Engineering in Medicine & Biology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biosensors and Bioelectronics 142 (2019) 111530
Biosensors and Bioelectronics 142 (2019) 111530 Contents lists available at ScienceDirect Biosensors and Bioelectronics journal homepage: www.elsevier.com/locate/bios Highly sensitive bioaffinity electrochemiluminescence sensors: Recent T advances and future directions ∗ Bahareh Babamiria,b, Delnia Baharia,b, Abdollah Salimia,b,c, a Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran b Research Center for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran c Department of Chemistry, University of Western Ontario, N6A 5B7, London, Ontario, Canada ARTICLE INFO ABSTRACT Keywords: Electrogenerated chemiluminescence (also called electrochemiluminescence and abbreviated ECL) has attracted Electrochemiluminescence much attention in various fields of analysis due to the potential remarkably high sensitivity, extremely wide Bioaffinity sensors dynamic range and excellent controllability. Electrochemiluminescence biosensor, by taking the advantage of Aptasensor the selectivity of the biological recognition elements and the high sensitivity of ECL technique was applied as a Immunoassays powerful analytical device for ultrasensitive detection of biomolecule. In this review, we summarize the latest Genosensor sensing applications of ECL bioanalysis in the field of bio affinity ECL sensors including aptasensors, im- Cytosensor Medical diagnostics munoassays and DNA analysis, cytosensor, molecularly imprinted sensors, ECL resonance energy transfer and Nanomaterials ratiometric biosensors and give future perspectives for new developments in ECL analytical technology. Furthermore, the results herein discussed would demonstrate that the use of nanomaterials with unique chemical and physical properties in the ECL biosensing systems is one of the most interesting research lines for the development of ultrasensitive electrochemiluminescence biosensors. In addition, ECL based sensing assays for clinical samples analysis and medical diagnostics and developing of immunosensors, aptasensors and cytosensor for this purpose is also highlighted. -
Accomplishments in Nanotechnology
U.S. Department of Commerce Carlos M. Gutierrez, Secretaiy Technology Administration Robert Cresanti, Under Secretaiy of Commerce for Technology National Institute ofStandards and Technolog}' William Jeffrey, Director Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment used are necessarily the best available for the purpose. National Institute of Standards and Technology Special Publication 1052 Natl. Inst. Stand. Technol. Spec. Publ. 1052, 186 pages (August 2006) CODEN: NSPUE2 NIST Special Publication 1052 Accomplishments in Nanoteciinology Compiled and Edited by: Michael T. Postek, Assistant to the Director for Nanotechnology, Manufacturing Engineering Laboratory Joseph Kopanski, Program Office and David Wollman, Electronics and Electrical Engineering Laboratory U. S. Department of Commerce Technology Administration National Institute of Standards and Technology Gaithersburg, MD 20899 August 2006 National Institute of Standards and Teclinology • Technology Administration • U.S. Department of Commerce Acknowledgments Thanks go to the NIST technical staff for providing the information outlined on this report. Each of the investigators is identified with their contribution. Contact information can be obtained by going to: http ://www. nist.gov Acknowledged as well, -
The Rights of Children in Biomedicine: Challenges Posed by Scientific Advances and Uncertainties
The Rights of Children in Biomedicine: Challenges posed by scientific advances and uncertainties Kavot Zillén, Jameson Garland, & Santa Slokenberga Table of Contents About the Authors ...................................................................................................................... v Executive summary .................................................................................................................... 1 Resumé ....................................................................................................................................... 2 1. Introduction ............................................................................................................................ 4 1.1 The aims of the report ...................................................................................................... 4 1.2 Scientific challenges in biomedicine, pediatric care, and law .......................................... 5 1.2.1 Identifying the vulnerabilities and diversity of children as a class ........................... 5 1.2.2 Conceptualizing risk in relation to scientific advances, uncertainties, and rights ..... 6 1.2.3 Locating uncertainty and risk in biomedicine ........................................................... 7 1.3 The parameters and methodology of the report ............................................................... 8 1.4 The structure and disposition of the report ..................................................................... 10 2. Child development and its relation -
Bioelectronics Contents
chapter 10 Bioelectronics Contents Introduction . 253 Biosensors. 253 Biochips. 254 Priorities for Future Research . 256 Chapter IO References . 256 Figure Figure No. Page 29.The Use of Proteins in Constructing Circuit . ..., . 255 — Chapter 10 Bioelectronics .—— .— Introduction --—----- ——— The potential for the use of proteins in elec- used for several years, but design problems have tronic dmices has received attention recently with limited their acceptance. Biotechnology is ex- the advent of recombinant DNA (rDNA) technol- pected to increase the variety, stability, and sen- ogy}’ and the potential for computer-aided design sitivity of these devices. Biochips (biologically of proteins (I ,2,3 5 ,6,7, 11, 13,14,15,19,2 1 ). Work based microchips) capable of logic and memory is focused in two areas: biosensors and biochips. are still only speculative, and their development Biosensors (biological}’ based sensors) have been is many years away. Biosensors -——-- –—- —— .——. A potential application of biotechnology is in the not only could obviate the need for enzymes but development of improved sensing devices. Be- also could substantially broaden the applications cause of their high specificity. for given sub- of biosensors. A longer term solution to the lack of stances, enzymes and monocIonal antibodies particular enzymes might be to have computers (hlAbs) are particularly suited for use as sensors. design enzymes with particular catalytic func- Sensors using these biological molecules have the tions. Finally, features of proteins that determine potential to be smaller and more sensitive than temperature stability could be incorporated into traditional sensors. the genes that code for important sensing en- zymes. Biosensors using enzymes have been used to detect the presence of various organic compounds A new approach to fabrication is yielding bio- for many years (12). -
Department of Biomedical Engineering (GRAD) 1
Department of Biomedical Engineering (GRAD) 1 Candidates for the UNC–Chapel Hill/North Carolina State University DEPARTMENT OF BIOMEDICAL jointly issued degrees in biomedical engineering must have met the general requirements of The Graduate School of the University of North ENGINEERING (GRAD) Carolina at Chapel Hill or the North Carolina State University Graduate School. Contact Information *Currently matriculating* master’s students are required to take a Department of Biomedical Engineering comprehensive examination encompassing coursework and thesis Visit Program Website (http://www.bme.unc.edu) research. The master’s comprehensive exam may be either written or oral and is administered by the student’s advisory committee. Nancy L. Allbritton, Chair Doctoral students qualify for the Ph.D. degree by meeting grade Biomedical engineering is a dynamic field stressing the application requirements in their core courses and then advancing to written and of engineering techniques and mathematical analysis to biomedical oral preliminary exams before admission to candidacy. Details can be problems. Faculty research programs are key to the program, and they found on the department's website (https://bme.unc.edu/). Degree include five primary research directions: rehabilitation engineering, candidates in this program are expected to obtain experience working biomedical imaging, pharmacoengineering, regenerative medicine, and in a research laboratory during their residence and to demonstrate biomedical microdevices. The department offers graduate education in proficiency in research. The Ph.D. dissertation should be judged by the biomedical engineering leading to the master of science and doctor of graduate committee to be of publishable quality. philosophy degrees. Also, a joint graduate certificate in medical devices is offered. -
BET Bionanotechnology and Advanced Biomanufacturing - 1B
Course Package BET Bionanotechnology and Advanced Biomanufacturing - 1B Name module BET - Bionanotechnology and Advanced Biomanufacturing – 1B Educational programme MSc Biomedical Engineering Period Second quartile of the first semester (Block 1B) Study load 15 ECTS Coordinator J. Huttenhuis BET - Bionanotechnology and Advanced Biomanufacturing block 1A block 1B block 2A block 2B Biomedical Materials Engineering - 201400283 (5 EC) Nanomedicine - 201200220 (5 EC) Lab on a Chip - 191211120 (5 EC) Required preliminary knowledge: Followed the course 201600127 Introduction to Bionanotech & adv. Biomanufacturing in block 1A. A proven knowledge of Organic chemistry, polymer chemistry, biomaterials, cell-material interactions. 201400283 Biomedical Materials Engineering This course deals with the basic principles of tissue-biomaterial interactions, surface modification of biomaterials and polymer processing for regenerative medicine. Moreover, groups of 4-5 students draw up a research proposal that has to be defended during a plenary session. The modules are tentative and subject to change. Please check the website regularly. 201200220 Nanomedicine Nanomedicine is one of the most dynamic fields, which holds a high potential to make a huge impact on the medical science. Nanomedicine is in general defined as medical applications of nanotechnology. In recent years, nanotechnologies have been applied for drug delivery, imaging/diagnostics, biosensing, in vitro diagnostics, and tissue engineering. One of the largest areas for nanomedicine is the drug delivery/targeting. Conventional medicine, which are either administered orally or with injections, are not always successful for achieving the desired therapeutic effects but rather show high side effects. Therefore, novel drug delivery systems are highly crucial to develop, using which the drugs can be specially delivered at the targeted site or even to the specific cell types. -
Biological Engineering (BIOE)
2021-2022 Academic Catalog BIOE3100 METABOLIC ENGINEERING BIOLOGICAL ENGINEERING An engineering approach to microbiology and bio-based products. As bioengineering continues to grow as a discipline, biomanufacturing (BIOE) using "microbial cell factories" continues to pique the interests of the entrepreneur. Commodity compounds, from amino acids to BIOE2000 FUNDAMENTALS OF BIOLOGICAL ENGINEERING biopolymers, can be manufactured fermentatively. With a growing This course introduces students to the fundamental concepts of list of organismal genome sequences available for analysis and Biological Engineering. Knowledge of thermodynamics and fluid manipulation, organisms ( mainly microorganisms) will be utilized and mechanics is critical for students to solve biological engineering subsequently manipulated by the growing number of molecular biology problems. Students will learn about energy, entropy and enthalpy in their and synthetic biology techniques available. Students will utilize the various forms in a biological setting. Students will also learn basic fluid methods and concepts taught in this course for problem solving in statics and dynamics. These topics will be applied in assignments, exams biotechnology, biomanufacturing and the biopharmaceutical fields. and in the laboratory to solve biomedical and biochemical engineering This course discusses cellular and organismal metabolic networks and problems. Case studies are presented to allow student to put together the mathematical and experimental manipulation of those networks. their -
Health Science: Biomedicine Public Service Endorsement
INNOVATE • COLLABORATE • EDUCATE • INNOVATE • COLLABORATE • EDUCATE Health Science: Biomedicine Public Service Endorsement Career Pathways • Biochemist • Biomedical Engineer • Biophysicist • Physician, Surgeon Certifications / Certificate Options • CPR • OSHA Program Highlights Biomedical engineering represents new areas of medical research and • Pathogen Analysis product development; biomedical engineers’ work helps pave the way • Human Anatomy & Physiology for new ways to help treat injuries and diseases. As medicine is a field • DNA / Genomics with vast numbers of specific disciplines, there are many different sub- • Laboratory Procedures fields in which biomedical engineers work. Some work to improve and • Dissection develop new machinery, such as robotic surgery equipment; others • Grow and Culture Bacteria endeavor to create better, more reliable replacement limbs (or parts • Real World Research which help existing limbs function better, such as joint replacements). • Learn to Treat Patients New and more comfortable patient beds, monitoring equipment, and electronics are also products that often begin as concepts from the CTSO(s) biomedical engineer’s or involve some level of input from them. • HOSA - Future Health Professionals KISD Biomedical Program: Program Fees / Requirements Biomedicine classes in KISD aim to prepare students to enter the • HOSA membership (Optional) health care field by giving them a foundation in real world problems, medical treatments, and a better understanding of the human body. Program Location Students will investigate causes and treatments of diseases that R Course(s) available at CHS affect the entire world as well as ones found in our own community. R Course(s) available at FRHS Students learn advanced techniques used in hospitals and research R Course(s) available at KHS labs and will become familiar with protocols used by doctors and R Course(s) available at TCHS researchers today. -
Biomedical Engineering Year 2 Course Description
Making Opportunity Affordable in Texas: A Student-Centered Approach Tuning of Biomedical Engineering Texas Higher Education Coordinating Board Austin, Texas with grant support from Lumina Foundation for Education Completion date: May 2012 Tuning Oversight Council for Engineering and Science Biomedical Engineering Committee John C. Criscione, M.D., Ph.D. (Chair) Lennine Bashiri (Co-Chair) Associate Professor of Biomedical Engineering Instructor Department of Biomedical Engineering South Texas College Texas A&M University 3201 W. Pecan Blvd. 3120 TAMUS McAllen, TX 78502 College Station, TX 77843-3131 [email protected] [email protected] Leonidas Bleris, Ph.D. Ting Chen, Ph.D. Assistant Professor Instructional Assistant Professor,Research Assistant Professor, Department of Bioengineering Academic Advising Coordinator The University of Texas at Dallas Department of Biomedical Engineering 800 W. Campbell Rd Cullen College of Engineering Richardson, TX 75080 University of Houston [email protected] 3605 Cullen Blvd, Room 2018 Houston, TX 77204-5060 [email protected] Cheng-Jen "Charles" Chuong, Ph.D. Charlene Cole Professor Chair, Department of Life Sciences The University of Texas at Arlington Tarrant County Community College NE Arlington, TX 76019-0019 Department of Life Sciences [email protected] Hurst, TX 78054 [email protected] Harvinder Singh Gill, Ph.D. Joo L. Ong, Ph.D. Assistant Professor UTSA Distinguished Professor and Chair Department of Chemical Engineering The University of Texas at San Antonio Texas Tech University Department of Biomedical Engineering Lubbock, TX 79409-3121 San Antonio, TX 78249 [email protected] [email protected] Patrice Parsons, Ph.D. Chandeshwar Sharma, Ph.D. Professor Instructor, Coleman College for Health Sciences Grayson Community College Houston Community College Denison, TX 75020 Houston, TX 77030 [email protected] [email protected] James Tunnell, Ph.D. -
Biomedicine, Pharmacy and Health Care SECTORAL SERVICES of MATHEMATICAL RESEARCH Spanish Network for Mathematics & Industry for COMPANIES C/ Lope Gómez De Marzoa, S/N
Biomedicine, pharmacy and health care SECTORAL SERVICES OF MATHEMATICAL RESEARCH Spanish Network for Mathematics & Industry FOR COMPANIES C/ Lope Gómez de Marzoa, s/n. Campus Vida | CP 15782 Santiago de Compostela (A Coruña) Tel. 881 813 373 | 881 813 223 [email protected] | www.math-in.net math- in Biomedicine, Pharmacy and Health Care Specialized services Mathematics is an effective tool with proven ability to Biomedicine, Pharmacy and Health industries bring meet the demands and needs of businesses. In Spain, together the supply of 29 research groups of the i-MATH Biomedicine and Pharmacy many innovative solutions emerged from the experience project, of which up to 20 have proven experience from gained by research groups in this field through successful having effectively carried out consulting activities, training • Analysis and design of experiments. • Studies of efficacy and safety of treatments. partnerships with industry over the years. All those courses and other collaborations. The details of these • Characterization/grading of pharmaceutical and medical waste. encouraging cases support its potential in offering an groups can be found in the 'Sectors' section of the • Modelling of mortality tables. increasingly sophisticated and complete service to the platform www.math-in.net. • Numerical simulation of fractures, dental implants and orthodontic brackets. industry. • Biomechanics. Bones formation. The mathematical technology services provided in this • Bioinformatics. • Mathematical Biology. Synthetic Biology. The Spanish Network for Mathematics & Industry sector can be broken down into two blocks (on the one • Computational design of proteins. (math-in) is a stable platform that continues the work hand, Biomedicine and Pharmacy and, on the other • Metabolism. -
Introducing Bionanotechnology Into Undergraduate Biomedical Engineering
AC 2009-504: INTRODUCING BIONANOTECHNOLOGY INTO UNDERGRADUATE BIOMEDICAL ENGINEERING Aura Gimm, Duke University J. Aura Gimm is Assistant Professor of the Practice and Associated Director of Undergraduate Studies in the Department of Biomedical Engineering at Duke University. She teaches courses in biomaterials, thermodynamics/kinetics, engineering design, and a new course in bionanotechnology. Dr. Gimm received her S.B. in Chemical Engineering and Biology from MIT, and her Ph.D. in Bioengineering from UC-Berkeley. Page 14.802.1 Page © American Society for Engineering Education, 2009 Introducing Bionanotechnology in Undergraduate Biomedical Engineering Abstract As a part of the NSF-funded Nanotechnology Undergraduate Education Program, we have developed and implemented a new upper division elective course in Biomedical Engineering titled “Introduction to Bionanotechnology Engineering”. The pilot course included five hands- on “Nanolab” modules that guided students through specific aspects of nanomaterials and engineering design in addition to lecture topics such as scaling effects, quantum effects, electrical/optical properties at nanoscale, self-assembly, nanostructures, nanofabrication, biomotors, biological designing, biosensors, etc. Students also interacted with researchers currently working in the areas of nanomedicine, self-assembly, tribiology, and nanobiomaterials to learn first-hand the engineering and design challenges. The course culminated with research or design proposals and oral presentations that addressed specific engineering/design issues facing nanobiotechnology and/or nanomedicine. The assessment also included an exam (only first offering), laboratory write-ups, reading of research journal articles and analysis, and an essay on ethical/societal implications of nanotechnology, and summative questionnaire. The course exposed students to cross-disciplinary intersections that occur between biomedical engineering, materials science, chemistry, physics, and biology when working at the nanoscale. -
Biomedical Engineering Department Medical
BIOMEDICAL ENGINEERING DEPARTMENT MEDICAL ENGINEERING UNDERGRADUATE CURRICULUM 2014-15 (as of 5/10/13) The Medical Engineering Program is an option for HPME student only. This program is not accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org. However, our Biomedical Engineering Program is accredited by this organization. Students entering this program are expected to have advanced work in high school such that they can be placed into MATH 230 and CHEM 171, or higher. All courses must be passed with a C grade or higher, and no courses within the 48 required for the degree may be taken P/N without approval. I. MATHEMATICS (4 courses) AP placement-Math 220, 224 MATH 230 Calculus MATH 234 Multiple Integration and Vector Calculus II. BASIC SCIENCES (4 courses) PHYSICS 135-2, 3 General Physics CHEM 171, 172 Accelerated Chemistry III. ENGINEERING ANALYSIS (4 courses) GEN ENG 205-1 Computational Methods and Linear Algebra GEN ENG 205-2 Linear Algebra and Mechanics GEN ENG 205-3 Dynamic System Modeling GEN ENG 205-4 Differential Equations IV. ENGINEERING DESIGN AND COMMUNICATION (3 courses) Speech 102, or 103 or Taken at Medical School IDEA 106-1, 2 Engineering Design and Communication (0.5 each) plus English 106-1,2 (0.5 each). V. BASIC ENGINEERING (5 courses) A. Thermodynamics - 1 course listed from those below BMD_ENG 250 Thermodynamics CHEM 342-1 Thermodynamics MECH ENG 220 Thermodynamics I B. Fluids and Solids - 2 courses as specified below BMD_ENG 271 Introduction to Biomechanics and BMD_ENG 270 Fluid Mechanics or MECH ENG 241 Fluid Mechanics I C.