervous system insults (Burda and Sofroniew, 2014). Gliosis defined as reactive changes of resident macroglia (e.g., mam- Competing interests: The malian astrocytes) is a primary CNS response to TBI in mammals (Barres, 2008; Burda and Sofro- authors declare that no niew, 2014). In mammals, gliosis undergoes three significant stages: Glial cells initially become competing interests exist. reactive, hypertrophic, and inflammatory, with characteristic upregulation of GFAP and vimentin Funding: See page 24 (Liddelow and Barres, 2017; Zamanian et al., 2012); subsequently, a subset of reactive glia re- Received: 21 May 2019 enter the cell cycle and become proliferative (Gallo and Deneen, 2014); finally, proliferative glia Accepted: 02 August 2019 undergo gliogenesis, the process of glial cell production, and form structures known as glial scars Published: 23 August 2019 (Burda and Sofroniew, 2014). Earlier studies have demonstrated both protective and detrimental roles of the gliosis in the injured CNS (Faulkner et al., 2004; Li et al., 2008; Silver and Miller, Reviewing editor: Marianne E 2004; Sofroniew and Vinters, 2010; Wanner et al., 2013). For instance, the blockage of initial glia Bronner, California Institute of Technology, United States reactivation worsened the injury (Faulkner et al., 2004; Li et al., 2008; Wanner et al., 2013), whereas glia scars hindered neuronal regeneration (Silver and Miller, 2004). In the process, the pro- Copyright Yu and He. This liferation and fate controls of injury-reactivated RG are essential but remain elusive in vivo. article is distributed under the In contrast to the mammalian CNS, teleost fish exhibit a superior neural regeneration in response terms of the Creative Commons Attribution License, which to TBI beyond embryonic development (Baumgart et al., 2012; Grandel et al., 2006; permits unrestricted use and Kishimoto et al., 2012; Reimer et al., 2008; Than-Trong and Bally-Cuif, 2015). Radial glia (RG), redistribution provided that the the primary form of macroglia in teleost fish, are the main cell source for injury-mediated regenera- original author and source are tion (Than-Trong and Bally-Cuif, 2015). For instance, RG of different brain regions in zebrafish, credited. including the telencephalon, the hypothalamus, and the spinal cord can produce newborn neurons Yu and He. eLife 2019;8:e48660. DOI: https://doi.org/10.7554/eLife.48660 1 of 27 Research article Developmental Biology Stem Cells and Regenerative Medicine eLife digest The brain contains networks of cells known as neurons that rapidly relay information from one place to another. Other brain cells called glial cells perform several roles to support and protect the neurons including holding them in position and supplying them with oxygen and other nutrients. Damage to the brain as a result of physical injuries is one of the leading causes of death and disability in people worldwide. Brain injuries generally stimulate glial cells to enter a “reactive” state to help repair the damage. However, some glial cells may start to divide and produce more glial cells instead, leading to scar-like structures in the brain that hinder the repair process. To investigate why brain injuries trigger some glial cells to divide, Yu and He systematically examined glial cells in the part of the zebrafish brain that handles vision, known as the optic tectum. The experiments showed that a physical injury stimulated some of the glial cells to divide. Repeated injuries to the same part of the brain did not always stimulate the same glial cells to divide, suggesting that this process happens in random cells. Further experiments revealed that molecules involved in a signaling pathway known as Notch signaling were released from some brain cells and inhibited neighboring glial cells from dividing to make new glial cells. Unexpectedly, inhibiting Notch signaling after a brain injury caused some of the glial cells that were in the reactive state to divide to produce neurons instead of glial cells. Understanding how the brain responds to injury may help researchers develop new therapies that may benefit human patients in future. The next steps following on from this work will be to find out whether glial cells in humans and other mammals work in the same way as glial cells in zebrafish. DOI: https://doi.org/10.7554/eLife.48660.002 in response to the injury (Duncan et al., 2016; Goldshmit et al., 2012; Johnson et al., 2016; Kizil et al., 2012; Kroehne et al., 2011; Than-Trong and Bally-Cuif, 2015). Also, retinal mu¨ ller glia (MG) can be reactivated by the injury, giving rise to newborn retinal neurons (Goldman, 2014; Gorsuch and Hyde, 2014). Molecular mechanisms underlying the proliferation and fate controls of injury-reactivated RG have been examined in zebrafish for many years (Dias et al., 2012; Goldman, 2014). As to the pro- liferation control, Notch signaling is involved but is somehow context-dependent. For instance, in the zebrafish spinal cord, glial cells have low levels of Notch activity when they are in the dormant state, and enter the cell cycle by increased Notch activity after the injury (Dias et al., 2012). In con- trast, dormant RG of zebrafish telencephalon exhibit high Notch activity and become proliferative by a rapid decrease of Notch activity (Chapouton et al., 2010). Notch signaling has also been reported to regulate fate outputs of reactivated MG in the injured zebrafish retina, that is, Notch inhibition leads to gliogenesis, whereas Notch over-activation results in the production of photoreceptor cells (Wan et al., 2012). Zebrafish optic tectum, the higher sensory integration center, possesses a large population of RG (Galant et al., 2016; Ito et al., 2010). Unlike other brain regions where RG present as both dormant and proliferative forms at physiological conditions, tectal RG has been reported to be dormant, and are reactivated by injury to give rise to newborn neurons via Wnt signaling as well as Notch signaling (Shimizu et al., 2018; Ueda et al., 2018). Interestingly, a recent study showed that tectal RG pro- duced a significant number of glial cells (~25%) but not neurons (Lindsey et al., 2019). It is essential to resolve this inconsistency on the fate potentials of injury-reactivated tectal RG. In this study, we set out to investigate the mechanism controlling injury responses of tectal RG in vivo. We found that stab injury drove a subset of tectal RG into the cell cycle. Surprisingly, prolifer- ative tectal RG responding to the sequential injuries at the same injury site were distinct but overlap- ping. Quantitative analysis showed the probability of proliferative RG responding to both sequential stab injuries could be well explained by a model incorporating stochastic cell-cycle entry at the fixed probability of ~25%. Single-cell RNA-seq and functional analysis revealed this stochastic cell-cycle entry was dependent on Notch/Delta lateral inhibition. The clonal analysis showed that proliferative tectal RG underwent gliogenesis. Interestingly, post-injury notch inhibition drove reactive RG into Yu and He. eLife 2019;8:e48660. DOI: https://doi.org/10.7554/eLife.48660 2 of 27 Research article Developmental Biology Stem Cells and Regenerative Medicine the cell cycle and resulted in increased neurogenesis. Interestingly, the over-produced neurons mostly diminished by approximately 25 days post-injury (dpi). Results Stab injury induces the proliferation of dormant tectal RG Consistent with earlier studies (Galant et al., 2016; Ito et al., 2010; Jung et al., 2012), our results showed that Tg(gfap:GFP) (Bernardos and Raymond, 2006), Tg(her4.1:dRFP) (Yeo et al., 2007), and the antibody against glutamine synthetase (GS) specifically labeled RG that line the tectal ventri- cle and extend their basal processes into the superficial neuropils (Figure 1A–B3 and Figure 1—fig- ure supplement 1A-C2). To examine the dormancy of tectal RG, we quantified the proliferative RG in the optic tectum of Tg(gfap:GFP) fish using the antibodies against proliferating cell nuclear anti- gen (PCNA), glutamine synthetase (GS), and GFP (Figure 1A–B3). Only 1.4 ± 0.2% (n = 5, mean ± SEM) of GFP+/GS+ RG at the bottom of the periventricular gray zone (PGZ) were PCNA+ (Figure 1A–B3). Bromodeoxyuridine (BrdU) is a nucleotide analog that incorporates into new synthe- sized DNA of dividing cells in the S phase. We noticed that 1 day’s administration of BrdU labeled very few tectal RG under physiological conditions (Figure 1—figure supplement 1D-F1).
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Mutation of L7rn3 Shows That Odz4 Is Required for Mouse Gastrulation
    Copyright 2005 by the Genetics Society of America DOI: 10.1534/genetics.104.034967 Mutation of l7Rn3 Shows That Odz4 Is Required for Mouse Gastrulation Amy C. Lossie,1 Hisashi Nakamura,1 Sharon E. Thomas2 and Monica J. Justice3 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 Manuscript received August 12, 2004 Accepted for publication October 8, 2004 ABSTRACT A mouse homolog of the Drosophila pair-rule gene Odd Oz (Odz4) maps to the critical region of the l7Rn3 locus on mouse chromosome 7. Here we show that Odz4 is an excellent candidate for this allelic series because (1) it spans the entire critical region, (2) the phenotypes correlate with embryonic expression, (3) the complex genetic inheritance of the alleles is consistent with complex transcriptional regulation, and (4) one allele has a mutation in a conserved amino acid. Odz4 uses five alternate promoters that encode both secreted and membrane-bound proteins. Intragenic complementation of the l7Rn3 alleles is consistent with these multiple-protein isoforms. Further, the allelic series shows that Odz4 is required to establish the anterior-posterior axis of the gastrulating mouse embryo and is necessary later for meso- derm-derived tissues such as somites, heart, and skeleton. Sequencing of RT-PCR products from five of the six alleles reveals a nonconservative amino acid change in the l7Rn3 m4 allele. This amino acid is important evolutionarily, as it is conserved to Drosophila. Together, our data indicate that Odz4 is mutated in the l7Rn3 allele series and performs roles in the mouse brain, heart, and embryonic patterning similar to those of its Drosophila counterpart.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Molecular Codes for Cell Type Specification in Brn3 Retinal
    Molecular codes for cell type specification in PNAS PLUS Brn3 retinal ganglion cells Szilard Sajgoa,1, Miruna Georgiana Ghiniaa,2, Matthew Brooksb, Friedrich Kretschmera,3, Katherine Chuanga,4, Suja Hiriyannac, Zhijian Wuc, Octavian Popescud,e, and Tudor Constantin Badeaa,5 aRetinal Circuits Development and Genetics Unit, Neurobiology–Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, MD 20892; bGenomics Core, Neurobiology–Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, MD 20892; cOcular Gene Therapy Core, National Eye Institute, Bethesda, MD 20892; dInstitute of Biology, Romanian Academy, Bucharest 060031, Romania; and eMolecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Science, Babes-Bolyai University, Cluj-Napoca 400084, Romania Edited by Jeremy Nathans, Johns Hopkins University, Baltimore, MD, and approved April 12, 2017 (received for review November 8, 2016) Visual information is conveyed from the eye to the brain by Onecut2 (6, 13, 26–33). Together with Isl1 and Brn3b, these distinct types of retinal ganglion cells (RGCs). It is largely unknown downstream factors are expressed in partially overlapping patterns how RGCs acquire their defining morphological and physiological in RGC types, and some were shown to be required for survival features and connect to upstream and downstream synaptic and/or dendrite and axon formation in various RGC types. partners. The three Brn3/Pou4f transcription factors (TFs) participate However, many other TFs may be involved
    [Show full text]
  • Expression and Roles of Teneurins in Zebrafish
    fnins-13-00158 March 11, 2019 Time: 17:18 # 1 ORIGINAL RESEARCH published: 12 March 2019 doi: 10.3389/fnins.2019.00158 Expression and Roles of Teneurins in Zebrafish Angela Cheung1,2†, Katherine E. Trevers1,2†‡, Marta Reyes-Corral1, Paride Antinucci1‡ and Robert Hindges1,2* 1 Centre for Developmental Neurobiology, King’s College London, London, United Kingdom, 2 MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom The teneurins, also known as Ten-m/Odz, are highly conserved type II transmembrane glycoproteins widely expressed throughout the nervous system. Functioning as dimers, these large cell-surface adhesion proteins play a key role in regulating Edited by: neurodevelopmental processes such as axon targeting, synaptogenesis and neuronal Antony Jr. Boucard, wiring. Synaptic specificity is driven by molecular interactions, which can occur either in Centro de Investigación y de Estudios a trans-homophilic manner between teneurins or through a trans-heterophilic interaction Avanzados (CINVESTAV), Mexico across the synaptic cleft between teneurins and other cell-adhesion molecules, such as Reviewed by: Timothy Mosca, latrophilins. The significance of teneurins interactions during development is reflected in Thomas Jefferson University, the widespread expression pattern of the four existing paralogs across interconnected United States Elena Seiradake, regions of the nervous system, which we demonstrate here via in situ hybridization and University of Oxford, United Kingdom the generation of transgenic BAC reporter lines in zebrafish. Focusing on the visual *Correspondence: system, we will also highlight the recent developments that have been made in furthering Robert Hindges our understanding of teneurin interactions and their functionality, including the instructive [email protected] †These authors have contributed role of teneurin-3 in specifying the functional wiring of distinct amacrine and retinal equally to this work ganglion cells in the vertebrate visual system underlying a particular functionality.
    [Show full text]
  • Transcriptome Analysis of Adipose Tissues from Two Fat-Tailed Sheep
    Li et al. BMC Genomics (2018) 19:338 https://doi.org/10.1186/s12864-018-4747-1 RESEARCHARTICLE Open Access Transcriptome analysis of adipose tissues from two fat-tailed sheep breeds reveals key genes involved in fat deposition Baojun Li1, Liying Qiao1, Lixia An2, Weiwei Wang1, Jianhua Liu1, Youshe Ren1, Yangyang Pan1, Jiongjie Jing1 and Wenzhong Liu1* Abstract Background: The level of fat deposition in carcass is a crucial factor influencing meat quality. Guangling Large-Tailed (GLT) and Small-Tailed Han (STH) sheep are important local Chinese fat-tailed breeds that show distinct patterns of fat depots. To gain a better understanding of fat deposition, transcriptome profiles were determined by RNA-sequencing of perirenal, subcutaneous, and tail fat tissues from both the sheep breeds. The common highly expressed genes (co-genes) in all the six tissues, and the genes that were differentially expressed (DE genes) between these two breeds in the corresponding tissues were analyzed. Results: Approximately 47 million clean reads were obtained for each sample, and a total of 17,267 genes were annotated. Of the 47 highly expressed co-genes, FABP4, ADIPOQ, FABP5,andCD36 were the four most highly transcribed genes among all the known genes related to adipose deposition. FHC, FHC-pseudogene,and ZC3H10 were also highly expressed genes and could, thus, have roles in fat deposition. A total of 2091, 4233, and 4131 DE genes were identified in the perirenal, subcutaneous, and tail fat tissues between the GLT and STH breeds, respectively. Gene Ontology (GO) analysis showed that some DE genes were associated with adipose metabolism.
    [Show full text]
  • Supplementary Table 4
    Supplementary Materials High-throughput screening of mouse gene knockouts identifies established and novel high body fat phenotypes David R. Powell1, Jean-Pierre Revelli1, Deon Doree1, Christopher M. DaCosta1, Urvi Desai1, Melanie K. Shadoan1, Lawrence Rodriguez1, Michael Mullens1, Qi M. Yang1, Zhi-Ming Ding1, Laura L. Kirkpatrick1, Peter Vogel1, Brian Zambrowicz1, Arthur T. Sands1, Kenneth A. Platt1, Gwenn M. Hansen1 and Robert Brommage1 1Lexicon Pharmaceuticals, Inc., 8800 Technology Forest Place, The Woodlands, TX, 77381, USA 1 A B C D E F Supplementary Figure 1. Gpr45 KO mice are obese due to decreased energy expenditure. Starting at weaning, 3-week old Gpr45 KO and WT mice were individually housed for 44 days on chow diet. WT mice were fed ad libitum (ad lib) while KO mice were either fed ad lib (KO ad lib) or pair-fed to the WT mice (KO PF). Body composition was measured by QMR on the first and last study days, with changes in body fat analyzed by one-way ANOVA. Food consumption was measured daily. QMR data are shown for male A) %body fat and B) body fat (g), and for female C) %body fat and D) body fat (g). Also shown are mean daily food consumption of E) male and F) female mice. KO mice different from WT mice, *P < 0.05, **P < 0.01; WT and KO PF mice different from KO ad lib mice, †P < 0.01. 2 A B C D Supplementary Figure 2. The obesity of Ksr2 KO mice results from increased energy intake and decreased energy expenditure. Male mice: 13 KO mice and 12 WT littermates were weaned onto chow diet.
    [Show full text]
  • Molecular Specializations of Deep Cortical Layer Analogs in Songbirds Alexander A
    www.nature.com/scientificreports OPEN Molecular specializations of deep cortical layer analogs in songbirds Alexander A. Nevue, Peter V. Lovell, Morgan Wirthlin & Claudio V. Mello* How the evolution of complex behavioral traits is associated with the emergence of novel brain pathways is largely unknown. Songbirds, like humans, learn vocalizations via tutor imitation and possess a specialized brain circuitry to support this behavior. In a comprehensive in situ hybridization efort, we show that the zebra fnch vocal robust nucleus of the arcopallium (RA) shares numerous markers (e.g. SNCA, PVALB) with the adjacent dorsal intermediate arcopallium (AId), an avian analog of mammalian deep cortical layers with involvement in motor function. We also identify markers truly unique to RA and thus likely linked to modulation of vocal motor function (e.g. KCNC1, GABRE), including a subset of the known shared markers between RA and human laryngeal motor cortex (e.g. SLIT1, RTN4R, LINGO1, PLXNC1). The data provide novel insights into molecular features unique to vocal learning circuits, and lend support for the motor theory for vocal learning origin. An in-depth understanding of how the brain controls learned behaviors and how these behaviors arise in specifc animal lineages requires detailed knowledge of the molecular organization of the underlying circuits. Songbirds ofer an excellent model for investigating these questions. Teir vocal circuitry has been extensively studied, and consists of interconnected pallial, basal ganglia, and thalamic components that control the production and acquisition of learned vocalizations1. As is typical of birds, the pallial (cortical-like) areas consist of discrete nuclei, in contrast to the layered cortex of mammals2–4.
    [Show full text]
  • Transcriptomic Causal Networks Identified Patterns of Differential Gene Regulation in Human Brain from Schizophrenia Cases Versus Controls
    Transcriptomic Causal Networks identified patterns of differential gene regulation in human brain from Schizophrenia cases versus controls Akram Yazdani1, Raul Mendez-Giraldez2, Michael R Kosorok3, Panos Roussos1,4,5 1Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA 2Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, NC, USA 3Department of Biostatistics, University of North Carolina at Chapel Hill, NC, USA 4Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA 5Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, New York, 10468, USA Abstract Common and complex traits are the consequence of the interaction and regulation of multiple genes simultaneously, which work in a coordinated way. However, the vast majority of studies focus on the differential expression of one individual gene at a time. Here, we aim to provide insight into the underlying relationships of the genes expressed in the human brain in cases with schizophrenia (SCZ) and controls. We introduced a novel approach to identify differential gene regulatory patterns and identify a set of essential genes in the brain tissue. Our method integrates genetic, transcriptomic, and Hi-C data and generates a transcriptomic-causal network. Employing this approach for analysis of RNA-seq data from CommonMind Consortium, we identified differential regulatory patterns for SCZ cases and control groups to unveil the mechanisms that control the transcription of the genes in the human brain. Our analysis identified modules with a high number of SCZ-associated genes as well as assessing the relationship of the hubs with their down-stream genes in both, cases and controls.
    [Show full text]
  • Original Article Detection of TERT Promoter Mutations Using Targeted
    CANCER RESEARCH AND TREATMENT (CRT) Original Article Detection of TERT Promoter Mutations Using Targeted Next-Generation Sequencing: Overcoming GC Bias through Trial and Error Hyunwoo Lee1, Boram Lee2,3, Deok Geun Kim3,4, Yoon Ah Cho5, Jung-Sun Kim1,3, Yeon-Lim Suh1 1Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 2Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 3Department of Digital Health, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, 4Department of Clinical Genomic Center, Samsung Article5 Medical Center, Sungkyunkwan University School of Medicine, Seoul, Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea Running title: Next-generation Sequencing and TERT Mutation Correspondence: Yeon-Lim Suh Department of Pathology and Translational Genomics, Samsung Medical Center, SungkyunkwanAccepted University School of Medicine, 81 Irwon -ro, Gangnam-gu, Seoul 06351, Korea Tel: 82-2-3410-2761 Fax: 82-2-3410-0025 E-mail: [email protected] This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as an ‘Accepted Article’, doi:10.4143/crt.2021.107 1 Korean Cancer Association This article is protected by copyright. All rights reserved. CANCER RESEARCH AND TREATMENT (CRT) Abstract Purpose Detection of telomerase reverse transcriptase (TERT) promoter mutations is a crucial process in the integrated diagnosis of glioblastomas. However, the TERT promoter region is difficult to amplify because of its high guanine-cytosine (GC) content (> 80%).
    [Show full text]
  • ODZ3 (TENM3) Rabbit Polyclonal Antibody – TA321274 | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA321274 ODZ3 (TENM3) Rabbit Polyclonal Antibody Product data: Product Type: Primary Antibodies Applications: IHC Recommended Dilution: ELISA: 1:3000-10000, IHC: 1:50-200 Reactivity: Human, Mouse, Rat Host: Rabbit Isotype: IgG Clonality: Polyclonal Immunogen: Synthetic peptide corresponding to a region derived from 2390-2402 amino acids of human teneurin transmembrane protein 3 Formulation: PBS pH7.3, 0.05% NaN3, 50% glycerol Concentration: lot specific Purification: Antigen affinity purification Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Gene Name: teneurin transmembrane protein 3 Database Link: NP_001073946 Entrez Gene 23965 MouseEntrez Gene 306451 RatEntrez Gene 55714 Human Q9P273 Background: This protein involved in neural development; regulating the establishment of proper connectivity within the nervous system. It promotes axon guidance and homophilic cell adhesion. And it plays a role in the development of the visual pathway; regulates the formation in ipsilateral retinal mapping to both the dorsal lateral geniculate nucleus (dLGN) and the superior colliculus (SC). May be involved in the differentiation of the fibroblast-like cells in the superficial layer of mandibular condylar cartilage into chondrocytes. Synonyms: MCOPCB9; ODZ3; Ten-m3; TNM3 Protein Families: Druggable Genome, Transmembrane This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 ODZ3 (TENM3) Rabbit Polyclonal Antibody – TA321274 Product images: Predicted cell location: Nucleus, Cytoplasm.
    [Show full text]
  • Estrogen's Impact on the Specialized Transcriptome, Brain, and Vocal
    Estrogen’s Impact on the Specialized Transcriptome, Brain, and Vocal Learning Behavior of a Sexually Dimorphic Songbird by Ha Na Choe Department of Molecular Genetics & Microbiology Duke University Date:_____________________ Approved: ___________________________ Erich D. Jarvis, Supervisor ___________________________ Hiroaki Matsunami ___________________________ Debra Silver ___________________________ Dong Yan ___________________________ Gregory Crawford Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Molecular Genetics & Microbiology in the Graduate School of Duke University 2020 ABSTRACT Estrogen’s Impact on the Specialized Transcriptome, Brain, and Vocal Learning Behavior of a Sexually Dimorphic Songbird by Ha Na Choe Department of Molecular Genetics & Microbiology Duke University Date:_________________________ Approved: ___________________________ Erich D. Jarvis, Supervisor ___________________________ Hiroaki Matsunami ___________________________ Debra Silver ___________________________ Dong Yan ___________________________ Gregory Crawford Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Molecular Genetics & Microbiology in the Graduate School of Duke University 2020 Copyright by Ha Na Choe 2020 Abstract The song system of the zebra finch (Taeniopygia guttata) is highly sexually dimorphic, where only males develop the neural structures necessary to learn and produce learned vocalizations
    [Show full text]