The Characterisation of a Nucleopolyhedrovirus Infecting the Insect Trichoplusia Ni

Total Page:16

File Type:pdf, Size:1020Kb

The Characterisation of a Nucleopolyhedrovirus Infecting the Insect Trichoplusia Ni The characterisation of a nucleopolyhedrovirus infecting the insect Trichoplusia ni by Michael Tobin Thesis submitted in fulfilment of the requirements for the degree Master of Science in Biomedical Sciences In the Faculty of Health and Wellness Sciences at the Cape Peninsula University of Technology Supervisor: Prof Sehaam Khan Co-supervisor: Prof Wesaal Khan Bellville January 2019 CPUT copyright information The dissertation/thesis may not be published either in part (in scholarly, scientific or technical journals), or as a whole (as a monograph), unless permission has been obtained from the University i DECLARATION I, Michael Tobin, declare that the contents of this dissertation/thesis represent my own unaided work, and that the dissertation/thesis has not previously been submitted for academic examination towards any qualification. Furthermore, it represents my own opinions and not necessarily those of the Cape Peninsula University of Technology. Signed Date ii ABSTRACT Background: Baculoviruses have great potential as alternatives to conventional chemical insecticides. The large scale adoption of such agents has however been hampered by the slow killing times exhibited by these bio-insecticides, limitation to single target insect and difficulty of large scale production of these preparations. Trichoplusia ni single nucleopolyhedrovirus (TnSNPV), initially identified in the Eastern Cape region of South Africa, has potential as a biocontrol agent as it possesses a higher speed of kill compared to other baculoviruses. Aims and methods: The main objective of this study was the identification, molecular characterisation and cloning of a structural core gene (polyhedrin) and three auxiliary genes, the inhibitor of apoptosis (iap2 and iap3) and the ecdysteroid UDP-glucosyltransferase (egt) genes, from TnSNPV in order to delineate its phylogenetic relationship to a Canadian isolate of the same virus and to other baculoviruses. In addition, the genes were expressed in an Escherichia coli (E. coli) based system as a prelude to genetic modification to increase the pesticidal property of the virus. Results: The genome size of the South African strain of TnSNPV was estimated at 160 kb and is significantly larger than the Canadian isolate of TnSNPV and may reflect genetic variation as the two strains have adapted to varying environmental conditions. Occlusion bodies of the South African strain of TnSNPV were visualised by Transmission Electron Microscopy and consisted of rod shaped single virions composed of a single enveloped nucleocapsid. Insect bioassays showed that the median lethal time (LT50) of the virus strain averaged 1.8 days which is significantly faster than other baculoviruses. The South African and Canadian strains of TnSNPV share nucleotide similarities greater than 95% for the genes analysed in this study, which indicates that they are closely related. From this analysis, the South African strain of TnSNPV identifies as a Group II NPV with the closest relatives being the Canadian strain of TnSNPV and ChchNPV. The topology of the tree for the polyhedrin protein was better resolved than that of the IAP2, IAP3 and EGT proteins and was comparable to the tree inferred from a concatenated data set consisting of complete polyhedrin/granulin, LEF8, and LEF9 proteins of 48 completely sequenced genomes. For the IAP2, IAP3 and EGT proteins, the separation of the lepidopteran and hymenopteran specific baculoviruses was not evident while the separation of Group I and II Alphabaculoviruses diverged from that observed from the baculovirus core gene polyhedrin as well as the tree inferred from complete polyhedrin/granulin, LEF8, and LEF9 proteins. Five distinct groups relating to IAP-1, 2, 3, 4 and 5 could be distinguished from the tree inferred from all IAP proteins from 48 fully sequenced baculoviruses. From this analysis, the IAP protein from the South African isolate of TnSNPV can be designated as an IAP3 due to sequence homology to other IAP3 proteins. Similarly, the IAP2 can be confirmed as an IAP2 protein as it clusters with other IAP2 proteins. iii RNA transcripts of the four genes were detected by RT-PCR at one hr after induction with L- arabinose in BL21-A1 E. coli and persisted until four hrs post induction. Antisera directed against the C-terminal 6X His tag was able to detect the recombinant proteins at two hours after induction confirming the rapid rise in expression of the proteins which persisted at high levels until four hrs after induction. The discrepancy observed with the predicted molecular mass of the EGT protein and the migration on SDS-PAGE may be due to the absence of post- translational modification in the E. coli expression system and the hydrophobic residues present in the N-terminal signal sequence. Conclusion: Sequence and phylogenetic analysis suggest that the two isolates of TnSNPV have been exposed to similar evolutionary pressures and evolved at similar rates and represent closely related but distinct variants of the same virus. The difference in genome size between the two strains is likely to reflect actual genetic differences as the strains have adapted to their local environments and hosts and the extent of the differences will only be apparent as more sequencing results become available. Phylogenetic analysis of the IAP and EGT proteins yields a tree that varies from the phylogenetic reconstruction observed for the polyhedrin gene as well as the concatenated data set consisting of complete polh/gran, LEF8, and LEF9 proteins and highlights the risks inherent in inferring phylogenetic relationships based on single gene sequences. The tree inferred from the concatenated data set of polh/gran, LEF8, and LEF9 proteins was a quick and reliable method of identification particularly, when whole genome data is unavailable and mirrors the accepted lineage of baculoviruses. Expression of the recombinant IAP2, IAP3, EGT and polyhedrin was confirmed by RT-PCR and immunoblot analysis and rose rapidly after induction and persisted at high levels. It is as yet unclear if the expressed proteins are functional particularly as post translation modifications are lacking in this system. KEYWORDS Trichoplusia ni single nucleopolyhedrovirus (TnSNPV), phylogeny, polyhedrin, inhibitor of apoptosis (iap2 and iap3), egt, phylogeny, heterologous expression iv DEDICATION To my father, James Frank Tobin v ACKNOWLEDGEMENTS To my friend, mentor and supervisor, Prof Sehaam Khan. You kept faith in me even as I lost faith in myself. This has been a long time coming. I owe it all to you. Thank you, thank you. To my friend, ex-colleague and supervisor, Prof Wesaal Khan. From CPUT to Stellenbosch. Thank you for hosting me in the Department of Microbiology at Stellenbosch University. Your support and guidance was invaluable. To my mother, Anne and my siblings, Jean and Mandy: this couldn’t happen without you. I am also grateful to my extended family members for their support. To the Supper Club: Grant, Mark, Mark and Johan and Mark - you know what you did. To friends and colleagues in the Biotechnology programme at CPUT. My home away from home. To my colleagues and friends in the research labs at CPUT and Stellenbosch, thank you. With thanks to Cape Peninsula University of Technology and Stellenbosch University for the use of their facility and equipment. vi TABLE OF CONTENTS DECLARATION i ABSTRACT ii DEDICATION iv ACKNOWLEDGEMENTS v LIST OF FIGURES ix LIST OF TABLES x APPENDICES xi GLOSSARY xii CHAPTER ONE 1 LITERATURE REVIEW 1.1 Introduction 1 1.2 Trichoplusia ni, the insect pest 2 1.3 Baculovirus Structure and Taxonomy 4 1.4 Baculovirus Life Cycle 6 1.5 Baculoviruses as Pesticides 11 1.6 Gene Expression Within Baculoviruses 15 1.7 The ecdysteroid UDP-glucosyltransferase (egt) gene 17 1.8 Apoptosis 19 1.8.1 Baculoviruses and apoptosis 20 1.9 OUTLINE OF THESIS 24 REFERENCES 26 vii CHAPTER TWO 2 MATERIALS AND METHODS 2.1 Phenotypic characterisation of TnSNPV 43 2.1.1 Virus isolation 43 2.1.2 Baculovirus propagation in T. ni larvae 43 2.1.3 Extraction of haemolymph from T. ni larvae 44 2.1.4 Viral infection of High Five cells 44 2.1.5 Viral DNA extraction from budded virus 44 2.1.6 Viral DNA extraction from insect larvae and haemolymph 45 2.1.7 Transmission Electron Microscopy 45 2.2 Phylogenetic characterisation of T. ni 46 2.2.1 Cloning of the ecdysteroid UDP–glucosyltransferase (egt) gene 46 2.2.1.1 Identification of the egt gene 46 2.2.1.2 PCR amplification of the egt gene from TnSNPV 46 2.2.1.3 Ligation of the egt gene into the vector pGEM-T Easy 47 2.2.1.4 Screening for egt recombinants 47 2.2.2 Cloning of the polyhedrin (pol) gene 49 2.2.2.1 PCR amplification of the polyhedrin gene 49 2.2.2.2 Ligation of the polyhedrin gene into the vector pGEM-T Easy 49 2.2.2.3 Screening for polyhedrin recombinants 50 2.2.3 Cloning of the iap2 and iap3 genes 50 2.2.3.1 PCR amplification of the iap2 and iap3 genes 50 2.2.3.2 Treatment of the iap inserts and annealing into the vector pIEX1 51 Ek/LIC 2.2.3.3 Transformation of the annealing reaction 52 2.2.4 Phylogenetic analysis 53 2.3 Heterologous Expression in E. coli 54 2.3.1 PCR amplification of the iap2, iap3, egt and polyhedrin genes 54 2.3.2 The TOPO cloning reaction 55 2.3.3 TOPO LR recombination 56 2.3.4 Pilot expression in E. coli 57 2.3.5 RNA extraction 58 2.3.6 Reverse Transcription Polymerase Chain Reaction (RT-PCR) 58 2.3.7 Protein concentration determination 59 2.3.8 Sample preparation 60 2.3.9 SDS PAGE and immunoblot analysis 60 REFERENCES 62 viii CHAPTER THREE 3 RESULTS AND DISCUSSION 3.1 Phenotypic characterisation of TnSNPV 65 3.2 Phylogenetic characterisation of TnSNPV 70 3.2.1 Identification, cloning and sequence analysis of the egt gene 70 3.2.2 Identification, cloning and sequence analysis of the polyhedrin 71 gene 3.2.3 Identification, cloning and sequence analysis of the iap2 and iap3 76 genes 3.2.4 Phylogenetic analysis 78 3.3 Heterologous expression of recombinant proteins in E.
Recommended publications
  • Calling and Mating Behavior of Diaphania Angustalis (Lepidoptera: Crambidae)
    Copyedited by: OUP Journal of Economic Entomology, XX(X), 2018, 1–5 doi: 10.1093/jee/toy179 Forest Entomology Research Calling and Mating Behavior of Diaphania angustalis (Lepidoptera: Crambidae) Xianhui Shi,1,* Tao Ma,1,2,* Shengnan Zhang,1 Zhaohui Sun,1 Xiaoyang Chen,1 Changlu Wang,3 Caijuan Jia,4 Yongchan Liang,1 Ying Zhu,1 Yurong He,2 and Xiujun Wen1,5 1Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China, 2College of Agriculture, South China Agricultural University, Guangzhou 510642, China, 3Department of Entomology, Rutgers University, New Brunswick, NJ 08901, 4Wutongshan Park, Shenzhen 518114, China, and 5Corresponding author, e-mail: [email protected] *These authors contributed equally to this work. Subject Editor: Brian Sullivan Received 30 January 2018; Editorial decision 5 June 2018 Abstract Diaphania angustalis Snellen (Lepidoptera: Crambidae) has emerged as a very important pest of blackboard tree, Alstonia scholaris (L.) R. Br. (Apocynaceae), in China during the last two decades. Understanding its biology and behavior is crucial for designing effective and environmentally friendly pest management strategies. Under laboratory conditions [25–28°C, 12:12 (L:D) h, 75–80% RH], adults emerged during both light and dark hours with peak emergence occurring between the first and fifth hours of scotophase, and unmated males and females lived for a mean (±SE) 5.4 ± 0.4 and 5.3 ± 0.7 d, respectively. Female calling behavior was observed only during scotophase (peaking in the fifth hour) by 1- to 5-d-old females, and mating activities occurred 2–5 d after emergence, peaking on day 3.
    [Show full text]
  • UG ETD Template
    Characterization of Autographa californica nucleopolyhedrovirus immediate early protein ME53: The role of conserved domains in BV production, viral gene transcription, and evidence for ME53 presence at the ribosome by Robyn Ralph A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Molecular and Cellular Biology Guelph, Ontario, Canada © Robyn Ralph, December, 2018 ABSTRACT CHARACTERIZATION OF AUTOGRAPHA CALIFORNICA NUCLEOPOLYHEDROVIRUS IMMEDIATE EARLY PROTEIN ME53: THE ROLE OF CONSERVED DOMAINS IN BV PRODUCTION, VIRAL GENE TRANSCRIPTION, AND EVIDENCE FOR ME53 PRESENCE AT THE RIBOSOME Robyn Ralph Advisors: University of Guelph, 2018 Dr. Peter Krell Dr. Sarah Wooton The baculovirus AcMNPV early/late gene me53 is required for efficient BV production and is conserved in all alpha and betabaculoviruses. The 449-amino acid protein contains several highly conserved functionally important domains including two putative C4 zinc finger domains (ZnF-N and ZnF-C) whose cysteine residues are 100% conserved. One purpose of this study is to confirm the presence of two zinc binding domains in ME53, as well as determine their role in virus infection and viral gene transcription. Interestingly, deletion of ZnF-C results in an early delay of BV production from 12 to 18 hours post transfection correlating to ME53's cytoplasmic localization. Cytoplasmic functions at early times post-transfection may include translational regulation, which is supported by yeast-2-hybrid data that ME53 interacts with the host 40S ribosomal subunit protein RACK1. In this study the association of ME53 with the ribosomes of virus infected cells was also investigated. iii DEDICATION I dedicate this thesis to my father, Ronald James Ralph.
    [Show full text]
  • Journal of the Lepidopterists' Society
    Volume 62 Number 2 25 Aug 2008 ISSN 0024-0966 Journal of the Lepidopterists' Society Published quarterly by The Lepidopterists' Society ) ) THE LEPIDOPTERISTS’ SOCIETY Executive Council John H. Acorn, President John Lill, Vice President William E. Conner, Immediate Past President David D. Lavvrie, Secretary Andre V.L. Freitas, Vice President Kelly M. Richers, Treasurer Akito Kayvahara, Vice President Members at large: Kim Garwood Richard A. Anderson Michelle DaCosta Kenn Kaufman John V. Calhoun John H. Masters Plarry Zirlin Amanda Roe Michael G. Pogue Editorial Board John W. Rrovvn {Chair) Michael E. Toliver Member at large ( , Brian Scholtens (Journal Lawrence F. Gall ( Memoirs ) 13 ale Clark {News) John A. Snyder {Website) Honorary Life Members of the Society Charles L. Remington (1966), E. G. Munroe (1973), Ian F. B. Common (1987), Lincoln P Brower (1990), Frederick H. Rindge (1997), Ronald W. Hodges (2004) The object of The Lepidopterists’ Society, which was formed in May 1947 and formally constituted in December 1950, is “to pro- mote the science of lepidopterology in all its branches, ... to issue a periodical and other publications on Lepidoptera, to facilitate the exchange of specimens and ideas by both the professional worker and the amateur in the field; to secure cooperation in all mea- sures” directed towards these aims. Membership in the Society is open to all persons interested in the study of Lepidoptera. All members receive the Journal and the News of The Lepidopterists’ Society. Prospective members should send to the Assistant Treasurer full dues for the current year, to- gether with their lull name, address, and special lepidopterological interests.
    [Show full text]
  • Tically Expands Our Understanding on Virosphere in Temperate Forest Ecosystems
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2021 doi:10.20944/preprints202106.0526.v1 Review Towards the forest virome: next-generation-sequencing dras- tically expands our understanding on virosphere in temperate forest ecosystems Artemis Rumbou 1,*, Eeva J. Vainio 2 and Carmen Büttner 1 1 Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Ber- lin, Germany; [email protected], [email protected] 2 Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland; [email protected] * Correspondence: [email protected] Abstract: Forest health is dependent on the variability of microorganisms interacting with the host tree/holobiont. Symbiotic mi- crobiota and pathogens engage in a permanent interplay, which influences the host. Thanks to the development of NGS technol- ogies, a vast amount of genetic information on the virosphere of temperate forests has been gained the last seven years. To estimate the qualitative/quantitative impact of NGS in forest virology, we have summarized viruses affecting major tree/shrub species and their fungal associates, including fungal plant pathogens, mutualists and saprotrophs. The contribution of NGS methods is ex- tremely significant for forest virology. Reviewed data about viral presence in holobionts, allowed us to address the role of the virome in the holobionts. Genetic variation is a crucial aspect in hologenome, significantly reinforced by horizontal gene transfer among all interacting actors. Through virus-virus interplays synergistic or antagonistic relations may evolve, which may drasti- cally affect the health of the holobiont. Novel insights of these interplays may allow practical applications for forest plant protec- tion based on endophytes and mycovirus biocontrol agents.
    [Show full text]
  • Lista Taxonómica Actualizada De Los Esfíngidos De Cuba (Lepidoptera)
    Lista taxonómica actualizada de los esfíngidos de Cuba (Lepidoptera) Alfonso Iorio [email protected] La última y más reciente clasificacion taxonómica (la misma que adopté en mi libro sobre los esfíngidos de Ecuador: “Mariposas del Ecuador. Sphingidae”) es de Kitching & Cadiou (2000). Así, la familia contiene las siguentes agrupaciones: Familia: Sphingidae Latreille, [1802] Subfamilia: Smerinthinae Grote & Robinson, 1865 Tribu: Smerinthini Grote & Robinson, 1865 Sphingulini Rothschild & Jordan, 1903 Ambulycini Butler, 1876 Subfamilia: Sphinginae Latreille, [1802] Tribu: Sphingini Latreille, [1802] Acherontiini Boisduval, [1875] Subfamilia: Macroglossinae Harris, 1839 Tribu: Dilophonotini Burmeister, 1878 Subtribu: Dilophonotina Burmeister, 1878 Hemarina Tutt, 1902 Tribu : Philampelini Burmeister, 1878 Macroglossini Harris, 1839 Subtribu: Macroglossina Harris, 1839 Choerocampina Grote & Robinson, 1865 Subfamilias, tribus y subtribus que se encuentran en Cuba: Familia: Sphingidae Latreille, [1802] Subfamilia: Smerinthinae Grote & Robinson, 1865 Tribu: Ambulycini Butler, 1876 Protambulyx strigilis (L., 1771) Adhemarius gannascus cubanus (Rothschild & Jordan, 1908) Subfamilia: Sphinginae Latreille, [1802] Tribu: Sphingini Latreille, [1802] Nannoparce poeyi (Grote, 1865) Manduca afflicta (Grote, 1865) Manduca brontes cubensis (Grote, 1865) Manduca quinquemaculatus (Haworth, 1803) Manduca rustica cubana (Wood, 1915) Manduca sexta jamaicensis (Butler, 1875) Neococytius cluentius (Cramer, 1775) Cocytius antaeus (Drury, 1773) Cocytius duponchel
    [Show full text]
  • Lepidoptera: Sphingidae
    ACTA AMAZONICA http://dx.doi.org/10.1590/1809-4392201704721 ORIGINAL ARTICLE Diversity patterns of hawkmoths (Lepidoptera: Sphingidae) in the canopy of an ombrophilous forest in the central Amazon, Brazil Gilcélia Melo LOURIDO1*, Catarina da Silva MOTTA†, Márlon Breno GRAÇA1, José Albertino RAFAEL1 1 Instituto Nacional de Pesquisas da Amazônia (INPA), Coordenação de Biodiversidade (COBIO), Manaus, Amazonas, Brasil † In memoriam * Corresponding author: [email protected] ABSTRACT Sphingidae attracted to light were systematically collected in an Amazonian forest canopy. Sampling occurred at a height of 34 m in an upland primary rainforest plateau in the Cueiras River basin, located within the Experimental Station of Tropical Silviculture, Manaus municipality, Amazonas, Brazil. The hawkmoths were collected using a vertical white sheet illuminated by a 250 W mixed mercury light and a 20 W black-light (BLB) fluorescent tube. Monthly collections were carried out from January to December 2004, during three nights of lunar transition from third quarter moon to new moon between 6 p.m. and 6 a.m. We sampled 1748 specimens, represented by 1485 males and 263 females, belonging to 52 species and 21 genera. Xylophanes comprised the highest number of species (seven), followed by Erinnyis, with six species. The most abundant species were Pseudosphinx tetrio (169 specimens), Pachylia darceta (162), Erinnyis ello ello (154), Isognathus excelsior (151) and Callionima parce (139). The species accumulation curve showed that the species richness tended to stabilize by the eighth month. We also observed that species composition altered significantly throughout the night period. All presented hawkmoth records are new for the canopy in the central Amazon.
    [Show full text]
  • Insect Pathogens As Biological Control Agents: Back to the Future ⇑ L.A
    Journal of Invertebrate Pathology 132 (2015) 1–41 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Insect pathogens as biological control agents: Back to the future ⇑ L.A. Lacey a, , D. Grzywacz b, D.I. Shapiro-Ilan c, R. Frutos d, M. Brownbridge e, M.S. Goettel f a IP Consulting International, Yakima, WA, USA b Agriculture Health and Environment Department, Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK c U.S. Department of Agriculture, Agricultural Research Service, 21 Dunbar Rd., Byron, GA 31008, USA d University of Montpellier 2, UMR 5236 Centre d’Etudes des agents Pathogènes et Biotechnologies pour la Santé (CPBS), UM1-UM2-CNRS, 1919 Route de Mendes, Montpellier, France e Vineland Research and Innovation Centre, 4890 Victoria Avenue North, Box 4000, Vineland Station, Ontario L0R 2E0, Canada f Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada1 article info abstract Article history: The development and use of entomopathogens as classical, conservation and augmentative biological Received 24 March 2015 control agents have included a number of successes and some setbacks in the past 15 years. In this forum Accepted 17 July 2015 paper we present current information on development, use and future directions of insect-specific Available online 27 July 2015 viruses, bacteria, fungi and nematodes as components of integrated pest management strategies for con- trol of arthropod pests of crops, forests, urban habitats, and insects of medical and veterinary importance. Keywords: Insect pathogenic viruses are a fruitful source of microbial control agents (MCAs), particularly for the con- Microbial control trol of lepidopteran pests.
    [Show full text]
  • Thermal Requirements of Trichogramma
    Revista Colombiana de Entomología 2021, 47 (1): e8548 • https://doi.org/10.25100/socolen.v47i1.8548 Sección Agrícola / Agriculture Artículo de investigación / Research paper Thermal requirements of Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) lines in Neoleucinodes elegantalis (Lepidoptera: Crambidae) eggs Requerimientos térmicos de las líneas de Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) en huevos de Neoleucinodes elegantalis (Lepidoptera: Crambidae) CRISTIANE RAMOS COUTINHO1; SUYANNE ARAÚJO DE SOUZA2; ANTÔNIA DÉBORA DOS SANTOS PONTES3; MAURICIO SEKIGUCHI DE GODOY4; FABRICIO FAGUNDES PEREIRA5; PATRIK LUIZ PASTORI6 1 Ph. D. in Agronomy/Entomology, IN Soluções Biológicas LTDA., Fortaleza, Ceará State, Brazil, [email protected], https://orcid. org/0000-0002-7870-904X. 2 Engineer Agronomist. Universidade Estadual Paulista “Julio de Mesquita Filho” - UNESP, Faculdade de Ciências Agronômi- cas, Câmpus de Botucatu, Botucatu, São Paulo State, Brazil, [email protected], https://orcid.org/0000-0001-5524-6989. 3 Student in Agronomy. Universidade Federal do Ceará - UFC, Departamento de Fitotecnia, Fortaleza, Ceará State, Brazil, [email protected], https://orcid.org/0000-0001- 5299-2783. 4 Ph. D. in Agronomy/Entomology, Universidade Federal Rural do Semi-Árido - UFERSA, Centro de Ciências Agrárias, Departamento de Ciências Agronômicas e Florestais, Mossoró, Rio Grande do Norte State, Brazil, [email protected], https://orcid.org/0000-0002-3842-340X. 5 Ph. D. in Ento- mology, Universidade Federal da Grande Dourados - UFGD, Faculdade de Ciências Biológicas e Ambientais, Rodovia Dourados/Itahum, Dourados, Mato Grosso do Sul State, Brazil, [email protected], https://orcid.org/0000-0003-1638-7409. 6 Ph. D. in Agronomy/Entomology. Universidade Federal do Ceará - UFC, Departamento de Fitotecnia, Fortaleza, Ceará State, Brazil, [email protected], https://orcid.org/0000-0003-1892-8029.
    [Show full text]
  • INDEX for VOLUME 52 (New Names in Boldface)
    Journal of the Lepidopterists' Society 52(4). 1998, 388- 401 INDEX FOR VOLUME 52 (new names in boldface) 2-methyloctadecane. 356 Amblyscirtes, 237, 240 fimbriata pallida, 54 Abaeis nicippe, 57 jluonia, 54 Acacia farnesiana, 215 folia, 54 Acanthaceae, 74, 107,215 patriciae, 54 Acer rubrum, 128 raphaeli, 54 Aceraceae, 128 tolteca tolteca, 54 AchaZarus, 236, 240 Ampelocera hottleii, 109 casica,50 Anaea, 239, 242 toxeus,50 aidea, 62 Achlyodes, 240 Anartia, 242 busirus heros, 52 amathea colima, 59 selva , .52 Jatrophe, 25 Acrodipsas illidgei, 139 Jatrophe luteipicta, 59 Acronicta albarufa, 381 Anastnls adaptation, 207 robigus, 52 Adelia triloba, 338 sempiternus sempiternus, 52 Adelotypa eudocia, 66 Anatrytone, 237 Adelpha, 239 mazai,54 basiioicies has i/o ides , 62 Anchistea virginica, 128 celerio diademata , 62 Ancyloxypha, 240 fessonia fessonia , 62 arene,54 iphiclus massilides, 62 Anemeca ehrenbergii, 60 ixia leucas, 62 Annonaceae, 107 leuceria leuceria, 62 Anteos, 241 naxia epiphicla, 62 clorinde nivifera, 57 phylaca phyiaca, 62 maerula lacordairei , 57 serpa massilia, 62 Anteros carausius carausius, 65 Adhemarius gannascus, 110 Anthanassa, 239 ypsilon, 11 0 alexon alexon, 60 Aegiceras corniculatum, 141 ardys anlys, 60 Aellopos pto/yea arrUltor, 60 ceculus, 111 sitalces cortes, 60 clavi pes , III texana texana, 60 fadus , III tulcis, 60 Aeshnidae, 137 Antlwcharis Aethilla lavochrea, 52 cardamines, 156 Agathymus rethon, 55 euphenoid~s, 1.56 Aglais urticae, 156 Anthoptus insignis, 53 Agraulis Antig()nus vanillae, 25 emorsa,52 vanillae incarnata,
    [Show full text]
  • A List of Cuban Lepidoptera (Arthropoda: Insecta)
    TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 3384: 1–59 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) A list of Cuban Lepidoptera (Arthropoda: Insecta) RAYNER NÚÑEZ AGUILA1,3 & ALEJANDRO BARRO CAÑAMERO2 1División de Colecciones Zoológicas y Sistemática, Instituto de Ecología y Sistemática, Carretera de Varona km 3. 5, Capdevila, Boyeros, Ciudad de La Habana, Cuba. CP 11900. Habana 19 2Facultad de Biología, Universidad de La Habana, 25 esq. J, Vedado, Plaza de La Revolución, La Habana, Cuba. 3Corresponding author. E-mail: rayner@ecologia. cu Table of contents Abstract . 1 Introduction . 1 Materials and methods. 2 Results and discussion . 2 List of the Lepidoptera of Cuba . 4 Notes . 48 Acknowledgments . 51 References . 51 Appendix . 56 Abstract A total of 1557 species belonging to 56 families of the order Lepidoptera is listed from Cuba, along with the source of each record. Additional literature references treating Cuban Lepidoptera are also provided. The list is based primarily on literature records, although some collections were examined: the Instituto de Ecología y Sistemática collection, Havana, Cuba; the Museo Felipe Poey collection, University of Havana; the Fernando de Zayas private collection, Havana; and the United States National Museum collection, Smithsonian Institution, Washington DC. One family, Schreckensteinidae, and 113 species constitute new records to the Cuban fauna. The following nomenclatural changes are proposed: Paucivena hoffmanni (Koehler 1939) (Psychidae), new comb., and Gonodontodes chionosticta Hampson 1913 (Erebidae), syn.
    [Show full text]
  • Insect Pathogens As Biological Control Agents: Back to the Future
    Accepted Manuscript Insect pathogens as biological control agents: back to the future L.A. Lacey, D. Grzywacz, D.I. Shapiro-Ilan, R. Frutos, M. Brownbridge, M.S. Goettel PII: S0022-2011(15)00134-2 DOI: http://dx.doi.org/10.1016/j.jip.2015.07.009 Reference: YJIPA 6706 To appear in: Journal of Invertebrate Pathology Received Date: 24 March 2015 Accepted Date: 17 July 2015 Please cite this article as: Lacey, L.A., Grzywacz, D., Shapiro-Ilan, D.I., Frutos, R., Brownbridge, M., Goettel, M.S., Insect pathogens as biological control agents: back to the future, Journal of Invertebrate Pathology (2015), doi: http://dx.doi.org/10.1016/j.jip.2015.07.009 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. JIP-15-82 1 Insect pathogens as biological control agents: back to the future 2 3 4 L. A. Lacey1, D. Grzywacz2 D. I. Shapiro-Ilan3, R. Frutos4, M. Brownbridge5, M. S. Goettel6 5 6 1 IP Consulting International, Yakima, WA, USA. [email protected] 7 2 Principal Scientist, Agriculture Health and Environment Department, Natural Resources Institute, 8 University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK [email protected] 9 3 U.
    [Show full text]
  • Redalyc.Artificial Diet for Laboratory Rearing of Condylorrhiza Vestigialis (Guenée, 1854) (Lep.: Crambidae)
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil CAMPOS, LUCAS S.; COELHO JR, ALOISIO; PARRA, JOSÉ ROBERTO P. Artificial diet for laboratory rearing of Condylorrhiza vestigialis (Guenée, 1854) (Lep.: Crambidae) Anais da Academia Brasileira de Ciências, vol. 89, núm. 1, enero-marzo, 2017, pp. 333- 340 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32750457029 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2017) 89(1): 333-340 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-376520160135 www.scielo.br/aabc Artificial diet for laboratory rearing of Condylorrhiza vestigialis (Guenée, 1854) (Lep.: Crambidae) LUCAS S. CAMPOS1, ALOISIO COELHO JR1,2 and JOSÉ ROBERTO P. PARRA1 1Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz”/ ESALQ, Avenida Pádua Dias, 11, Agronomia, 13418-900 Piracicaba, SP, Brazil Manuscript received on March 21, 2016; accepted for publication on September 20, 2016 ABSTRACT The Brazilian Poplar Moth, Condylorrhiza vestigialis (Guenée), compromises the wood productivity of poplar trees (Populus sp.), mainly affecting the matchstick industry in southern Brazil. Considering the lack of information on rearing techniques for this insect, the objective of this study was to develop an artificial diet to rearC.
    [Show full text]