NOVA – Curiosity (Pdf)

Total Page:16

File Type:pdf, Size:1020Kb

NOVA – Curiosity (Pdf) Mars-sonden “Curiosity” til Gale-krateret Hvad er nyt under Solen? – og lidt om danske bidrag Morten Bo Madsen, Astrofysik og Planetforskning, Niels Bohr Institutet NOVA, 2012-03-06 1 Først lidt historie: Viking-missionerne havde til formål at lede efter liv på MARS • NASA's Viking-missioner i 70'erne viste at det ikke er “ligetil” at finde liv på Mars: • 3 ud af 4 biologi-eksperimenter: “+”, et: “–”! • Kun spor af organisk kemi … • Mars-jord kraftigt oxyderende (mere herom senere) • Derfor har både NASA og ESA sidenhen grebet tingene mere systematisk til værks ... Først lidt historie: Viking-missionerne havde til formål at lede efter liv på MARS • NASA's Viking-missioner i 70'erne viste at det ikke er “ligetil” at finde liv på Mars: • 3 ud af 4 biologi-eksperimenter: “+”, et: “–”! • Kun spor af organisk kemi … • Mars-jord kraftigt oxyderende (mere herom senere) • Derfor har både NASA og ESA sidenhen grebet tingene mere systematisk til værks ... Søren E. Larsen fra DTU’s vestlige filial (dengang Risø Nationallaboratorium) studerede vind på Mars på denne mission. Mars Pathfinder 1997 Med inspiration fra Viking foreslog Jens Martin Knudsen en række magnet- eksperimenter – disse fløj første gang på Mars Pathfinder Image credits / permission: Imager for Mars Pathfinder (IMP) Logo University of Arizona , NASA, JPL and the Niels Bohr Institute Credits / permission: University of Arizona Mars Pathfinder magnet-eksperimenter Resultater: 2 -1 Gennemsnitlig mætningsmagnetisering af indfanget støv 1-6 Am kg Partiklerne er sammensatte af individuelle mineral-korn og sandsynligvis dannet i vand Image credits / permission: Niels Bohr Institute, University of Arizona and NASA, JPL ”Magnetic Properties Experiments” på Spirit og Opportunity (2004 – 2010 and 2004 - ?) A010 A416 A417 A711 Bemærk: Det radiometriske kalibreringstarget Rovernes elforsyning kommer fra solceller støver mere og mere til, men Robotarm med “Mikroskop”, et sted forbliver relativt rent Slibeværktøj (med magneter) Mössbauer spektrometer og grundstofanalysator Dette førte til en invitation til deltagelse i NASA’s næste mission til Mars-overfladen: Phoenix Image credits / permission: 6 NASA, JPL, Niels Bohr Institute, Cornell University and Honeybee Robotics, New York. Det luftbårne støv indfanget på magneterne flytter omkring som vinden blæser – her Opportunity B-180 B-310 B-553 B-620 B-1072 Mikroskop-billede af Opportunity's capture magnet sol 337 Mössbauer spektrum af støv på Image and data credits / permission: NASA, JPL, Niels Bohr Institute, Mainz University and Cornell University Opportunity's capture magnet, sol 328 - 330 Det er denne højt oxyderede jern-holdige komponent – i mangel af bedre viden kaldt ”nano-phase oxide” – vi har foreslået at undersøge nærmere ved hjælp af instrumenterne om bord på MSL. Mere herom senere … Der var jo andre formål med roverne end lige at studere magnetisk støv ;-) Image credits / permission: NASA, JPL 8 Spirit i Gusev krater Opportunity på Meridiani-sletten [Christensen et al., 2001] hematit-signal i TES-spektre Image and data credits / permission: NASA, JPL, Arizona State University, MIT, Washington University Spirit i Gusev krater Opportunity på Meridiani-sletten Image and data credits / permission: NASA, JPL, Mainz University, USGS, and Cornell University Eksempler på udnyttelse af Pancam’s spektroskopi Image and data credits / permission: William Farrand, Space Sci. Inst. Boulder NASA, JPL, and Cornell University Opportunity på Meridiani-sletten ”Empty” og ”Berrybowl” Image and data credits / permission: 12 NASA, JPL, Mainz University and Cornell University Spirit i Gusev krater Clovis (Gusev, Mars) Image and data credits / permission: NASA, JPL, Mainz University and Cornell University 13 Phoenix Mars Lander (2008) – en faststående lander med robotarm Billedet viser en af tre radiometriske kalibreringstargets (“caltargets”) – alle designet og fremstillet på Niels Bohr Institutet Image credits / permission: Lockheed Martin, Niels Bohr Institute, University of Arizona, and NASA, JPL Disse “caltargets” blev brugt til kalibrering af alle missionens farvebilleder (og spektroskopisk data) Image credits / permission: Niels Bohr Institute, Texas A&M University, University of Arizona, and NASA, JPL Spektre fra sweep magneterne på MER roverne, et spektrum fra en magnet (del af caltarget) på Phoenix og spektret af støv i støvstorm set fra Hubble rumteleskopet. Data credits / permission: Niels Bohr Institute, Texas A&M University, University of Arizona, Jim Bell, and NASA, JPL Phoenix beviste at der er vand(-is) i undergrunden hvor Phoenix landede – og at oxydanten (opdaget med Viking) i jorden er en perchlorat-forbindelse. Dette forklarer hvorfor det ikke er simpelt at detektere organiske forbindelser på Mars – de blir simpelthen ødelagt! Data credits / permission: University of Arizona, and NASA, JPL Partikelstørrelses- fordelingen af Mars- jorden opsamlet ved Phoenix viser at der er overraskende få partikler I ler- størrelses-fraktionen i jorden. Dette betyder at vand kun kan have været aktivt (effektivt) ca. 5.000 ud af 500 millioner år på dette sted. Pike et al., 2011, Geophys. Res. Letters. Mars Science Laboratory (Curiosity, > 900 kg) anvender en helt ny præcisions-landingsmetode: En “Sky Crane” Mastcam ChemCam RAD REMS DAN MAHLI APXS Brush MARDI Drill / Sieves Analytiske instrumenter indeni roveren: “Sample Analysis at Mars (SAM)” “Chemistry and Mineralogy X-ray diffraction (CheMin)” Image credits / permission: NASA, JPL De danske undersøgelser: Vi vil bestemme (og identificere) indholdet af hydrerede jern-oxyhydroxider i Mars-jorden vha. CheMin (X-ray diffraction) Vi vil udsøge de bedste prøver Mössbauer spektrum af støv på til CheMin vha. LIBS, Mastcam, Opportunity's capture magnet, sol 328 - 330 MAHLI og DAN. Desuden vil vi undersøge evt. organiske komponenter på overfladerne vha. SAM. ImageImage and credits data credits / permission: / permission: NASA,NASA, JPL, JPL Niels Bohr Institute, Mainz University 21 Videnskabelige mål MSL’s primære videnskabelige mål er at udforske et landingssted som en mulig habitat for liv og at vurdere potentialet for at eventuelle biosignaturer kan være bevarede. Målene inkluderer : •Vurdering af det biologiske potentiale af landings-stedet gennem undersøgelser af organisk kemi, udvalgte grundstoffer og biomarkører •Karakterisering af geologi og geokemi, både kemisk, mineralogisk, og isotop-sammensætning, og geologiske processer •Undersøgelse af vands rolle, atmosfærens udvikling og nutidens vejr/klima •Karakterisering af spektret af stråling ved overfladen Mulige valg for MSL’s landing Mawrth Vallis: Ældste stratigrafiske aflejring Gale Crater Det højeste (tykkeste) stratigrafiske tilgængelig på Mars? tværsnit på Mars? Holden Crater: Det mest komplekse Eberswalde Crater: Det/den mest interessante flodaflejringssystem på Mars? delta/sø på Mars? Candidate Landing Sites Image credits / permission: NASA, JPL Gale krateret: Et bjerg af aflejrings-lag Overgang fra lermineraler til sulfater i et dybt bassin Som at lande i Valles Marineris Tyk/Høj profil giver mulighed for studier af Mars-miljøet meget langt tilbage i tiden 25 Image credits / permission: NASA, JPL Gale tilhører en familie af fyldte kratere Image credits / permission: NASA, JPL24 Bestigning af bjerget K. Edgett, MSSS Stratigrafi og en Planets historie Sedimentære klipper indeholder information om miljø-ændringer Image credits / permission: NASA, JPL Nu: Film – og herefter: Pause! Image credits / permission: NASA, JPL 34 Størrelsen af MSL – En jordisk analog 2009 MSL Rover 2005 MINI Cooper S The data/information contained herein has been reviewed and approved for release by JPL Export Administration on the basis that this document contains no export-controlled information. Image credits / permission: NASA, JPL MSL videnskabelig nyttelast Jet Propulsion Laboratory Mars Science Laboratory Project REMOTE SENSING ChemCam Mastcam Mastcam (M. Malin, MSSS) – Farve- og tele-kamera med video og filtre til atmosfærisk opacitet RAD ChemCam (R. Wiens, LANL/CNES) – Kemisk REMS sammensætning; meget lang tele DAN KONTAKT-INSTRUMENTER (PÅ ROBOT-ARM) MAHLI (K. Edgett, MSSS) – “Hånd-linse”-farvebilleder APXS (R. Gellert, U. Guelph, Canada) - Kemisk sammensætning ANALYTISK LABORATORIUM (ROVERens KROP) MAHLI SAM (P. Mahaffy, GSFC/CNES) – Kemisk og isotop- APXS sammensætning, inklusive organiske forbindelser Brush MARDI Drill / Sieves CheMin (D. Blake, ARC) - Mineralogi Scoop KARAKTERISERING af OMGIVELSER / MILJØ Rover bredde: 2,8 m MARDI (M. Malin, MSSS) - Nedstigningsbilleder Instrumentdækhøjde over grund: 1,1 m REMS (J. Gómez-Elvira, CAB, Spain) - Meteorologi / UV Frihøjde: 0,66 m RAD (D. Hassler, SwRI) - Høj-energi strålingsmiljø Højde af mast: 2,2 m DAN (I. Mitrofanov, IKI, Russia) – Brint i den øverste meter Image credits / permission: NASA, JPL Mast kamera (Mastcam) Principal Investigator: Michael Malin Malin Space Science Systems Mastcam producerer farve- og stereo-billeder af landskab, klipper, jord og støv plus frost/is, og vil udføre atmosfæriske undersøgelser • Snæver-vinkel (5.1° FOV) og medium-vinkel (15° FOV) kameraer (100 og 34 mm fokallngd.) • Bayer mønster filter design til naturlig farve plus smalle båndpas-filtre til spektroskopi • Høj rumlig opløsning: 12001200 pixels (0.2 mm/pixel ved 2 m, 8 cm/pixel ved 1 km’s afstand) • HD-video med 5 billeder/s, 1280720 pixels • Stort internt lager: 256 MByte SRAM, 8 GByte flash Image credits / permission: NASA, JPL, Malin Space Science Systems ChemCam (LIBS) Principal Investigator: Roger Wiens
Recommended publications
  • Numerical Modeling of Magnetic Capture of Martian Atmospheric Dust ______
    ____________________________________________________________________________ Numerical Modeling of Magnetic Capture of Martian Atmospheric Dust __________________________________________________________________________ Kjartan Kinch Mars Simulation Laboratory Institute of Physics and Astronomy Aarhus University, Denmark Ph.D. Thesis Revised Edition March 2005 III Table of Contents Table of Contents .................................................................................. III List of Publications...............................................................................VII Preface.................................................................................................... IX 1. Introduction.........................................................................................1 1.1. The Mars Exploration Rover mission .................................................................1 1.2. Dust in the Martian Atmosphere .........................................................................2 1.3. Magnetic Properties Experiments .......................................................................3 1.4. The Present Work................................................................................................5 1.4.1. Motivation and Method......................................................................................5 1.4.2. Structure of the Thesis .......................................................................................5 2. The Planet Mars..................................................................................7
    [Show full text]
  • Ca Li for Ni a Insc Itu Te of Techno Logy Voillme LX, Nllmber 3, I 997
    Ca li for ni a Insc itu te of Techno logy SC I EN CE Voillme LX, Nllmber 3, I 997 IN THIS ISSUE Water and Ancient Mars Geology Under the Antarctic Ocean Arsenic and the L.A . Aqueduct Top: Every explorer wants to see what's on the other side of the next hill. When Sojourner, the Mars Path­ finder's rover, peered over a nearby crest on Sol (Mar- tian day) 76, it saw what appear to be sand dunes. If the stuff really is sand (a question that is still being debated), it implies the likely long-term prese.nce of liquid water-the most plausible agent for creating sand-sized grains. The Twin Peaks are on the horizon on the right; the "Big" Crater is on the left. Bottom: The rover took this picture of the lander, nesting comfortably in its deflated air bags, on Sol 33. You can see the for­ ward ramp, which sticks straight out like a diving board instead of bending down to touch the Martian surface (the rover drove off the rear ramp). And if you think you see E.T.'s face, you're not far wrong­ Pathfinder's camera has two "eyes" spaced 15 cen­ timeters apart for stereo vision. For a look at what else Pathfinder has seen, turn to page 8. " N GIN E E R I N G & C 1 ENe E Ca li for n ia Instit u te o f Tec h no logy 2 Random Wa lk 8 Pathfinder's Fi n ds - by Dougla s L.
    [Show full text]
  • Laboratory Measurements in Support of Present and Future Missions to Mars
    Laboratory Measurements in Support of Present and Future Missions to Mars Submitted to NAS Planetary Science Decadal Planning Group Vincent Chevrier1, Derek Sears1, Megan Elwood Madden2, Essam Heggy3 Abstract The case is made that supporting laboratory measurements and facilities should be considered an integral element of the Nation’s planetary exploration program. Laboratory measurements are important for the development of successful scientific instruments for space flight and, perhaps more importantly, to meaningfully interpret the data returned by the missions. They enable quantitative data to be obtained, hence interpretation of instrument results and insights into potential new planetary processes. There are ample examples of this in the history of the Mars program: The interpretation of data from the Viking surface measurements and biology experiments largely depended on post-mission laboratory studies. Provision of input data (rate constants for the adsorption and desorption of volatiles passing through regoliths, diffusion rates, etc.) is critical for global circulation and climate models. Many geologic features on Mars have been understood by the use of modeling of volcanic, lacustrine, fluvial and aeolian processes using flumes and wind tunnel experiments. Instruments can also be directly tested in situ and their results simulated with experiments. The potential of such experiments is boundless as new features are observed on the various surfaces of Mars and improvements in laboratory measurements allow more realistic simulation of the surface and subsurface conditions. Finally, as we enter a phase of sample return from the Moon, asteroids, and Mars, following the success of Apollo, Stardust and Genesis, we should focus resources on the establishment of laboratories for the analysis of extraterrestrial samples.
    [Show full text]
  • Workshop on Innovative Instrumentation for the in Situ Study of Atmosphere-Surface Interactions on Mars
    WORKSHOP ON INNOVATIVE INSTRUMENTATION . FOR THE IN SITU STUDY OF ATMOSPHERE"SURFACE INTERACTIONS ON MARS Mars Surface and AlmOlphere Through Time LPI Technical Report N umber 92~07, Part 2 LUNAR AND PLANETARY INSTITLTTE 3600 BAY AREA BOULEVARD HOUSTON TX 77058-1113 LPIITR--92-07. Part 2 WORKSHOP ON INNOVATIVE INSTRUMENTATION FOR THE IN SITU STUDY OF ATMOSPHERE-SURFACE INTERACTIONS ON MARS Edited by Bruce Fegley Jr. and Heinrich Wanke Held at Max-Planck-Institut fur Chemie Mainz, Germany October 8-9, 1992 Sponsored by The Lunar and Planetary Institute The MSATT Study Group Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Technical Report Number 92-07, Part 2 LPIITR--92-07, Part 2 Compiled in 1992 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by Universities Space Research Association under Contract NASW-4574 with the National Aeronautics and Space Administration. Material in this document may be copied without restraint for library, abstract service, educational, or personal research purposes~ however, republication ofany portion requires the written permission ofthe authors as well as appropriate acknowledgment ofthis publication. This report may be cited as: Fegley B. Jr. and Wanke H., eds. (1992) Workshop on Innovative Instrumentation for the In Situ Study ofAtmosphere-Surface Interactions on Mars. LPI Tech. Rpt. 92-07, Part 2, Lunar and Planetary Institute, Houston. 10 pp. This report is distributed by: ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Mailorder requestors will be invoicedfor the cost ofshipping and handling. LPI Technical Report 92-07, Part 2 iii Program Thursday, October 8, 1992 Morning Session 09:15 WelcomebyH.
    [Show full text]
  • Koloniseringen Af Mars
    Koloniseringen af Mars Morten Bo Madsen, Astrofysik og Planetforskning, Niels Bohr Institutet Marsprojektet er støttet af: 1 UNF Odense, 2018-05-01 Koloniseringen af Mars – hvad betyder det egentlig? Hvordan er der egentlig på Mars? – og hvorfor er lige Mars interessant? Hvorfor skal vi overhovedet til Mars? Kan vi gøre Mars beboelig? (- ”terraforming” af Mars) Kan vi allesammen ”bare” flytte derud? Hvad forberedes på verdensplan? (Space-X, NASA, JAXA, ESA, …) - og hvad sker der i Danmark? Koloniseringen af Mars – hvad betyder det egentlig? Hvordan er der egentlig på Mars? – og hvorfor er lige Mars interessant? Hvorfor skal vi overhovedet til Mars? Kan vi gøre Mars beboelig? (”terraforming” af Mars) Kan vi allesammen ”bare” flytte derud? Hvad forberedes på verdensplan? (Space-X, NASA, JAXA, ESA, …) - og hvad sker der i Danmark? “The goldilock Zone” Marsdag (Sol): 24 t 39 m Marsår: 1.88 Jord-år 668 Sols Halv storakse: 1.52 AU* (Nuværende) Aksehældning: 25.2° *1 AU = 149.597.871 km At leve på Mars-tid – Marsdøgnet er 24 timer og 39 minutter Hvad kræver LIV for at overleve og trives? En stabil energikilde (f.eks. en stjerne) (i flydende form – i det mindste som tynde film) ? Image credits / permission: NASA, JPL 7 Hvad kræver LIV for at overleve og trives? En stabil energikilde (Solen, jordvarme eller kemisk energi) Vand (i flydende form – i det mindste som tynde film) ? Image credits / permission: NASA, JPL 8 Hvad kræver LIV for at overleve og trives? En stabil energikilde (Solen, jordvarme eller kemisk energi) Vand (i flydende form – i
    [Show full text]
  • Mars Pathfinder Landing Site Workshop
    NASA-CR-196745 MARS PATHFINDER LANDING SITE WORKSHOP (NASA-CR-196745) MARS PATHFINDER N95-14276 LANDING SITE WORKSHOP Abstracts --THR U-- Only (Lunar and Planetary Inst.) N95-16208 57 P Unclas G3/91 0020918 LPI Technical Report Number 94-04 Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1 113 LPI/TR--94-04 MARS PATHFINDER LANDING SITE WORKSHOP Edited by M. Golombek Held at Houston, Texas April 18-19,1994 Sponsored by Lunar and Planetary Institute Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1 1 13 LPI Technical Report Number 94-04 LPUTR--94-04 I- Compiled in 1994 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the University Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. This report may be cited as Golombek M..ed. (1994) Mars Parhfinder Landing Sire Workshop. LPI Tech. Rpt. 94-04, Lunar and Planetary Institute, Houston. 49 pp. This report is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058- 1 I 13 Mail order requesrors will be invoiced for /he cost of shipping and handling. LPI Technical Report 94-04 iii Preface The Mars Pathfinder Project is an approved Discovery-class mission that will place a lander and rover on the surface of the Red Planet in July 1997.
    [Show full text]
  • THE PLANETARY REPORT DECEMBER SOLSTICE 2020 VOLUME 40, NUMBER 4 Planetary.Org
    THE PLANETARY REPORT DECEMBER SOLSTICE 2020 VOLUME 40, NUMBER 4 planetary.org THE YEAR IN PICTURES FINDING PERSEVERANCE AND HOPE THROUGH SPACE EXPLORATION CALIBRATING MARS C BEPICOLOMBO MEETS VENUS C PLANETFEST RETURNS SPACE ON EARTH Countdown to Liftoff WHEN NASA ANNOUNCED the name of the James Webb Space Telescope in 2002, the observatory was scheduled to launch in 2010. While it’s common for one-of-a-kind space projects involving new technologies to run over budget and fall behind schedule, not many people would have predicted that Webb would still be on the ground at the end of 2020 with a price tag that has grown to almost $9 billion, not including operations costs. If all goes well, 2021 will be Webb’s year. The flagship observatory is currently scheduled to blast off on 31 October 2021 after its latest delay of 7 months caused in part by COVID-19. This image shows technicians folding the telescope for launch configuration prior to sound and vibration tests. To learn more about the tele- scope, visit planetary.org/webb. NASA/CHRIS GUNN 2 THE PLANETARY REPORT C DECEMBER SOLSTICE 2020 SNAPSHOTS FROM SPACE Contents DECEMBER SOLSTICE 2020 12 The Year in Pictures Looking back at 2020’s best space exploration images. 12 19 Calibrating Mars Two colorful calibration targets will help scientists measure the brightness of Martian rocks. DEPARTMENTS 2 Space on Earth ESA/BEPICOLOMBO/MTM Preparing the world’s next great space observatory for launch. THREE MONTHS AGO, scientists using Earth-based telescopes announced they had found 3 Snapshots From Space phosphine in Venus’ clouds.
    [Show full text]
  • University of Copenhagen
    From Automatic to Adaptive Data Acquisition - towards scientific sensornets Chang, Marcus Publication date: 2009 Document version Også kaldet Forlagets PDF Citation for published version (APA): Chang, M. (2009). From Automatic to Adaptive Data Acquisition: - towards scientific sensornets. Download date: 02. okt.. 2021 DEPARTMENT OF COMPUTER SCIENCE FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN PhD thesis Marcus Chang From Automatic to Adaptive Data Acquisition - towards scientific sensornets November 2009 Submission: November 2009 Copyright c 2009, Marcus Chang All rights reserved. A Typesetted with LTEX 2 Preface The following dissertation concludes my studies at the University of Copen- hagen. It is a synopsis of five papers in the field of sensornets and ecological monitoring. Three of these papers have been published and two are currently under review. The journey has been long, with detours to both physics and astronomy, but not as long as the list of people I wish to thank: My advisor, Philippe Bonnet, for guiding me through both rounds of gradu- ate school and sending me on cool trips around the World. Special thanks to Prof. Andreas Terzis, for hosting my visits at the Johns Hopkins University, and all the great grad students at the Wymann Park lab for all the fun and great food. Kirsten S. Christoffersen for two awesome field trips to Greenland; I hope the animals will leave our equipment alone this season. Our departmental PhD Secretary, Marianne Henriksen, for administrative support and always getting the job done. Be well. Friends and family for encouragement and support. Especially, Henrik Juul Nielsen for proofreading and Anders Siegumfeldt for sparring.
    [Show full text]
  • Quantum Technology Seminar
    PRESENTED BYDENMARK AND JAPAN STI SEMINAR QUANTUM TECHNOLOGY SEMINAR ~How collaboration of Japanese and Danish researchers is contributing to current and future innovation ~ Thursday, 21 November 2019 年 月 日(木 2017 11 16 1 October 2019 Invitation to the world of Quantum technology The Danish Ministry of Higher Education and Science and the Royal Danish Embassy in Tokyo are pleased to organize the Quantum Technology Seminar at Niels Bohr Institute in Copenhagen, Denmark. Today, technical challenges and social issues cannot be solved by only one country. Technologies such as next processing, data analysis, software architecture creation and cyber security have been gaining strong attention among both academia and industries. Quantum research is actively conducted all over the world, and the research & development competition is getting to be increasing intensity. We hope this seminar is inspirational and provides a great match-making environment for talents and key persons from various fields to create new relationship for the start of new projects and accelerate technical development of both countries. Please register from the below link. REGISTRATION LINK We look very much forward to your participation. Contact: Akiko KAMIGORI, Senior Commercial Officer, Royal Danish Embassy Email: akikam**um.dk (Please change ** to @ when sending message including the below researchers’ email) TECHNICAL SEMINAR QUANTUM TECHNOLOGY SEMINAR ~ HOW COLLABORATION OF JAPANESE AND DANISH RESEARCHERS IS CONTRIBUTING TO THE FUTURE INNOVATION ~ Date 21 November 2019 9:00 – 17:30 (Door open 8:40) Venue Auditorium A, Blegdamsvej 17, Niels Bohr Institute, the University of Copenhagen Language English Program Speaker and Program may subject to change AM SESSION (SPEECH 25 MIN.
    [Show full text]
  • Workshop on Early Mars (1997) 3017.Pdf the MAGNETIC PROPERTIES EXPERIMENT on MARS PATHFINDER
    Workshop on Early Mars (1997) 3017.pdf THE MAGNETIC PROPERTIES EXPERIMENT ON MARS PATHFINDER. Jens Martin Knudsen, Haraldur Pall Gunnlaugsson, Morten Bo Madsen, Stubbe F. Hviid, Walter Goetz, Niels Bohr Institute for Astronomy, Physics and Geo- physics, Universitetsparken 5, DK-2100 Copenhagen , Denmark. Introduction 2 A remarkable result from the Viking missions to Mars in 1976 was the discovery that the Martian soil is highly magnetic, in the sense that the soil is attracted by small permanent 1 magnets [1,2]. 4 The Viking landers carried two types of permanent mag- 3 nets, a weak and a strong magnet. The surface magnetic field and surface magnetic field gradient of the strong type magnet 1 were 250 mT and 100 Tm , respectively. The corresponding 1 numbers for the weak magnet were 70 mT and 30 Tm . Both types were mounted on the backhoe of the soil sampler, where they were exposed to the soil. A strong type magnet 5 was mounted in the Reference Test Chart (RTC) which was exposed to wind born particles exclusively. At both landing sites both backhoemagnets were saturated 3 with magnetic particles after few insertions into the soil. The RTC magnets gradually became saturated with magnetic dust during the mission. ath nder lander. The lab els refer to 1: Based on the returned pictures of the amount of soil Figure 1: The P wo sets of Magnet Arrays, 2: Tip Plate Magnet, 3: clinging to the magnets, it was estimated that the Martian The t dust contain between 1% and 7% of a strongly magnetic Ramp Magnets, 4: Imager IMP and 5: The So journer ver.
    [Show full text]
  • Annual Report 2015 the Niels Bohr Archive Is an Independent Institution Under the University of Copenhagen
    THE NIELS BOHR ARCHIVE Annual Report 2015 The Niels Bohr Archive is an independent institution under the University of Copenhagen. Staff Director Finn Aaserud Academic Assistant Felicity Pors Librarian/Secretary Anne Lis Rasmussen IT collaborator H˚akon Bergset (part time) Research Associate Helge Kragh (emeritus professor, NBI) Research Associate Helle Kiilerich Postdoc Thiago Hartz (through January) Postdoc Christian Joas (from June) Job training Jesper Øland (January to April) Student research assistant Josephine Musil-Gutsch (August and September) Board of directors For the Vice-Chancellor of the University of Copenhagen Karin Tybjerg For the Niels Bohr Institute (NBI) N.O. Andersen For the Royal Danish Academy of Sciences and Letters Jørgen Christensen{Dalsgaard For the Danish National Archives (Rigsarkivet) Asbjørn Hellum For the family of Niels Bohr Vilhelm Bohr (chair) Scientific Advisory Board Olival Freire, Jr. Universidade Federal da Bahia, Brazil Gregory Good (chair) Center for History of Physics American Institute of Physics, U.S.A. Karl Grandin Center for History of Science, Royal Academy of Science, Sweden 1 Kirsten Hastrup Royal Danish Academy of Sciences and Letters, Denmark John L. Heilbron University of California at Berkeley, U.S.A. Liselotte Højgaard Copenhagen University Hospital, Denmark J¨urgenRenn Max Planck Institute for the History of Science, Germany Fujia Yang Fudan University, China General remarks The Niels Bohr Archive (NBA) { website www.nbarchive.dk { is a repository of primary material for the history of modern physics, pertaining in particular to the early development of quantum me- chanics and the life and career of Niels Bohr. Although NBA has existed since shortly after Bohr's death in 1962, its future was only secured at the centennial of Bohr's birth in 1985, after a deed of gift from Bohr's wife, Margrethe, provided the opportunity to es- tablish NBA as an independent not-for-profit institution.
    [Show full text]
  • 19980017542.Pdf
    207154 /,", Lepidocrocite to maghemite to hematite: A way to have magnetic and hematitic Martian soil RICHARD V. MORRIS 1", D. C. GOLDEN 2, TAD D. SHELFER 3, AND H. V. LAUER, Jr4. tMail Code SN3, NASA Johnson Space Center, Houston, Texas 77058, USA 2Dual Inc., Houston, Texas, 77058, USA 3Viking Science & Technology, Inc., 16821 Buccaneer Ln, Houston, Texas 77058, USA 4Lockheed Martin Space Mission Systems & Services, Houston, Texas 77058, USA *Correspondence author's e-mail address: [email protected] (Submitted to Meteoritics and Planetary Science, October, 1997) 2 Abstract- We examined decomposition products of lepidocrocite, which were produced by heating the phase in air at temperatures up to 525°C for 3 and 300 hr, by XRD, TEM, magnetic methods, and reflectance spectroscopy (visible and near-m). Single-crystal lepidocrocite particles dehydroxilated to polycrystaUine particles of disordered maghemite which subsequently transformed to polycrystalline particles of hematite. Essentially pure maghemite was obtained at 265 and 223°C for the 3 and 300 hr heating experiments, respectively. Its saturation magnetization (Js) and mass specific susceptibility are -50 Am2/kg and -40 lam3/kg, respectively. Because hematite is spectrally dominant, spectrally-hematitie samples (i.e., characterized by a minimum near 860 nm and a maximum near 750 nm) could also be strongly magnetic (Js up to -30 Am2/kg) from the masked maghemite component. TEM analyses showed that individual particles are polycrystalline with respect to both maghemite and hematite. The spectraUy- hematitic and magnetic Mh+Hm particles can satisfy the spectral and magnetic constraints for Martian surface materials over a wide range of values of Mh/(Mh+Hm) and as either pure oxide powders or (within limits) as components ofmultiphase particles.
    [Show full text]