View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central ORIGINAL RESEARCH ARTICLE published: 30 January 2012 COMPUTATIONAL NEUROSCIENCE doi: 10.3389/fncom.2012.00003 Mitral cell spike synchrony modulated by dendrodendritic synapse location Thomas S. McTavish 1*, Michele Migliore 2, Gordon M. Shepherd 1 and Michael L. Hines 3 1 Department of Neurobiology, School of Medicine, Yale University, New Haven, CT, USA 2 Institute of Biophysics, National Research Council, Palermo, Italy 3 Department of Computer Science, Yale University, New Haven, CT, USA Edited by: On their long lateral dendrites, mitral cells of the olfactory bulb form dendrodendritic Ken Miller, Columbia University, synapses with large populations of granule cell interneurons. The mitral-granule cell USA microcircuit operating through these reciprocal synapses has been implicated in inducing Reviewed by: synchrony between mitral cells. However, the specific mechanisms of mitral cell Brent Doiron, University of Pittsburgh, USA synchrony operating through this microcircuit are largely unknown and are complicated Carmen Canavier, LSU Health by the finding that distal inhibition on the lateral dendrites does not modulate mitral Sciences Center, USA cell spikes. In order to gain insight into how this circuit synchronizes mitral cells *Correspondence: within its spatial constraints, we built on a reduced circuit model of biophysically Thomas S. McTavish, Department of realistic multi-compartment mitral and granule cells to explore systematically the roles of Neurobiology, Yale School of Medicine, 333 Cedar Street, dendrodendritic synapse location and mitral cell separation on synchrony. The simulations New Haven, CT, 06510-3206, USA. showed that mitral cells can synchronize when separated at arbitrary distances through e-mail:
[email protected] a shared set of granule cells, but synchrony is optimally attained when shared granule cells form two balanced subsets, each subset clustered near to a soma of the mitral cell pairs.