Expression and Modulation of Potassium Channels in Neuroblastoma

Total Page:16

File Type:pdf, Size:1020Kb

Expression and Modulation of Potassium Channels in Neuroblastoma Expression and modulation of potassium channels in neuroblastoma Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Master of Philosophy By Meraj Ondhia July 2017 Abstract Neuroblastoma is a paediatric cancer derived from the sympathoadrenal cell lineage. Most cases are diagnosed in children under the age of 5 and neuroblastoma is responsible for 15% of paediatric oncology deaths. Neuroblastoma tumours demonstrate remarkable clinical variability which reflects their significant biological heterogeneity. Currently, even with intensive multimodal treatment, patients with high-risk disease have a poor prognosis. Therefore, further understanding of the biology of neuroblastoma may contribute to developing novel therapeutic approaches. Potassium (K+) channels are involved in the regulation of many biological processes associated with cancer; including cell proliferation, apoptosis, migration and angiogenesis. Overexpression of multiple K+ channels has been demonstrated in a number of types of cancer. However, the role of K+ channels in neuroblastoma has yet to be extensively evaluated. In this study K+ channel gene expression was assessed initially in primary neuroblastoma tumours and in two high-risk, human neuroblastoma-derived cell lines: BE2C and SKNAS. Quantitative PCR, western blotting and immunocytochemistry were used to assess K+ channel expression in BE2C and SKNAS cells. KCNQ2/Kv7.2, a voltage-gated K+ channel, was found to be highly expressed in the BE2C cell line and expression of KCNQ2/Kv7.2 was 101 fold greater in BE2C cells relative to SKNAS cells. Furthermore, functional assays demonstrated that XE991, a compound which inhibits KCNQ/Kv7 channels, reduced BE2C cell proliferation in vitro. In addition, XE991 was found to induce morphological changes in BE2C cells, akin to neuronal differentiation, in vitro. The effect of XE991 on BE2C cell proliferation in vivo was investigated using the chick embryo model, however no significant effect was detected. We have established that K+ channels are expressed by neuroblastoma cells and differential expression exists between two neuroblastoma cell lines. KCNQ2 expression may contribute to the biological heterogeneity observed in neuroblastoma cell lines and primary tumours. Furthermore, it is evident that modulation of KCNQ2/Kv7.2 has a role in BE2C cell behaviour in vitro. ii Acknowledgements There are many people I would like to thank for their encouragement and support throughout the course of this project. I entered the laboratory not knowing how to hold a pipette correctly and less than one year and many experiments later I have learnt many valuable lessons both inside and outside the laboratory. So for this incredible opportunity my deepest gratitude goes to my supervisors Dr John Quayle, Dr Diana Moss and Professor Paul Losty. Dr Quayle and Dr Moss have been excellent at guiding me throughout this year and their advice and encouragement has been fundamental to this project. Thank you for affording me the opportunity to work in your laboratories and for being ever-willing to answer my questions. I would like also like to thank Professor Paul Losty who has provided excellent advice and support throughout the year. I must also thank Dr Tomoko Kamishima, her patient and excellent teaching style in the laboratory was pivotal for me to become confident with working in the laboratory independently. I am hugely grateful for the help and guidance I have received from Dr Rabiu Inuwa and Rasha Swadi. In the laboratory they have gone above and beyond to assist me from the very first day and in the office they have provided warm friendship throughout the year. I wish them both the very best for the future. I would like to thank Dr Mingming Yang for his help and friendship. I would also like to acknowledge Dr Chris Law for his help in conducting FACS. I would like to thank Alder Hey Children’s Hospital for providing the funding to undertake this unique and invaluable opportunity. Lastly and most importantly I would like to thank my parents and sister for their unconditional love and support. iii List of abbreviations A260 Absorbance at 260nm A280 Absorbance at 280nm AHSCT Autologous haematopoietic stem cell transplant ALK Anaplastic lymphoma kinase ASCL1 Achaete-scute homolog-1 ATP Adenosine triphosphate ATRX Alpha thalassemia/mental retardation syndrome X-linked BCA Bicinchoninic acid BMP Bone morphogenetic protein BSA Bovine serum albumin CAM Chorioallantoic membrane cDNA Complementary deoxyribonucleic acid CDK Cyclin dependent kinase CNS Central nervous system CO2 Carbon dioxide Cq Cycle quantification CT Computed tomography DAPI 4’, 6-Diamindino-2-Phenylindole,Dihydrochloride DiBAC4(3) Bis-(1,3-Dibutylbarbituric Acid) Trimethine Oxonol DMEM Dulbecco’s modified Eagle’s medium DMSO Dimethyl sulfoxide E Embryonic day EDTA Ethylenediaminetetraacetic acid FACS Fluorescence activated cell sorting FBS Fetal bovine serum GEMM Genetically engineered murine model GFP Green fluorescent protein hERG Human ether-a-go-go related gene HBSS Hanks balanced salt solution HPRT1 Hypoxanthine phosphoribosyltransferase 1 HRP Horseradish peroxidase HVA Homovanillic acid iv ICC Immunocytochemistry IDRF Image-defined risk factor IHC Immunohistochemistry INPC International Neuroblastoma Pathology Classification INRG International Neuroblastoma Risk Group INRGSS International Neuroblastoma Risk Group Staging System INSS International Neuroblastoma Staging System K+ Potassium ion K2P Two pore potassium channel KCa Calcium-activated potassium channel KCN Potassium channel Ki67 Antigen identified by monoclonal antibody Ki67 Kir Inward rectifying potassium channel KLF4 Kruppel-Like Factor Kv Voltage-gated potassium channel MDM2 Mouse double minute 2 homolog MIBG Metaiodobenzylguanidine MRI Magnetic resonance imaging mRNA Messenger ribonucleic acid MTT 3-(4,5- dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide MYC Myelocytomatosis viral related oncogene NB84 Uncharacterised antigen in neuroblastoma cells NCBI National Centre for Biotechnology Information NCC Neural crest cell NEAA Non-essential amino acids NRQ Normalised relative quantification NRT No reverse transcriptase control NSE Neuron-specific enolase NTC No template control PBS Phosphate buffered saline PFA Paraformaldehyde PHOX2A Paired-like homeobox 2A PHOX2B Paired-like homeobox 2B PNT Peripheral neuroblastic tumour v PSS Physiological saline solution qPCR Quantitative Polymerase Chain Reaction RG Reference gene ROBO2 Roundabout, axon guidance receptor, homologue 2 RQ Relative quantification RT Reverse transcriptase SDS Sodium dodecyl sulfate SEM Standard error of the mean SSC Sodium citrate buffer STMN4 Stathmin-like 4 TBST Tris-buffered saline with Tween 20 TG Target gene TrKA Tropomyosin receptor kinase A VMA Vanillylmandelic acid WB Western blotting XE-991 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone vi Table of contents Abstract ............................................................................................................................................ ii Acknowledgements .......................................................................................................................... iii List of abbreviations ......................................................................................................................... iv Table of contents..............................................................................................................................vii List of figures ................................................................................................................................... xiii List of tables .................................................................................................................................... xvi Chapter 1: Introduction ..................................................................................................................... 1 1.1 Neuroblastoma ............................................................................................................................ 2 1.1.2 Epidemiology, genetic predisposition and risk factors ........................................................... 2 1.1.3 The neural crest .................................................................................................................... 2 1.1.3.1 Development of sympathetic nervous system ................................................................ 3 1.1.4 Molecular biology ................................................................................................................. 5 1.1.4.1 DNA content .................................................................................................................. 5 1.1.4.2 Segmental chromosomal aberrations ............................................................................. 5 1.1.4.3 The MYCN proto-oncogene ............................................................................................ 5 1.1.5 Neuroblastoma and the hallmarks of cancer ......................................................................... 7 1.1.5.1 Sustained proliferative signalling .................................................................................... 7 1.1.5.2 Evasion of growth suppression ....................................................................................... 8 1.1.5.3 Evasion of apoptosis ......................................................................................................
Recommended publications
  • Age-Dependent Myocardial Transcriptomic Changes in the Rat
    Revista Română de Medicină de Laborator Vol. 22, Nr. 1, Martie, 2014 9 Research article DOI: 10.2478/rrlm-2014-0001 Age-dependent myocardial transcriptomic changes in the rat. Novel insights into atrial and ventricular arrhythmias pathogenesis Modificări transcriptomice dependente de vârstă în miocardul de șobolan. Noi aspecte referitoare la patogeneza aritmiilor atriale și ventriculare Alina Scridon1,2, Emmanuelle Fouilloux-Meugnier3, Emmanuelle Loizon3, Marcel Perian1, Sophie Rome3, Claude Julien2, Christian Barrès2, Philippe Chevalier2,4 1.Physiology Department, University of Medicine and Pharmacy of Tîrgu Mureș, 540139, Tîrgu Mureș, Romania 2. Unité de Neurocardiologie, EA4612, Université Lyon 1, F-69008, Lyon, France 3. Unité 1060 INSERM CarMen, Université Lyon 1, F-69008, Lyon, France 4. Hospices Civils de Lyon, Hôpital Louis Pradel, Service de Rythmologie, 69500, Bron, France Abstract Background: Aging is associated with significantly increased prevalence of cardiac arrhythmias, but tran- scriptional events that underlie this process remain to be established. To gain deeper insight into molecular mech- anisms of aging-related cardiac arrhythmias, we performed mRNA expression analysis comparing atrial and ven- tricular myocardium from Wistar-Kyoto (WKY) rats of different ages. Methods: Atrial and ventricular sampling was performed in 3 groups (n=4 each) of young (14-week-old), adult (25-week-old), and aging (47-week-old) WKY rats. mRNA expressions of 89 genes involved in cardiac arrhythmogenicity were investigated using TaqMan Low Density Array analysis. Results: Of the 89 studied genes, 40 and 64 genes presented steady atrial and ventricu- lar expressions, respectively. All genes differentially expressed within the atria of WKY rats were up-regulated with advancing age, mainly the genes encoding for various K+, Ca2+, Na+ channels, and type 6 collagen.
    [Show full text]
  • KCNK3 Mutation Causes Altered Immune Function in Pulmonary Arterial Hypertension Patients and Mouse Models
    International Journal of Molecular Sciences Article KCNK3 Mutation Causes Altered Immune Function in Pulmonary Arterial Hypertension Patients and Mouse Models James D. West 1, Eric D. Austin 2, Elise M. Rizzi 3, Ling Yan 2, Harikrishna Tanjore 1, Amber L. Crabtree 1, Christy S. Moore 1, Gladson Muthian 4, Erica J. Carrier 1, David A. Jacobson 5, Rizwan Hamid 2, Peggy L. Kendall 3 , Susan Majka 6 and Anandharajan Rathinasabapathy 1,* 1 Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; [email protected] (J.D.W.); [email protected] (H.T.); [email protected] (A.L.C.); [email protected] (C.S.M.); [email protected] (E.J.C.) 2 Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; [email protected] (E.D.A.); [email protected] (L.Y.); [email protected] (R.H.) 3 Division of Allergy and Immunology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; [email protected] (E.M.R.); [email protected] (P.L.K.) 4 Department of Cancer Biology, Biochemistry and Neuropharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; [email protected] 5 Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; [email protected] 6 Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO 80206, USA; [email protected] * Correspondence: [email protected] Citation: West, J.D.; Austin, E.D.; Abstract: Loss of function KCNK3 mutation is one of the gene variants driving hereditary pulmonary Rizzi, E.M.; Yan, L.; Tanjore, H.; arterial hypertension (PAH).
    [Show full text]
  • The Mineralocorticoid Receptor Leads to Increased Expression of EGFR
    www.nature.com/scientificreports OPEN The mineralocorticoid receptor leads to increased expression of EGFR and T‑type calcium channels that support HL‑1 cell hypertrophy Katharina Stroedecke1,2, Sandra Meinel1,2, Fritz Markwardt1, Udo Kloeckner1, Nicole Straetz1, Katja Quarch1, Barbara Schreier1, Michael Kopf1, Michael Gekle1 & Claudia Grossmann1* The EGF receptor (EGFR) has been extensively studied in tumor biology and recently a role in cardiovascular pathophysiology was suggested. The mineralocorticoid receptor (MR) is an important efector of the renin–angiotensin–aldosterone‑system and elicits pathophysiological efects in the cardiovascular system; however, the underlying molecular mechanisms are unclear. Our aim was to investigate the importance of EGFR for MR‑mediated cardiovascular pathophysiology because MR is known to induce EGFR expression. We identifed a SNP within the EGFR promoter that modulates MR‑induced EGFR expression. In RNA‑sequencing and qPCR experiments in heart tissue of EGFR KO and WT mice, changes in EGFR abundance led to diferential expression of cardiac ion channels, especially of the T‑type calcium channel CACNA1H. Accordingly, CACNA1H expression was increased in WT mice after in vivo MR activation by aldosterone but not in respective EGFR KO mice. Aldosterone‑ and EGF‑responsiveness of CACNA1H expression was confrmed in HL‑1 cells by Western blot and by measuring peak current density of T‑type calcium channels. Aldosterone‑induced CACNA1H protein expression could be abrogated by the EGFR inhibitor AG1478. Furthermore, inhibition of T‑type calcium channels with mibefradil or ML218 reduced diameter, volume and BNP levels in HL‑1 cells. In conclusion the MR regulates EGFR and CACNA1H expression, which has an efect on HL‑1 cell diameter, and the extent of this regulation seems to depend on the SNP‑216 (G/T) genotype.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Potassium Channels in Epilepsy
    Downloaded from http://perspectivesinmedicine.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Potassium Channels in Epilepsy Ru¨diger Ko¨hling and Jakob Wolfart Oscar Langendorff Institute of Physiology, University of Rostock, Rostock 18057, Germany Correspondence: [email protected] This review attempts to give a concise and up-to-date overview on the role of potassium channels in epilepsies. Their role can be defined from a genetic perspective, focusing on variants and de novo mutations identified in genetic studies or animal models with targeted, specific mutations in genes coding for a member of the large potassium channel family. In these genetic studies, a demonstrated functional link to hyperexcitability often remains elusive. However, their role can also be defined from a functional perspective, based on dy- namic, aggravating, or adaptive transcriptional and posttranslational alterations. In these cases, it often remains elusive whether the alteration is causal or merely incidental. With 80 potassium channel types, of which 10% are known to be associated with epilepsies (in humans) or a seizure phenotype (in animals), if genetically mutated, a comprehensive review is a challenging endeavor. This goal may seem all the more ambitious once the data on posttranslational alterations, found both in human tissue from epilepsy patients and in chronic or acute animal models, are included. We therefore summarize the literature, and expand only on key findings, particularly regarding functional alterations found in patient brain tissue and chronic animal models. INTRODUCTION TO POTASSIUM evolutionary appearance of voltage-gated so- CHANNELS dium (Nav)andcalcium (Cav)channels, Kchan- nels are further diversified in relation to their otassium (K) channels are related to epilepsy newer function, namely, keeping neuronal exci- Psyndromes on many different levels, ranging tation within limits (Anderson and Greenberg from direct control of neuronal excitability and 2001; Hille 2001).
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Transcriptomic Analysis of Native Versus Cultured Human and Mouse Dorsal Root Ganglia Focused on Pharmacological Targets Short
    bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets Short title: Comparative transcriptomics of acutely dissected versus cultured DRGs Andi Wangzhou1, Lisa A. McIlvried2, Candler Paige1, Paulino Barragan-Iglesias1, Carolyn A. Guzman1, Gregory Dussor1, Pradipta R. Ray1,#, Robert W. Gereau IV2, # and Theodore J. Price1, # 1The University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson, TX, 75080, USA 2Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine # corresponding authors [email protected], [email protected] and [email protected] Funding: NIH grants T32DA007261 (LM); NS065926 and NS102161 (TJP); NS106953 and NS042595 (RWG). The authors declare no conflicts of interest Author Contributions Conceived of the Project: PRR, RWG IV and TJP Performed Experiments: AW, LAM, CP, PB-I Supervised Experiments: GD, RWG IV, TJP Analyzed Data: AW, LAM, CP, CAG, PRR Supervised Bioinformatics Analysis: PRR Drew Figures: AW, PRR Wrote and Edited Manuscript: AW, LAM, CP, GD, PRR, RWG IV, TJP All authors approved the final version of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Spinocerebellar Ataxia Type 19/22 Mutations Alter Heterocomplex Kv4.3 Channel Function and Gating in a Dominant Manner
    Cell. Mol. Life Sci. (2015) 72:3387–3399 DOI 10.1007/s00018-015-1894-2 Cellular and Molecular Life Sciences RESEARCH ARTICLE Spinocerebellar ataxia type 19/22 mutations alter heterocomplex Kv4.3 channel function and gating in a dominant manner 1 4 1 2 1 Anna Duarri • Meng-Chin A. Lin • Michiel R. Fokkens • Michel Meijer • Cleo J. L. M. Smeets • 1 2 1 3 4 Esther A. R. Nibbeling • Erik Boddeke • Richard J. Sinke • Harm H. Kampinga • Diane M. Papazian • Dineke S. Verbeek1 Received: 31 July 2014 / Revised: 5 March 2015 / Accepted: 24 March 2015 / Published online: 9 April 2015 Ó The Author(s) 2015. This article is published with open access at Springerlink.com Abstract The dominantly inherited cerebellar ataxias are SCA19/22 mutations may lead to Purkinje cell loss, neu- a heterogeneous group of neurodegenerative disorders rodegeneration and ataxia. caused by Purkinje cell loss in the cerebellum. Recently, we identified loss-of-function mutations in the KCND3 Keywords KCND3 Á Kv4.3 Á Spinocerebellar ataxia Á gene as the cause of spinocerebellar ataxia type 19/22 Purkinje cells Á Voltage-gated potassium channel (SCA19/22), revealing a previously unknown role for the voltage-gated potassium channel, Kv4.3, in Purkinje cell survival. However, how mutant Kv4.3 affects wild-type Introduction Kv4.3 channel functioning remains unknown. We provide evidence that SCA19/22-mutant Kv4.3 exerts a dominant Spinocerebellar ataxia type 19/22 (SCA19/22) is a negative effect on the trafficking and surface expression of dominantly inherited neurodegenerative, clinically hetero- wild-type Kv4.3 in the absence of its regulatory subunit, geneous disorder caused by mutations in KCND3, which KChIP2.
    [Show full text]
  • Implication of Potassium Channels in the Pathophysiology of Pulmonary Arterial Hypertension
    biomolecules Review Implication of Potassium Channels in the Pathophysiology of Pulmonary Arterial Hypertension Hélène Le Ribeuz 1,2,3,Véronique Capuano 1,2,3, Barbara Girerd 1,2,3, Marc Humbert 1,2,3, 1,2,3, 1,2,3, , David Montani y and Fabrice Antigny * y 1 Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; [email protected] (H.L.R.); [email protected] (V.C.); [email protected] (B.G.); [email protected] (M.H.); [email protected] (D.M.) 2 INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France 3 Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France * Correspondence: [email protected] or [email protected]; Tel.: +33-1-40-94-22-99 These authors contributed equally to the work. y Received: 30 June 2020; Accepted: 27 August 2020; Published: 1 September 2020 Abstract: Pulmonary arterial hypertension (PAH) is a rare and severe cardiopulmonary disease without curative treatments. PAH is a multifactorial disease that involves genetic predisposition, epigenetic factors, and environmental factors (drugs, toxins, viruses, hypoxia, and inflammation), which contribute to the initiation or development of irreversible remodeling of the pulmonary vessels. The recent identification of loss-of-function mutations in KCNK3 (KCNK3 or TASK-1) and ABCC8 (SUR1), or gain-of-function mutations in ABCC9 (SUR2), as well as polymorphisms in KCNA5 (Kv1.5), which encode two potassium (K+) channels and two K+ channel regulatory subunits, has revived the interest of ion channels in PAH.
    [Show full text]
  • Supplementary Table 1. Pain and PTSS Associated Genes (N = 604
    Supplementary Table 1. Pain and PTSS associated genes (n = 604) compiled from three established pain gene databases (PainNetworks,[61] Algynomics,[52] and PainGenes[42]) and one PTSS gene database (PTSDgene[88]). These genes were used in in silico analyses aimed at identifying miRNA that are predicted to preferentially target this list genes vs. a random set of genes (of the same length). ABCC4 ACE2 ACHE ACPP ACSL1 ADAM11 ADAMTS5 ADCY5 ADCYAP1 ADCYAP1R1 ADM ADORA2A ADORA2B ADRA1A ADRA1B ADRA1D ADRA2A ADRA2C ADRB1 ADRB2 ADRB3 ADRBK1 ADRBK2 AGTR2 ALOX12 ANO1 ANO3 APOE APP AQP1 AQP4 ARL5B ARRB1 ARRB2 ASIC1 ASIC2 ATF1 ATF3 ATF6B ATP1A1 ATP1B3 ATP2B1 ATP6V1A ATP6V1B2 ATP6V1G2 AVPR1A AVPR2 BACE1 BAMBI BDKRB2 BDNF BHLHE22 BTG2 CA8 CACNA1A CACNA1B CACNA1C CACNA1E CACNA1G CACNA1H CACNA2D1 CACNA2D2 CACNA2D3 CACNB3 CACNG2 CALB1 CALCRL CALM2 CAMK2A CAMK2B CAMK4 CAT CCK CCKAR CCKBR CCL2 CCL3 CCL4 CCR1 CCR7 CD274 CD38 CD4 CD40 CDH11 CDK5 CDK5R1 CDKN1A CHRM1 CHRM2 CHRM3 CHRM5 CHRNA5 CHRNA7 CHRNB2 CHRNB4 CHUK CLCN6 CLOCK CNGA3 CNR1 COL11A2 COL9A1 COMT COQ10A CPN1 CPS1 CREB1 CRH CRHBP CRHR1 CRHR2 CRIP2 CRYAA CSF2 CSF2RB CSK CSMD1 CSNK1A1 CSNK1E CTSB CTSS CX3CL1 CXCL5 CXCR3 CXCR4 CYBB CYP19A1 CYP2D6 CYP3A4 DAB1 DAO DBH DBI DICER1 DISC1 DLG2 DLG4 DPCR1 DPP4 DRD1 DRD2 DRD3 DRD4 DRGX DTNBP1 DUSP6 ECE2 EDN1 EDNRA EDNRB EFNB1 EFNB2 EGF EGFR EGR1 EGR3 ENPP2 EPB41L2 EPHB1 EPHB2 EPHB3 EPHB4 EPHB6 EPHX2 ERBB2 ERBB4 EREG ESR1 ESR2 ETV1 EZR F2R F2RL1 F2RL2 FAAH FAM19A4 FGF2 FKBP5 FLOT1 FMR1 FOS FOSB FOSL2 FOXN1 FRMPD4 FSTL1 FYN GABARAPL1 GABBR1 GABBR2 GABRA2 GABRA4
    [Show full text]
  • Heteromerization of PIP Aquaporins Affects Their Intrinsic Permeability
    Heteromerization of PIP aquaporins affects their intrinsic permeability Agustín Yaneffa,b, Lorena Sigautb,c, Mercedes Marqueza,b, Karina Allevaa,b, Lía Isabel Pietrasantab,c, and Gabriela Amodeoa,b,1 aInstituto de Biodiversidad y Biología Experimental and Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina; cCentro de Microscopías Avanzadas and Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina; and bConsejo Nacional de Investigaciones Científicas y Técnicas, Argentina Edited* by Ramon Latorre, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile, and approved November 26, 2013 (received for review September 5, 2013) The plant aquaporin plasma membrane intrinsic proteins (PIP) sub- group shows activity comparable to that of PIP2 (20, 29) or, in family represents one of the main gateways for water exchange at contrast, serves as solute channels (25, 30). the plasma membrane (PM). A fraction of this subfamily, known as In addition to their transport properties, many PIP1 show PIP1, does not reach the PM unless they are coexpressed with a PIP2 membrane relocalization as a regulatory mechanism, a feature aquaporin. Although ubiquitous and abundantly expressed, the role that clearly distinguishes them from any PIP2. These PIP1 fail to and properties of PIP1 aquaporins have therefore remained masked. reach the PM when expressed alone, but they can succeed if they Here, we unravel how FaPIP1;1, a fruit-specific PIP1 aquaporin from are coexpressed with PIP2. It has been proposed that this process Fragaria x ananassa, contributes to the modulation of membrane is a consequence of a physical interaction between PIP1 and water permeability (Pf) and pH aquaporin regulation.
    [Show full text]
  • Pdgfrα Signaling in Cardiac Stem and Stromal Cells Modulates Quiescence, Metabolism and Self-Renewal, and Promotes Anatomical and Functional Repair
    bioRxiv preprint doi: https://doi.org/10.1101/225979; this version posted November 28, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. PDGFRα signaling in cardiac stem and stromal cells modulates quiescence, metabolism and self-renewal, and promotes anatomical and functional repair Naisana S. Asli1,2,3,4,#, Munira Xaymardan1,3,5,#, Elvira Forte1,2,5, Ashley J. Waardenberg1, James Cornwell1,5, Vaibhao Janbandhu1,2, Scott Kesteven1, Vashe Chandrakanthan1, Helena Malinowska1, Henrik Reinhard1, Sile F. Yang7, Hilda A Pickett7, Peter Schofield8, Daniel Christ2,8, Ishtiaq Ahmed1, James Chong1, Corey Heffernan1, Joan Li1, Mary Simonian3, Romaric Bouveret1,2, Surabhi Srivastava9, Rakesh K. Mishra9, Jyotsna Dhawan9,10, Robert Nordon6, Peter Macdonald1,2, Robert M. Graham1,2, Michael Feneley1,2, Richard P. Harvey1,2,5,11* 1 Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia 2 St. Vincent’s Clinical School, University of New South Wales, Kensington, NSW 2052, Australia 3 Faculty of Dentistry, University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia 4 Sydney Medical School, University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia 5 Stem Cells Australia, Melbourne Brain Centre, The University of Melbourne, Victoria 3010, Australia 6 Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW 2052, Australia 7 Telomere Length Regulation Unit, Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia 8 Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia 9 Centre for Cellular and Molecular Biology, Uppal Rd.
    [Show full text]