Southern Oregon Surfperch Studies, 1991-2000, Final Report

Total Page:16

File Type:pdf, Size:1020Kb

Southern Oregon Surfperch Studies, 1991-2000, Final Report FINAL REPORT SOUTHERN OREGON SURFPERCH STUDIES Prepared by Darrell Pruden Marine Resources Program Oregon Department of Fish & Wildlife December 2000 This project was financed in part with funds provided by the Federal Aid in Sport Fish Restoration Program through the U.S. Fish and Wildlife Service. SOUTHERN OREGON SURFPERCH STUDIES 1991-2000 FINAL REPORT INTRODUCTION Several members of the surfperch family (Embiotocidae) are an important part of the Oregon shore and estuary recreational fishery. There has also been a recent increase in the commercial take of redtail surfperch on the southern Oregon coast for markets in California. The surfperch season in Oregon is open year-round for recreational anglers, but closed for commercial fishing in August and September. The overall condition of the surfperch population along the Oregon coast had been assumed to be healthy, but because of the low fecundity of these live-bearing fishes, increased effort by both sport and commercial fishers could pose a threat. In 1990, the Oregon Department of Fish and Wildlife (ODFW) intensified research on the most often angled species of surfperch in Oregon, to establish a biological database for use in future management. Fish were tagged for movement and harvest rate studies and carcasses were sampled for age structures, sex, maturity, and embryo information. The main focus was on redtail surfperch (Amphistichus rhodoterus) due to its accessibility and popularity, but the study also included striped surfperch/seaperch (Embiotoca lateralis), pile surfperch/seaperch (Damalichthys vaca), white surfperch/seaperch (Phanerdon furcatus), walleye surfperch (Hyperprosopon aregenteum), silver surfperch (Hyperprosopon ellipticum), and calico surfperch (Amphisticus koelzi). This report covers research conducted from December 1990 to December 2000. METHODS AND MATERIALS Study area Initially, a sampling program was set up to cover the south coast of Oregon from Florence to the California border with ODFW supervision coming from Charleston. Because the study area was too large to properly facilitate, it was later reduced to an area just north of the Umpqua River to the California border. The primary focus was on redtail surfperch so all accessible sandy beaches were included. The Coos Bay estuary was also sampled, with occasional samples taken from Winchester Bay (Umpqua River) and Bandon (Coquille River). 1 Carcass Collection Recreational angling volunteers were the primary source of fish samples (carcasses) and assistance in tagging. Signs describing the project, recruiting volunteers, and informing the angler who to contact were placed at common angler access points. Participating anglers were rewarded with baseball type caps with a designed surfperch logo to stimulate carcass collection and return of tags. An annual newsletter was distributed describing the project and emphasizing different themes each year, such as: fishing methods and tackle, migration, and species description. These newsletters were mailed out to volunteers and were distributed as handouts at various tackle shops. The large sample area made it necessary to set up systems to collect carcasses. In the Brookings area assistance came from a sporting goods store where carcasses were collected and stored frozen until they were transported to Charleston. In most of the remaining area a network of communication and collection was used. Anglers were asked to bring their carcasses directly to the Charleston office when possible. Volunteers were supplied with the following material: 18” x 36” 4 mil plastic bags, one gallon freezer bags, and preprinted “Rite in the Rain” cards to identify the catch. Information on the cards included: date, location, hours fished, number of anglers, and the name-address-phone number of the volunteer. The volunteers were then instructed on how to fill out the information and package the carcass. Each carcass was cataloged, fork length measured, sex identified, maturity noted, and ageing structures collected. In addition, snout to hypural plate length was measured from one “normal” embryo (Bennett and Wydoski, 1977) from each gravid female. The minimum length measured for the embryo was established at 10 mm. Initially, fecundity counts were conducted. These were soon eliminated because of observed ovary damage caused by angler filleting, and also after observing females aborting embryos during capture. Ageing Ageing was done in the winter months when carcass collection was slow. After two years of collection and observation, the decision was made to use only the pair of sagittae otoliths as the preferred ageing structure. Scale collection was discontinued because otoliths were easier to handle and consistently clearer to read. The otoliths were aged whole in an alcohol bath by using a dissecting microscope under magnification of 6 or 12 depending on the species, size, and clarity of the otolith. No other procedure was used to enhance the otolith in determining the age. Examination of the embryo otoliths provided a starting point from which to age the fish. This “birth check” was obvious in all species unless the otolith was crystallized. The international accepted birth date of January 1 was used (Chilton and Beamish 1982). Confirmation and validation of the age also came from recaptured tagged fish. 2 Tagging Migration and biological studies Tagging occurred annually starting in May 1992. Redtail, silver, striped, white, pile, and walleye surfperch were tagged. Volunteers were recruited to angle for surfperch at predetermined locations and to sacrifice their catch for tagging. Successful tagging required coordinating angler participation, cooperative weather, appropriate surf conditions and tides, and proper bait. Both ODFW staff and volunteers collected bait in advance to supply the volunteers on the chosen day. Ghost shrimp (Callianassa californiensis) were used to catch surfperch for estuary tagging, while ghost shrimp, sand worms (Nephtys californiensis), sand crabs (Emerita analoga), and sea mussels (Mytilus califonianus) were used for beach tagging. Tagging in the estuary was accomplished from a boat, with volunteers angling. Fish were deposited in a live-well and immediately released after tagging. Most estuary tagging was done at locations within the confines of Coos Bay. When tagging on the open coast the volunteers, which could be as many as 20 anglers, were asked to fish within a close proximity of the tagging station. After a fish was caught it was placed in a plastic ice chest measuring 12”x12”x25” (top removed) partially filled with fresh seawater (approximately 10 gallons). When six fish were in the cooler, or sooner if collection was slow, the fish were tagged with a yellow T-Bar anchor tag (see tag retention study mentioned later), fork length measured, and sex identified. The sex was identified externally by examining the modified ventral fin on males of one plus years. The tagged fish were then released by carrying them in a five-gallon plastic bucket partially filled with seawater back to the surf. It was important to keep fresh seawater in the cooler and release bucket, especially during clear warm weather. Tagging locations were from the mouth of Tahkenitch Creek south to the mouth of Pistol River (Figures 1 and 2). Except for a few tagging sites, successful historic fishing areas were chosen that were also easily accessible for volunteers. Areas such as the north spit of the Umpqua River, New River area, and the mouth of Elk River required either special vehicle transportation or landowner permission. These locations helped fill voids in the study area. Tag Retention Study Since very little tagging has been done on surfperch, a tag retention study was initiated under laboratory conditions on November 18, 1993 at the Oregon Institute of Marine Biology in Charleston. Fourteen redtail and one silver surfperch were captured and placed in a five-foot diameter fiberglass tank, which had an average capacity of approximately 300 hundred gallons of circulating seawater. One-half of the tank was covered in order to give the fish solitude. Due to varying water pressure in the water supply to the tank, an accurate measure of flow was not obtained. Air was pumped into the water with two plastic lines (1/4” ID) attached to aerating 3 stones. This not only added oxygen, but also gave the water turbulence to produce a more natural condition. Five days after capture all surfperch were tagged with yellow plastic T-Bar anchor tags (manufactured by Halprint pty.ltd in Australia). These tags were used because they offered excellent print durability (Waldman, J.R. 1989 and personal communication). The tag was inserted about midway and just below the dorsal fin near the start of the soft rays (Barss and Demory 1989). Care was taken to anchor the tag between the pterygiophores. The fish were monitored and fed daily for 48 days. They were then released at the same capture location (Bastendorff Beach near Charleston). Refer to Tag Retention Study on page 7 for results. RESULTS Carcass Collection Volunteers collected over 20,000 carcasses. More than two-thirds were redtail surfperch carcasses (Table 1). Most carcasses came from areas south of Cape Arago. An intensified inter- agency beach management strategy north of Cape Arago limited access, shifting redtail surfperch angling effort elsewhere. Redtail surfperch were found on every sandy beach sampled. Sample information and carcass handling by the volunteers was found to be very satisfactory. Carcass examination
Recommended publications
  • Bay, Oregon, with Notes on Shehfish Temperature, and Physical
    COASTAL RIVERS I NFORMAT I ON Observations onon FishFish LiistributDistribution ion inin TillamookTillamook Bay, Oregon,Oregon, wi-f-h with NotesNotes on ShellfishSheHfish Temperature, and Physical Characteristics by T. Edwin Cummings Richard L. Berry Fish Commission of Oregon Management and Research Division This work was conducted in cooperation with -f-hethe NationaJ National Marine Fisheries Service under the AnadromousFish Act PL 89-304 April 19741974 4 CONTENTS Page No. I NTRODUCT I(ON ON DESCRIPTION OF ThETHE AREA. METHODS.......................................................... 4 Seining Sites. 4 Equipment . 5 Data Recorded 5 RESULTS ..................................................................................................................... 5 Coho. Chinook. Herr! ng. .................................................... 12 Smell-..ei I 2 Sole..So I e.. 13 StanyFyFlounder Flounder............................................................ 13 SurfPerch .................................................................................................... 13 Col-tids....................... .,....... ..................... 14 MiscellaneousMiscellaneousFish Fish SpeciesSpecies.................................. 14 Shellfish................................................... 14 Temperature ................................................. 17 DISCUSSION. 17 ACKNOWLEDGMENTS. 19 LITERATURE CITED. 19 APPEND IX 20 FIGURES fj9urefure No.No. Page No. I Map of Tillamook Bay,Bay, OregonOregon 3 2 Presence ofof FishesFishes inin thethe Ti
    [Show full text]
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Review of Selected California Fisheries for 2013
    FISHERIES REVIEW CalCOFI Rep., Vol. 55, 2014 REVIEW OF SELECTED CALIFORNIA FISHERIES FOR 2013: COASTAL PELAGIC FINFISH, MARKET SQUID, GROUNDFISH, HIGHLY MIGRATORY SPECIES, DUNGENESS CRAB, BASSES, SURFPERCH, ABALONE, KELP AND EDIBLE ALGAE, AND MARINE AQUACULTURE CALIFORNIA DEPARTMENT OF FISH AND WILDLIFE Marine Region 4665 Lampson Ave. Suite C Los Alamitos, CA 90720 [email protected] SUMMARY ings of northern anchovy were 6,005 t with an ex-vessel In 2013, commercial fisheries landed an estimated revenue of greater than $1.0 million. When compared 165,072 metric tons (t) of fish and invertebrates from to landings in 2012, this represents a 141% and 191% California ocean waters (fig. 1). This represents an increase in volume and value, respectively. Nearly all increase of almost 2% from the 162,290 t landed in 2012, (93.6%; 5,621.5 t) of California’s 2013 northern anchovy but still an 11% decrease from the 184,825 t landed catch was landed in the Monterey port area. Landings of in 2011, and a 35% decline from the peak landings of jack mackerel remained relatively low with 892 t landed; 252,568 t observed in 2000. The preliminary ex-vessel however, this represents a 515% increase over 2012 land- economic value of commercial landings in 2013 was ings of 145 t. $254.7 million, increasing once again from the $236 mil- Dungeness crab ranked as California’s second largest lion generated in 2012 (8%), and the $198 million in volume fishery with 14,066 t landed, an increase from 2011 (29%). 11,696 t landed in 2012, and it continued to dominate as Coastal pelagic species (CPS) made up four of the the highest valued fishery in the state with an ex-vessel top five volume fisheries in 2013.
    [Show full text]
  • Fish Bulletin No. 109. the Barred Surfperch (Amphistichus Argenteus Agassiz) in Southern California
    UC San Diego Fish Bulletin Title Fish Bulletin No. 109. The Barred Surfperch (Amphistichus argenteus Agassiz) in Southern California Permalink https://escholarship.org/uc/item/9fh0623k Authors Carlisle, John G, Jr. Schott, Jack W Abramson, Norman J Publication Date 1960 eScholarship.org Powered by the California Digital Library University of California STATE OF CALIFORNIA DEPARTMENT OF FISH AND GAME MARINE RESOURCES OPERATIONS FISH BULLETIN No. 109 The Barred Surfperch (Amphistichus argenteus Agassiz) in Southern Califor- nia By JOHN G. CARLISLE, JR., JACK W. SCHOTT and NORMAN J. ABRAMSON 1960 1 2 3 4 ACKNOWLEDGMENTS The Surf Fishing Investigation received a great deal of help in the conduct of its field work. The arduous task of beach seining all year around was shared by many members of the California State Fisheries Laboratory staff; we are particularly grateful to Mr. Parke H. Young and Mr. John L. Baxter for their willing and continued help throughout the years. Mr. Frederick B. Hagerman was project leader for the first year of the investigation, until his recall into the Air Force, and he gave the project an excellent start. Many others gave help and advice, notably Mr. John E. Fitch, Mr. Phil M. Roedel, Mr. David C. Joseph, and Dr. F. N. Clark of this laboratory. Dr. Carl L. Hubbs of Scripps Institution of Oceanography at La Jolla gave valuable advice, and we are indebted to the late Mr. Conrad Limbaugh of the same institution for accounts of his observations on surf fishes, and for SCUBA diving instructions. The project was fortunate in securing able seasonal help, particularly from Mr.
    [Show full text]
  • Redacted for Privacy Ivan Pratt
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarsArchive@OSU AN ABSTRACT OF THE THESIS OF Alfred Warren Hanson for the Doctor of Philosophy (Name) (Degree) in Zoology presented on/8 1q72 (Major) /71date Title:LIFE CYCLE AND HOST SPECIFICITY OF DICLIDOPHORA sp. (MONOGENEA-DICLIDOPHORIDAE),A PARASITE OF EMBIOTOCID FISHES Abstract approved: Redacted for Privacy Ivan Pratt The life cycle of a monogenean, Diclidophora sp. , was studied with special attention to the time required for developmental stages to occur.Eggs are produced by adult worms at the rate of one every 13. 5 minutes and require 32 days tohatchwhen incubated at 12. 5°C and 30.90/00salinity.Rate of development and hatching success are strongly dependent on incubation temperature and salinity. Growth and development of the larval stages are similar to other known species of the family 1T)c1idophoridae.The presence in the oncomiracidium of a precocious set of attachment clampsand the premature loss of larval hooks distinguish it from related species. Oncorniracidia survive approximately 36 hours if no host fish is reached. Larvae attach to the inner lateral borders of primary lamellae of the host fish gill.A second set of clamps is added before the 36th day, the third set soon after the 44th day, and the last pair by the 58th day.Sexual maturity is reached by the 153rd day after hatching. Experimental infections were maintained on redtail surfperch for 203 days. Naturally infected redtail surfperch, silver surfperch and walleye surfperch were collected.Rates of infection with Di clidoph- ora were 38.
    [Show full text]
  • (J3+5Q I-’ /Fq.057 I I SENSITIVITY of COASTAL ENVIRONMENTS and WILDLIFE to SPILLED OIL ALAS KA - SHELIKOF STRAIT REGION
    i (J3+5q i-’ /fq.057 I I SENSITIVITY OF COASTAL ENVIRONMENTS AND WILDLIFE TO SPILLED OIL ALAS KA - SHELIKOF STRAIT REGION - Daniel D. Domeracki, Larry C. Thebeau, Charles D. Getter, James L. Sadd, and Christopher H. Ruby Research Planning Institute, Inc. Miles O. Hayes, President 925 Gervais Street Columbia, South Carolina 29201 - with contributions from - Dave Maiero Science Applications, Inc. and Dennis Lees - Dames and Moore PREPARED FOR: National Oceanic and Atmospheric Administration Outer Continental Shelf Environmental Assessment Program Juneau, Alaska RPI/R/81/2/10-4 Contract No. NA80RACO0154 February 1981 .i i . i ~hou~d read: 11; Caption !s Page 26, Figure four distinct biO1~~~cal rocky shore show~ng algae 2oner and P Exposed (1) barnacle (Balanus glandula) zone, zones: (3) -and ~~~e. blue mussel zone, ~ar-OSUsJ (4) barnacle ~B_ - . 27 -.--d. 29 ..-.A =~na beaches . 31 fixposed tidal flats (low biomass) . 33 Mixed sand and gravel beaches . 35 Gravel beaches . 37 Exposed tidal flats (moderate biomass) . 39 Sheltered rocky shores . ...*.. 41 Sheltered tidal flats . 43 Marshes ● =*...*. 45 Critical Species and Habitats . 47 Marine Mammals . ...*. 48 Coastal Marine Birds. 50 Finish . ...*.. 54 Shellfish . ...**.. ● *...... ...*.. ..* 56 Critical Intertidal Habitats . 58 Salt Marshes . 58 Sheltered Tidal Flats. 59 Sheltered Rocky Shores . 59 Critical Subtidal Habitats . 60 Nearshore Subtidal Habitats . ...*.. 60 Seagrass Beds . ...* ● . 62 Kelp Beds ● . ...**. ● .*...*. ...* . 63 ● . TABLE OF CONTENTS (continued) PAGE Discussion of Habitats with Variable to Slight Sensitivity. ...*..... 65 Introduction . 65 Exposed Rocky Shores. 65 Beaches . ● . 66 Exposed Tidal Flats.. 67 Areas of Socioeconomic Importance . 68 Mining Claims . 68 Private Property ● . 69 Public Property . ...*.. 69 Archaeological Sites.
    [Show full text]
  • CASCADE HEAD: Fish Species Present Within Evaluation Area
    CASCADE HEAD: Fish species present within evaluation area EXTENT OF USE: C = Common, M = Minor, R = Rare or incidential use HABITAT: S = Sand, G = Gravel, R = Rock, P = Pelagic, I = Rocky intertidal HARVEST: C = Commercial, R = Recreational NAME USE HABITAT HARVEST Black Rockfish C R C, R Blue Rockfish CR Canary Rockfish CR China Rockfish CR Copper Rockfish CR Juvenile Rockfish spp. C R Quillback Rockfish CR Vermilion Rockfish R Yelloweye Rockfish (juveniles) CR Cabezon CR Red Irish Lord R Sculpin spp. C R, I Chinook Salmon P C, R Coho Salmon P C, R Steelhead P Green Sturgeon P White Sturgeon P Kelp Greenling CR Lingcod CR Rock Greenling R Monkeyface Prickleback R, I Prickleback spp. Sanddab S Pacific Halibut Starry Flounder Poacher spp. Redtail Surfperch S Shiner Surfperch S Striped Surfperch R Walleye Surfperch S Surfperch spp. Gunnel spp. Smelts spp. P Topsmelt Tubesnout Wolf Eel R Cascade Head: Fish Page 1 of 4 NAME USE HABITAT HARVEST Spiny Dogfish P Salmon Shark P White Shark P Leopard Shark Blue Shark P Pacific Angel Shark Big Skate Cascade Head: Fish Page 2 of 4 CASCADE HEAD: Invertebrate & algal species present within evaluation area EXTENT OF USE: C = Common, M = Minor, R = Rare or incidential use HABITAT: S = Sand, G = Gravel, R = Rock, P = Pelagic, I = Rocky intertidal HARVEST: C = Commercial, R = Recreational NAME USE HABITAT HARVEST Coonstripe Shrimp Brown Rock Crab Dungeness Crab C S, GC Mole Crab S Red Rock Crab S Striped Shore Crab Gooseneck Barnacle I Barnacle spp. California Mussel IR Cockle Clam S Scallop spp.
    [Show full text]
  • Marine Mammals of the Columbia River Estuary
    Marine mammals of the Columbia River estuary Item Type monograph Authors Jeffries, Steven Publisher Washington Department of Game Download date 01/10/2021 09:29:55 Link to Item http://hdl.handle.net/1834/40552 NOAA LISD SEA LE MARINE MAMMALS OF THE COLUMBIA RIVER ESTUARY I QH 541.5 ==============:::!J • E8 M35 cop.2 [I D 0 [] Final Report on the Marine Mammals Work Unit of the Columbia River Estuary Data Development Program tl MARINE MAMMALS n OF THE u COLUMBIA RIVER ESTUARY ] [] D Contractor: Washington Department of Game 600 N. Capitol Way Olympia, Washington 98504 Principal Investigator: [l Steven Jeffries Washington Department of Game Marine Mammal Investigations ] 53 Portway Street Astoria, Oregon 97103 (503) 325-8241 [l n i . Lj January 1984 ] D ] 7 ~I ,----- • __ J ,----- ,----- D D 0 D WASHINGTON DEPARTMENT OF GAME □ MARINE MAMMAL INVESTIGATIONS D PROJECT LEADER ~ Steven J. Jeffries □ WILDLIFE BIOLOGIST RESEARCH ANALYST Stephen D. Treacy Anne C. Geiger TYPIST Lynda Stansberry WORD PROCESSING Elizabeth Rummell [] lJ u [] iii J J J J J J ] J ] ] J J J J .J .J □ D D PREFACE The Columbia River Estuary Data Development Program This document is one of a set of publications and other materials [1 produced by the Columbia River Estuary, Data Development Program (CREDDP). CREDDP has two purposes: to increase understanding of the ecology of the Columbia River Estuary and to provide information useful J in making land and water use decisions. The program was initiated by local governments and citizens who saw a need for a better information base for use in managing natural resources and in planning for development.
    [Show full text]
  • Humboldt Bay Fishes
    Humboldt Bay Fishes ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> ·´¯`·._.·´¯`·.. ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> Acknowledgements The Humboldt Bay Harbor District would like to offer our sincere thanks and appreciation to the authors and photographers who have allowed us to use their work in this report. Photography and Illustrations We would like to thank the photographers and illustrators who have so graciously donated the use of their images for this publication. Andrey Dolgor Dan Gotshall Polar Research Institute of Marine Sea Challengers, Inc. Fisheries And Oceanography [email protected] [email protected] Michael Lanboeuf Milton Love [email protected] Marine Science Institute [email protected] Stephen Metherell Jacques Moreau [email protected] [email protected] Bernd Ueberschaer Clinton Bauder [email protected] [email protected] Fish descriptions contained in this report are from: Froese, R. and Pauly, D. Editors. 2003 FishBase. Worldwide Web electronic publication. http://www.fishbase.org/ 13 August 2003 Photographer Fish Photographer Bauder, Clinton wolf-eel Gotshall, Daniel W scalyhead sculpin Bauder, Clinton blackeye goby Gotshall, Daniel W speckled sanddab Bauder, Clinton spotted cusk-eel Gotshall, Daniel W. bocaccio Bauder, Clinton tube-snout Gotshall, Daniel W. brown rockfish Gotshall, Daniel W. yellowtail rockfish Flescher, Don american shad Gotshall, Daniel W. dover sole Flescher, Don stripped bass Gotshall, Daniel W. pacific sanddab Gotshall, Daniel W. kelp greenling Garcia-Franco, Mauricio louvar
    [Show full text]
  • Fish Bulletin 161. California Marine Fish Landings for 1972 and Designated Common Names of Certain Marine Organisms of California
    UC San Diego Fish Bulletin Title Fish Bulletin 161. California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California Permalink https://escholarship.org/uc/item/93g734v0 Authors Pinkas, Leo Gates, Doyle E Frey, Herbert W Publication Date 1974 eScholarship.org Powered by the California Digital Library University of California STATE OF CALIFORNIA THE RESOURCES AGENCY OF CALIFORNIA DEPARTMENT OF FISH AND GAME FISH BULLETIN 161 California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California By Leo Pinkas Marine Resources Region and By Doyle E. Gates and Herbert W. Frey > Marine Resources Region 1974 1 Figure 1. Geographical areas used to summarize California Fisheries statistics. 2 3 1. CALIFORNIA MARINE FISH LANDINGS FOR 1972 LEO PINKAS Marine Resources Region 1.1. INTRODUCTION The protection, propagation, and wise utilization of California's living marine resources (established as common property by statute, Section 1600, Fish and Game Code) is dependent upon the welding of biological, environment- al, economic, and sociological factors. Fundamental to each of these factors, as well as the entire management pro- cess, are harvest records. The California Department of Fish and Game began gathering commercial fisheries land- ing data in 1916. Commercial fish catches were first published in 1929 for the years 1926 and 1927. This report, the 32nd in the landing series, is for the calendar year 1972. It summarizes commercial fishing activities in marine as well as fresh waters and includes the catches of the sportfishing partyboat fleet. Preliminary landing data are published annually in the circular series which also enumerates certain fishery products produced from the catch.
    [Show full text]
  • Common Fishes of California
    COMMON FISHES OF CALIFORNIA Updated July 2016 Blue Rockfish - SMYS Sebastes mystinus 2-4 bands around front of head; blue to black body, dark fins; anal fin slanted Size: 8-18in; Depth: 0-200’+ Common from Baja north to Canada North of Conception mixes with mostly with Olive and Black R.F.; South with Blacksmith, Kelp Bass, Halfmoons and Olives. Black Rockfish - SMEL Sebastes melanops Blue to blue-back with black dots on their dorsal fins; anal fin rounded Size: 8-18 in; Depth: 8-1200’ Common north of Point Conception Smaller eyes and a bit more oval than Blues Olive/Yellowtail Rockfish – OYT Sebastes serranoides/ flavidus Several pale spots below dorsal fins; fins greenish brown to yellow fins Size: 10-20in; Depth: 10-400’+ Midwater fish common south of Point Conception to Baja; rare north of Conception Yellowtail R.F. is a similar species are rare south of Conception, while being common north Black & Yellow Rockfish - SCHR Sebastes chrysomelas Yellow blotches of black/olive brown body;Yellow membrane between third and fourth dorsal fin spines Size: 6-12in; Depth: 0-150’ Common central to southern California Inhabits rocky areas/crevices Gopher Rockfish - SCAR Sebastes carnatus Several small white blotches on back; Pale blotch extends from dorsal spine onto back Size: 6-12 in; Depth: 8-180’ Common central California Inhabits rocky areas/crevice. Territorial Copper Rockfish - SCAU Sebastes caurinus Wide, light stripe runs along rear half on lateral line Size:: 10-16in; Depth: 10-600’ Inhabits rocky reefs, kelpbeds,
    [Show full text]
  • Habitat Preference of Leopard Sharks (​Triakis Semifasciata)
    Habitat Preference of Leopard Sharks (Triakis ​ semifasciata) at Chicago Zoological Society Based ​ on Bottom Substrate Amanda (Williams) Flannery Miami University, Oxford, OH 2016 Chicago Zoological Society Cohort Abstract Much like several other species of near shore elasmobranchs, the leopard shark (Triakis ​ semifasciata), relies on estuaries in the wild throughout their life histories to hide from predators, ​ reproduce, and to use as pupping grounds and nurseries. However due to anthropogenic forces, these habitats have been subjected to development, pollution and agriculture which have led to destruction or alteration of nearly 90% of these environments along the Californian coastline. The objective of this study was to observe the Triakis semifasciata at Chicago Zoological Society ​ in Brookfield, Illinois to determine how this social group of females use their habitat space based on bottom substrate. The sharks were observed for 6 days for 2 ½ hour periods in the morning (10:00am - 12:30pm) and early afternoon (12:30pm - 2:00pm) with a timer set to five minute intervals, at which point the position of each shark within the habitat was recorded. A behavioral ethogram was developed to capture behaviors relevant to habitat use. An ANOVA indicated there was statistical significance of habitat preference of sharks based on bottom substrate (F= 5.00, p= 0.049, F crit= 4.96), while a two-way ANOVA indicated there was no statistical significance between the time of observation and habitat bottom substrate preference by T.semifasciata ​ females (F= 0.03, p= 0.84, F crit= 5.31). There was no statistical significance between the two observation periods and behaviors, as the standard errors overlapped significantly, indicating a great deal of variance in behaviors.
    [Show full text]