Unifying Variational Autoencoders and Generative Adversarial Networks

Total Page:16

File Type:pdf, Size:1020Kb

Unifying Variational Autoencoders and Generative Adversarial Networks Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks Lars Mescheder 1 Sebastian Nowozin 2 Andreas Geiger 1 3 Abstract Variational Autoencoders (VAEs) are expressive f latent variable models that can be used to learn complex probability distributions from training data. However, the quality of the resulting model crucially relies on the expressiveness of the in- ference model. We introduce Adversarial Vari- Figure 1. We propose a method which enables neural samplers ational Bayes (AVB), a technique for training with intractable density for Variational Bayes and as inference Variational Autoencoders with arbitrarily expres- models for learning latent variable models. This toy exam- sive inference models. We achieve this by in- ple demonstrates our method’s ability to accurately approximate troducing an auxiliary discriminative network complex posterior distributions like the one shown on the right. that allows to rephrase the maximum-likelihood- problem as a two-player game, hence establish- more powerful. While many model classes such as Pixel- ing a principled connection between VAEs and RNNs (van den Oord et al., 2016b), PixelCNNs (van den Generative Adversarial Networks (GANs). We Oord et al., 2016a), real NVP (Dinh et al., 2016) and Plug show that in the nonparametric limit our method & Play generative networks (Nguyen et al., 2016) have yields an exact maximum-likelihood assignment been introduced and studied, the two most prominent ones for the parameters of the generative model, as are Variational Autoencoders (VAEs) (Kingma & Welling, well as the exact posterior distribution over the 2013; Rezende et al., 2014) and Generative Adversarial latent variables given an observation. Contrary Networks (GANs) (Goodfellow et al., 2014). to competing approaches which combine VAEs with GANs, our approach has a clear theoretical Both VAEs and GANs come with their own advantages justification, retains most advantages of standard and disadvantages: while GANs generally yield visually Variational Autoencoders and is easy to imple- sharper results when applied to learning a representation ment. of natural images, VAEs are attractive because they natu- rally yield both a generative model and an inference model. Moreover, it was reported, that VAEs often lead to better 1. Introduction log-likelihoods (Wu et al., 2016). The recently introduced BiGANs (Donahue et al., 2016; Dumoulin et al., 2016) add Generative models in machine learning are models that can an inference model to GANs. However, it was observed arXiv:1701.04722v4 [cs.LG] 11 Jun 2018 be trained on an unlabeled dataset and are capable of gener- that the reconstruction results often only vaguely resemble ating new data points after training is completed. As gen- the input and often do so only semantically and not in terms erating new content requires a good understanding of the of pixel values. training data at hand, such models are often regarded as a key ingredient to unsupervised learning. The failure of VAEs to generate sharp images is often at- tributed to the fact that the inference models used during In recent years, generative models have become more and training are usually not expressive enough to capture the 1Autonomous Vision Group, MPI Tubingen¨ 2Microsoft true posterior distribution. Indeed, recent work shows that Research Cambridge 3Computer Vision and Geometry using more expressive model classes can lead to substan- Group, ETH Zurich.¨ Correspondence to: Lars Mescheder tially better results (Kingma et al., 2016), both visually <[email protected]>. and in terms of log-likelihood bounds. Recent work (Chen Proceedings of the 34 th International Conference on Machine et al., 2016) also suggests that highly expressive inference Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017 models are essential in presence of a strong decoder to al- by the author(s). low the model to make use of the latent space at all. Adversarial Variational Bayes In this paper, we present Adversarial Variational Bayes x 1 (AVB) , a technique for training Variational Autoencoders x 1 with arbitrarily flexible inference models parameterized by f 1 neural networks. We can show that in the nonparametric f limit we obtain a maximum-likelihood assignment for the +=∗ Encoder Encoder generative model together with the correct posterior distri- z z bution. While there were some attempts at combining VAEs and g 2 g 2 GANs (Makhzani et al., 2015; Larsen et al., 2015), most of these attempts are not motivated from a maximum- +=∗ +=∗ likelihood point of view and therefore usually do not lead x x to maximum-likelihood assignments. For example, in Ad- Decoder Decoder versarial Autoencoders (AAEs) (Makhzani et al., 2015) the (a) Standard VAE (b) Our model Kullback-Leibler regularization term that appears in the training objective for VAEs is replaced with an adversarial Figure 2. Schematic comparison of a standard VAE and a VAE loss that encourages the aggregated posterior to be close to with black-box inference model, where 1 and 2 denote samples the prior over the latent variables. Even though AAEs do from some noise distribution. While more complicated inference not maximize a lower bound to the maximum-likelihood models for Variational Autoencoders are possible, they are usually objective, we show in Section 6.2 that AAEs can be in- not as flexible as our black-box approach. terpreted as an approximation to our approach, thereby es- of the generative model. tablishing a connection of AAEs to maximum-likelihood • We empirically demonstrate that our model is able learning. to learn rich posterior distributions and show that the Outside the context of generative models, AVB yields a model is able to generate compelling samples for com- new method for performing Variational Bayes (VB) with plex data sets. neural samplers. This is illustrated in Figure1, where we used AVB to train a neural network to sample from a non- 2. Background trival unnormalized probability density. This allows to ac- curately approximate the posterior distribution of a prob- As our model is an extension of Variational Autoencoders abilistic model, e.g. for Bayesian parameter estimation. (VAEs) (Kingma & Welling, 2013; Rezende et al., 2014), The only other variational methods we are aware of that we start with a brief review of VAEs. can deal with such expressive inference models are based VAEsare specified by a parametric generative model p (x j on Stein Discrepancy (Ranganath et al., 2016; Liu & Feng, θ z) of the visible variables given the latent variables, a prior 2016). However, those methods usually do not directly tar- p(z) over the latent variables and an approximate inference get the reverse Kullback-Leibler-Divergence and can there- model q (z j x) over the latent variables given the visible fore not be used to approximate the variational lower bound φ variables. It can be shown that for learning a latent variable model. Our contributions are as follows: log pθ(x) ≥ −KL(qφ(z j x); p(z)) + E log p (x j z): • We enable the usage of arbitrarily complex inference qφ(zjx) θ (2.1) models for Variational Autoencoders using adversarial The right hand side of (2.1) is called the variational lower training. bound or evidence lower bound (ELBO). If there is φ such • We give theoretical insights into our method, show- that q (z j x) = p (z j x), we would have ing that in the nonparametric limit our method recov- φ θ ers the true posterior distribution as well as a true log pθ(x) = max −KL(qφ(z j x); p(z)) maximum-likelihood assignment for the parameters φ 1 + E log p (x j z): Concurrently to our work, several researchers have de- qφ(zjx) θ (2.2) scribed similar ideas. Some ideas of this paper were described independently by Huszar´ in a blog post on http://www. However, in general this is not true, so that we only have inference.vc and in Huszar´ (2017). The idea to use adversar- an inequality in (2.2). ial training to improve the encoder network was also suggested by Goodfellow in an exploratory talk he gave at NIPS 2016 and by Li When performing maximum-likelihood training, our goal & Liu(2016). A similar idea was also mentioned by Karaletsos is to optimize the marginal log-likelihood (2016) in the context of message passing in graphical models. EpD (x) log pθ(x); (2.3) Adversarial Variational Bayes where pD is the data distribution. Unfortunately, com- The idea of our approach is to circumvent this problem by puting log pθ(x) requires marginalizing out z in pθ(x; z) implicitly representing the term which is usually intractable. Variational Bayes uses in- log p(z) − log q (z j x) equality (2.1) to rephrase the intractable problem of opti- φ (3.2) mizing (2.3) into as the optimal value of an additional real-valued discrimi- native network T (x; z) that we introduce to the problem. h max max Ep (x) −KL(qφ(z j x); p(z)) θ φ D More specifically, consider the following objective for the i discriminator T (x; z) for a given qφ(x j z): + Eqφ(zjx) log pθ(x j z) : (2.4) max EpD (x)Eqφ(zjx) log σ(T (x; z)) Due to inequality (2.1), we still optimize a lower bound to T + E E log (1 − σ(T (x; z))) : the true maximum-likelihood objective (2.3). pD (x) p(z) (3.3) −t −1 Naturally, the quality of this lower bound depends on the Here, σ(t) := (1 + e ) denotes the sigmoid-function. expressiveness of the inference model qφ(z j x). Usually, Intuitively, T (x; z) tries to distinguish pairs (x; z) that were qφ(z j x) is taken to be a Gaussian distribution with diago- sampled independently using the distribution pD(x)p(z) nal covariance matrix whose mean and variance vectors are from those that were sampled using the current inference parameterized by neural networks with x as input (Kingma model, i.e., using pD(x)qφ(z j x).
Recommended publications
  • Disentangled Variational Auto-Encoder for Semi-Supervised Learning
    Information Sciences 482 (2019) 73–85 Contents lists available at ScienceDirect Information Sciences journal homepage: www.elsevier.com/locate/ins Disentangled Variational Auto-Encoder for semi-supervised learning ∗ Yang Li a, Quan Pan a, Suhang Wang c, Haiyun Peng b, Tao Yang a, Erik Cambria b, a School of Automation, Northwestern Polytechnical University, China b School of Computer Science and Engineering, Nanyang Technological University, Singapore c College of Information Sciences and Technology, Pennsylvania State University, USA a r t i c l e i n f o a b s t r a c t Article history: Semi-supervised learning is attracting increasing attention due to the fact that datasets Received 5 February 2018 of many domains lack enough labeled data. Variational Auto-Encoder (VAE), in particu- Revised 23 December 2018 lar, has demonstrated the benefits of semi-supervised learning. The majority of existing Accepted 24 December 2018 semi-supervised VAEs utilize a classifier to exploit label information, where the param- Available online 3 January 2019 eters of the classifier are introduced to the VAE. Given the limited labeled data, learn- Keywords: ing the parameters for the classifiers may not be an optimal solution for exploiting label Semi-supervised learning information. Therefore, in this paper, we develop a novel approach for semi-supervised Variational Auto-encoder VAE without classifier. Specifically, we propose a new model called Semi-supervised Dis- Disentangled representation entangled VAE (SDVAE), which encodes the input data into disentangled representation Neural networks and non-interpretable representation, then the category information is directly utilized to regularize the disentangled representation via the equality constraint.
    [Show full text]
  • A Deep Hierarchical Variational Autoencoder
    NVAE: A Deep Hierarchical Variational Autoencoder Arash Vahdat, Jan Kautz NVIDIA {avahdat, jkautz}@nvidia.com Abstract Normalizing flows, autoregressive models, variational autoencoders (VAEs), and deep energy-based models are among competing likelihood-based frameworks for deep generative learning. Among them, VAEs have the advantage of fast and tractable sampling and easy-to-access encoding networks. However, they are cur- rently outperformed by other models such as normalizing flows and autoregressive models. While the majority of the research in VAEs is focused on the statistical challenges, we explore the orthogonal direction of carefully designing neural archi- tectures for hierarchical VAEs. We propose Nouveau VAE (NVAE), a deep hierar- chical VAE built for image generation using depth-wise separable convolutions and batch normalization. NVAE is equipped with a residual parameterization of Normal distributions and its training is stabilized by spectral regularization. We show that NVAE achieves state-of-the-art results among non-autoregressive likelihood-based models on the MNIST, CIFAR-10, CelebA 64, and CelebA HQ datasets and it provides a strong baseline on FFHQ. For example, on CIFAR-10, NVAE pushes the state-of-the-art from 2.98 to 2.91 bits per dimension, and it produces high-quality images on CelebA HQ as shown in Fig. 1. To the best of our knowledge, NVAE is the first successful VAE applied to natural images as large as 256×256 pixels. The source code is available at https://github.com/NVlabs/NVAE. 1 Introduction The majority of the research efforts on improving VAEs [1, 2] is dedicated to the statistical challenges, such as reducing the gap between approximate and true posterior distributions [3, 4, 5, 6, 7, 8, 9, 10], formulating tighter bounds [11, 12, 13, 14], reducing the gradient noise [15, 16], extending VAEs to discrete variables [17, 18, 19, 20, 21, 22, 23], or tackling posterior collapse [24, 25, 26, 27].
    [Show full text]
  • Explainable Deep Learning Models in Medical Image Analysis
    Journal of Imaging Review Explainable Deep Learning Models in Medical Image Analysis Amitojdeep Singh 1,2,* , Sourya Sengupta 1,2 and Vasudevan Lakshminarayanan 1,2 1 Theoretical and Experimental Epistemology Laboratory, School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada; [email protected] (S.S.); [email protected] (V.L.) 2 Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada * Correspondence: [email protected] Received: 28 May 2020; Accepted: 17 June 2020; Published: 20 June 2020 Abstract: Deep learning methods have been very effective for a variety of medical diagnostic tasks and have even outperformed human experts on some of those. However, the black-box nature of the algorithms has restricted their clinical use. Recent explainability studies aim to show the features that influence the decision of a model the most. The majority of literature reviews of this area have focused on taxonomy, ethics, and the need for explanations. A review of the current applications of explainable deep learning for different medical imaging tasks is presented here. The various approaches, challenges for clinical deployment, and the areas requiring further research are discussed here from a practical standpoint of a deep learning researcher designing a system for the clinical end-users. Keywords: explainability; explainable AI; XAI; deep learning; medical imaging; diagnosis 1. Introduction Computer-aided diagnostics (CAD) using artificial intelligence (AI) provides a promising way to make the diagnosis process more efficient and available to the masses. Deep learning is the leading artificial intelligence (AI) method for a wide range of tasks including medical imaging problems.
    [Show full text]
  • Double Backpropagation for Training Autoencoders Against Adversarial Attack
    1 Double Backpropagation for Training Autoencoders against Adversarial Attack Chengjin Sun, Sizhe Chen, and Xiaolin Huang, Senior Member, IEEE Abstract—Deep learning, as widely known, is vulnerable to adversarial samples. This paper focuses on the adversarial attack on autoencoders. Safety of the autoencoders (AEs) is important because they are widely used as a compression scheme for data storage and transmission, however, the current autoencoders are easily attacked, i.e., one can slightly modify an input but has totally different codes. The vulnerability is rooted the sensitivity of the autoencoders and to enhance the robustness, we propose to adopt double backpropagation (DBP) to secure autoencoder such as VAE and DRAW. We restrict the gradient from the reconstruction image to the original one so that the autoencoder is not sensitive to trivial perturbation produced by the adversarial attack. After smoothing the gradient by DBP, we further smooth the label by Gaussian Mixture Model (GMM), aiming for accurate and robust classification. We demonstrate in MNIST, CelebA, SVHN that our method leads to a robust autoencoder resistant to attack and a robust classifier able for image transition and immune to adversarial attack if combined with GMM. Index Terms—double backpropagation, autoencoder, network robustness, GMM. F 1 INTRODUCTION N the past few years, deep neural networks have been feature [9], [10], [11], [12], [13], or network structure [3], [14], I greatly developed and successfully used in a vast of fields, [15]. such as pattern recognition, intelligent robots, automatic Adversarial attack and its defense are revolving around a control, medicine [1]. Despite the great success, researchers small ∆x and a big resulting difference between f(x + ∆x) have found the vulnerability of deep neural networks to and f(x).
    [Show full text]
  • Generative Models
    Lecture 11: Generative Models Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - 1 May 9, 2019 Administrative ● A3 is out. Due May 22. ● Milestone is due next Wednesday. ○ Read Piazza post for milestone requirements. ○ Need to Finish data preprocessing and initial results by then. ● Don't discuss exam yet since people are still taking it. Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 -2 May 9, 2019 Overview ● Unsupervised Learning ● Generative Models ○ PixelRNN and PixelCNN ○ Variational Autoencoders (VAE) ○ Generative Adversarial Networks (GAN) Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - 3 May 9, 2019 Supervised vs Unsupervised Learning Supervised Learning Data: (x, y) x is data, y is label Goal: Learn a function to map x -> y Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc. Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - 4 May 9, 2019 Supervised vs Unsupervised Learning Supervised Learning Data: (x, y) x is data, y is label Cat Goal: Learn a function to map x -> y Examples: Classification, regression, object detection, Classification semantic segmentation, image captioning, etc. This image is CC0 public domain Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - 5 May 9, 2019 Supervised vs Unsupervised Learning Supervised Learning Data: (x, y) x is data, y is label Goal: Learn a function to map x -> y Examples: Classification, DOG, DOG, CAT regression, object detection, semantic segmentation, image Object Detection captioning, etc. This image is CC0 public domain Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - 6 May 9, 2019 Supervised vs Unsupervised Learning Supervised Learning Data: (x, y) x is data, y is label Goal: Learn a function to map x -> y Examples: Classification, GRASS, CAT, TREE, SKY regression, object detection, semantic segmentation, image Semantic Segmentation captioning, etc.
    [Show full text]
  • Infinite Variational Autoencoder for Semi-Supervised Learning
    Infinite Variational Autoencoder for Semi-Supervised Learning M. Ehsan Abbasnejad Anthony Dick Anton van den Hengel The University of Adelaide {ehsan.abbasnejad, anthony.dick, anton.vandenhengel}@adelaide.edu.au Abstract with whatever labelled data is available to train a discrimi- native model for classification. This paper presents an infinite variational autoencoder We demonstrate that our infinite VAE outperforms both (VAE) whose capacity adapts to suit the input data. This the classical VAE and standard classification methods, par- is achieved using a mixture model where the mixing coef- ticularly when the number of available labelled samples is ficients are modeled by a Dirichlet process, allowing us to small. This is because the infinite VAE is able to more ac- integrate over the coefficients when performing inference. curately capture the distribution of the unlabelled data. It Critically, this then allows us to automatically vary the therefore provides a generative model that allows the dis- number of autoencoders in the mixture based on the data. criminative model, which is trained based on its output, to Experiments show the flexibility of our method, particularly be more effectively learnt using a small number of samples. for semi-supervised learning, where only a small number of The main contribution of this paper is twofold: (1) we training samples are available. provide a Bayesian non-parametric model for combining autoencoders, in particular variational autoencoders. This bridges the gap between non-parametric Bayesian meth- 1. Introduction ods and the deep neural networks; (2) we provide a semi- supervised learning approach that utilizes the infinite mix- The Variational Autoencoder (VAE) [18] is a newly in- ture of autoencoders learned by our model for prediction troduced tool for unsupervised learning of a distribution x x with from a small number of labeled examples.
    [Show full text]
  • Variational Autoencoder for End-To-End Control of Autonomous Driving with Novelty Detection and Training De-Biasing
    Variational Autoencoder for End-to-End Control of Autonomous Driving with Novelty Detection and Training De-biasing Alexander Amini1, Wilko Schwarting1, Guy Rosman2, Brandon Araki1, Sertac Karaman3, Daniela Rus1 Abstract— This paper introduces a new method for end-to- Uncertainty Estimation end training of deep neural networks (DNNs) and evaluates & Novelty Detection it in the context of autonomous driving. DNN training has Uncertainty been shown to result in high accuracy for perception to action Propagate learning given sufficient training data. However, the trained models may fail without warning in situations with insufficient or biased training data. In this paper, we propose and evaluate Encoder a novel architecture for self-supervised learning of latent variables to detect the insufficiently trained situations. Our method also addresses training data imbalance, by learning a set of underlying latent variables that characterize the training Dataset Debiasing data and evaluate potential biases. We show how these latent Weather Adjacent Road Steering distributions can be leveraged to adapt and accelerate the (Snow) Vehicles Surface Control training pipeline by training on only a fraction of the total Command Resampled data dataset. We evaluate our approach on a challenging dataset distribution for driving. The data is collected from a full-scale autonomous Unsupervised Latent vehicle. Our method provides qualitative explanation for the Variables Sample Efficient latent variables learned in the model. Finally, we show how Accelerated Training our model can be additionally trained as an end-to-end con- troller, directly outputting a steering control command for an Fig. 1: Semi-supervised end-to-end control. An encoder autonomous vehicle.
    [Show full text]
  • An Introduction to Variational Autoencoders Full Text Available At
    Full text available at: http://dx.doi.org/10.1561/2200000056 An Introduction to Variational Autoencoders Full text available at: http://dx.doi.org/10.1561/2200000056 Other titles in Foundations and Trends R in Machine Learning Computational Optimal Transport Gabriel Peyre and Marco Cuturi ISBN: 978-1-68083-550-2 An Introduction to Deep Reinforcement Learning Vincent Francois-Lavet, Peter Henderson, Riashat Islam, Marc G. Bellemare and Joelle Pineau ISBN: 978-1-68083-538-0 An Introduction to Wishart Matrix Moments Adrian N. Bishop, Pierre Del Moral and Angele Niclas ISBN: 978-1-68083-506-9 A Tutorial on Thompson Sampling Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband and Zheng Wen ISBN: 978-1-68083-470-3 Full text available at: http://dx.doi.org/10.1561/2200000056 An Introduction to Variational Autoencoders Diederik P. Kingma Google [email protected] Max Welling University of Amsterdam Qualcomm [email protected] Boston — Delft Full text available at: http://dx.doi.org/10.1561/2200000056 Foundations and Trends R in Machine Learning Published, sold and distributed by: now Publishers Inc. PO Box 1024 Hanover, MA 02339 United States Tel. +1-781-985-4510 www.nowpublishers.com [email protected] Outside North America: now Publishers Inc. PO Box 179 2600 AD Delft The Netherlands Tel. +31-6-51115274 The preferred citation for this publication is D. P. Kingma and M. Welling. An Introduction to Variational Autoencoders. Foundations and Trends R in Machine Learning, vol. 12, no. 4, pp. 307–392, 2019. ISBN: 978-1-68083-623-3 c 2019 D.
    [Show full text]
  • Exploring Semi-Supervised Variational Autoencoders for Biomedical Relation Extraction
    Exploring Semi-supervised Variational Autoencoders for Biomedical Relation Extraction Yijia Zhanga,b and Zhiyong Lua* a National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, Maryland 20894, USA b School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116023, China Corresponding author: Zhiyong Lu ([email protected]) Abstract The biomedical literature provides a rich source of knowledge such as protein-protein interactions (PPIs), drug-drug interactions (DDIs) and chemical-protein interactions (CPIs). Biomedical relation extraction aims to automatically extract biomedical relations from biomedical text for various biomedical research. State-of-the-art methods for biomedical relation extraction are primarily based on supervised machine learning and therefore depend on (sufficient) labeled data. However, creating large sets of training data is prohibitively expensive and labor-intensive, especially so in biomedicine as domain knowledge is required. In contrast, there is a large amount of unlabeled biomedical text available in PubMed. Hence, computational methods capable of employing unlabeled data to reduce the burden of manual annotation are of particular interest in biomedical relation extraction. We present a novel semi-supervised approach based on variational autoencoder (VAE) for biomedical relation extraction. Our model consists of the following three parts, a classifier, an encoder and a decoder. The classifier is implemented using multi-layer convolutional neural networks (CNNs), and the encoder and decoder are implemented using both bidirectional long short-term memory networks (Bi-LSTMs) and CNNs, respectively. The semi-supervised mechanism allows our model to learn features from both the labeled and unlabeled data.
    [Show full text]
  • Deep Variational Autoencoder: an Efficient Tool for PHM Frameworks
    Deep Variational Autoencoder: An Efficient Tool for PHM Frameworks Ryad Zemouri, Melanie Levesque, Normand Amyot, Claude Hudon, Olivier Kokoko To cite this version: Ryad Zemouri, Melanie Levesque, Normand Amyot, Claude Hudon, Olivier Kokoko. Deep Varia- tional Autoencoder: An Efficient Tool for PHM Frameworks. 2020 Prognostics and Health Man- agement Conference (PHM-Besançon), May 2020, Besancon, France. pp.235-240, 10.1109/PHM- Besancon49106.2020.00046. hal-02868384 HAL Id: hal-02868384 https://hal-cnam.archives-ouvertes.fr/hal-02868384 Submitted on 7 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Deep Variational Autoencoder: an efficient tool for PHM frameworks. Ryad Zemouri∗,Melanie´ Levesque´ y, Normand Amyoty, Claude Hudony and Olivier Kokokoy ∗Cedric-Lab, CNAM, HESAM universite,´ Paris (France), [email protected] y Institut de Recherche d’Hydro-Quebec´ (IREQ), Varennes, QC, J3X1S1 Canada Abstract—Deep learning (DL) has been recently used in several Variational Autoencoder applications of machine health monitoring systems. Unfortu- nately, most of these DL models are considered as black-boxes with low interpretability. In this research, we propose an original PHM framework based on visual data analysis. The most suitable space dimension for the data visualization is the 2D-space, Encoder Decoder which necessarily involves a significant reduction from a high- dimensional to a low-dimensional data space.
    [Show full text]
  • A Generative Model for Semi-Supervised Learning
    Iowa State University Capstones, Theses and Creative Components Dissertations Fall 2019 A Generative Model for Semi-Supervised Learning Shang Da Follow this and additional works at: https://lib.dr.iastate.edu/creativecomponents Part of the Artificial Intelligence and Robotics Commons Recommended Citation Da, Shang, "A Generative Model for Semi-Supervised Learning" (2019). Creative Components. 382. https://lib.dr.iastate.edu/creativecomponents/382 This Creative Component is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Creative Components by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A Generative Model for Semi-Supervised Learning Shang Da A Creative Component submitted to the graduate faculty in partial fulfillment of the requirements for the degree of Master of Science in Computer Science Program of Study Committee: Dr. Jin Tian, Major Professor Dr. Jia Liu, Committee Member Dr. Wensheng Zhang, Committee Member The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2019 Copyright © Cy Cardinal, 2019. All rights reserved. ii TABLE
    [Show full text]
  • Latent Property State Abstraction for Reinforcement Learning
    Latent Property State Abstraction For Reinforcement learning John Burden Sajjad Kamali Siahroudi Daniel Kudenko Centre for the Study Of Existential L3S Research Center L3S Research Center Risk Hanover Hanover University of Cambridge [email protected] [email protected] [email protected] ABSTRACT the construction of RS functions. This would allow for reaping the Potential Based Reward Shaping has proven itself to be an effective benefits of reward shaping without the onus of manually encoding method for improving the learning rate for Reinforcement Learning domain knowledge or abstract tasks. algorithms — especially when the potential function is derived Our main contribution is a novel RL technique, called Latent from the solution to an Abstract Markov Decision Process (AMDP) Property State Abstraction (LPSA) that creates its own intrinsic encapsulating an abstraction of the desired task. The provenance reward function for use with reward shaping which can speed of the AMDP is often a domain expert. In this paper we introduce up the learning process of Deep RL algorithms. In our work we a novel method for the full automation of creating and solving an demonstrate this speed-up on the widely popular DQN algorithm AMDP to induce a potential function. We then show empirically [13]. Our method works by learning its own abstract representation that the potential function our method creates improves the sample of environment states using an auto-encoder. Then it learns an efficiency of DQN in the domain in which we test our approach. abstract value function over the environment before utilising this to increase the learning rate on the ground level of the domain KEYWORDS using reward shaping.
    [Show full text]