Science Update

Total Page:16

File Type:pdf, Size:1020Kb

Science Update EPA TRIBAL SCIENCE BULLETIN SCIENCE UPDATE Solar Geoengineering: Going Volcanic on Climate Change Reducing the amount of carbon altering step exists, however: 1.5 years and included global dioxide (CO2) in the atmosphere volcanoes. Volcanoes have temperature decreases of 1° to has proven elusive, and cutting ejected particulates into the 1.5°C. Unseasonably cold CO2 emissions now does not affect atmosphere on numerous conditions were accompanied by what already exists in the occasions in recorded history. A drought and floods, particularly in atmosphere. One course of action 2015 study found that 15 of the the Northern Hemisphere.3 garnering serious consideration is 16 coldest summers In retrospect, the solar geoengineering. The recorded between 500 B.C. SOLAR Tambora premise is simple: If you can’t and A.D. 1,000 followed GEOENGINEERING eruption control the amount of insulation large volcanic eruptions.1 highlighted the in the blanket, turn down the WOULD...REFLECT OR One event that resembles tight connections heat. a global‐scale REFRACT THE SUN’S RAYS, between human Solar geoengineering would manipulation was the REDUCING THE and natural spread particles into the Tambora eruption of GREENHOUSE GAS systems by atmosphere to reflect or refract 1815. On April 5, 1815, the showing how one EFFECT. the sun’s rays, reducing the Indonesian volcano event could greenhouse gas effect and cooling exploded in one of the most create a global cascade of the planet. Governments, significant volcanic events in localized events that changed how ethicists, scientists and citizens recorded history, with the humans interact with their are somewhat resistant to this, highest explosive index in 500 environment and each other. however. The scale of the years.2 The resulting spread of Events in the northeastern United manipulation lends itself to sulfate aerosols around the world States and Canada highlight the nonlinearities and serendipitous contributed to extreme weather, upheaval connected to Tambora. discoveries, some of which could ecological disruption and The spring and summer of 1816, be damaging to ecology and geopolitical upheaval. The effects “the year without a summer,” was society. A precedent to this globe‐ of the eruption lasted for punctuated by monthly killing frosts during the growing season and poor snow and rainfall from the Hudson Bay to Virginia. Migratory fish that were staples for European Americans and Native Americans in the northeast found conditions too cold to support successful spawning and likely decimated future fish populations.2 The fish that did return were overfished to supply needed protein to the surviving populace. In northeastern cities, the death rate tripled.2 The year of 1816 also was called the “mackerel year,” as mackerel was one of the few available protein Illustration of the influence of sulfur dioxide emitted by volcanic activity, which sources. Mass emigration from exerts a cooling effect by reflecting solar radiation. ValetinaKru | Shutterstock.com the northeast, particularly in 1817 as the spring shaped up to VOLUME 2, ISSUE 1 ●●● NATIONAL EPA-TRIBAL SCIENCE COUNCIL SCIENCE UPDATE Solar Geoengineering (continued) 1allnewspipeline.com/ Volcanoes_Poverty_And_Global_Famin e.php. Accessed 4‐7‐2017. 2Alexander KE, Leavenworth WB, Willis TV, Hall C, Mattocks S, Bittner SM, Klein E, Staudinger M, Bryan A, Rosset J, Carr BH, and Jordaan A. 2017. Tambora and the mackerel year: Phenology and fisheries during an Aerial view of the crater of Mount Tambora, formed during the 1815 eruption. extreme climate event. Science learnodo‐newtonic.com/mount‐tambora‐facts Advances 3:1 doi:10.1126/ sciadv.1601635. be like the previous devastating salt.6 Also in 1817, the Ottawa, 3 year, resulted in a shift of Chippewa, Shawnee, Wyandot www.scientificamerican.com/ population to industrial cities and and Potawatomi ceded large article/1816‐the‐year‐without‐summer the Midwest where conditions areas of tribal land to the federal ‐excerpt.Accessed 4‐7‐2017. were better.4 government, continuing a process 4regencyredingote.wordpress.com/201 of clearing the Ohio Valley for Native Americans found 5/04/10/regency‐bicentennial‐mount‐ settlement by New themselves with tambora‐erupts. Accessed 4‐7‐2017. Englanders moving west.7 low food stores THE TAMBORA The lens of history is 5 and less freedom cprr.org/Museum/BMLRR/ never so clear as to draw Penobscot.html. Accessed 4‐7‐2017. to fan out across ERUPTION HIGHLIGHTED a straight line between their lands to THE TIGHT 6 events, but the location www.dyarrow.org/indigenous/ weather the CONNECTIONS and size of the treaty landclaim.htm. Accessed 4‐7‐2017. calamity. A exchanges and conflicts number of tribes BETWEEN HUMAN AND 7nativeamericannetroots.net/ certainly bear an air of in the northeast NATURAL SYSTEMS. diary/2263. Accessed 4‐7‐2017. desperation easily signed treaties associated with the food between 1816 and 1818 shortages of 1816 and 1817. that traded vast tracts of land for payment and supplies. The The Obama administration did Penobscot Nation agreed to a not seriously consider solar treaty with Massachusetts in 1818 geoengineering. The Trump that surrendered most of the administration is revisiting this tribe’s land on either side of the policy. Solar geoengineering may Penobscot River, excepting about be a temporary and short‐term fix 25 square miles of parcels and the for climate change, but the effects islands above Old Town Falls. In on the environment, human exchange, the Penobscot received systems and their interconnection large quantities of corn, flour, should be seriously considered. pork, molasses, cloth, blankets, The Tambora eruption arguably gunpowder, shot, tobacco, impoverished thousands of Native chocolate and $50 in silver Americans for centuries to come annually.5 The Onondaga Nation for want of necessities to survive traded 4,320 acres in 1817 for following the dramatic cooling $430 a year and large quantities of that followed the eruption. ●●● SUMMER 2017 .
Recommended publications
  • Solar Geoengineering Reduces Atmospheric Carbon Burden David W
    opinion & comment COMMENTARY: Solar geoengineering reduces atmospheric carbon burden David W. Keith, Gernot Wagner and Claire L. Zabel Solar geoengineering is no substitute for cutting emissions, but could nevertheless help reduce the atmospheric carbon burden. In the extreme, if solar geoengineering were used to hold radiative forcing constant under RCP8.5, the carbon burden may be reduced by ~100 GTC, equivalent to 12–26% of twenty-first-century emissions at a cost of under US$0.5 per tCO2. ailure to address the accumulation of between a Representative Concentration carbon cycle feedback under assumptions atmospheric carbon is among the most Pathway (RCP) 8.5 scenario and one in that are similar — though not equal — to frequently noted disadvantages of solar which solar geoengineering is used to hold those that would be used to simulate solar F 1–3 geoengineering , an attempt to reflect a radiative forcing at current levels. This is geoengineering to stabilize radiative forcing small fraction of radiation back into space not a complete analysis, but rather a call for under an RCP8.5 scenario. We then combine to cool the planet. The latest US National further research. It is also a call for assessing the two ranges using equal weights and Academy of Science solar geoengineering solar geoengineering scenarios that go well uncorrelated error propagation to yield report1 states it “does nothing to reduce the beyond oft-modelled extreme scenarios that an overall estimate of the contribution 10 build-up of atmospheric CO2”. offset total anthropogenic radiative forcing . of the terrestrial biosphere and ocean of This is not so.
    [Show full text]
  • Review of Local and Global Impacts of Volcanic Eruptions and Disaster Management Practices: the Indonesian Example
    geosciences Review Review of Local and Global Impacts of Volcanic Eruptions and Disaster Management Practices: The Indonesian Example Mukhamad N. Malawani 1,2, Franck Lavigne 1,3,* , Christopher Gomez 2,4 , Bachtiar W. Mutaqin 2 and Danang S. Hadmoko 2 1 Laboratoire de Géographie Physique, Université Paris 1 Panthéon-Sorbonne, UMR 8591, 92195 Meudon, France; [email protected] 2 Disaster and Risk Management Research Group, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; [email protected] (C.G.); [email protected] (B.W.M.); [email protected] (D.S.H.) 3 Institut Universitaire de France, 75005 Paris, France 4 Laboratory of Sediment Hazards and Disaster Risk, Kobe University, Kobe City 658-0022, Japan * Correspondence: [email protected] Abstract: This paper discusses the relations between the impacts of volcanic eruptions at multiple- scales and the related-issues of disaster-risk reduction (DRR). The review is structured around local and global impacts of volcanic eruptions, which have not been widely discussed in the literature, in terms of DRR issues. We classify the impacts at local scale on four different geographical features: impacts on the drainage system, on the structural morphology, on the water bodies, and the impact Citation: Malawani, M.N.; on societies and the environment. It has been demonstrated that information on local impacts can Lavigne, F.; Gomez, C.; be integrated into four phases of the DRR, i.e., monitoring, mapping, emergency, and recovery. In Mutaqin, B.W.; Hadmoko, D.S. contrast, information on the global impacts (e.g., global disruption on climate and air traffic) only fits Review of Local and Global Impacts the first DRR phase.
    [Show full text]
  • The Year Without a Summer
    The Year Without a Summer In 1816, half a foot of snow fell in New England. That would be Mount Tambora, an active completely unremarkable. Except that it was in one day—in June. stratovolcano that is a peninsula of and the highest That same summer, Mary Shelley spent a chilly vacation holed peak on the island of up indoors—and used the time to write Frankenstein. Crops Sumbawa in Indonesia. failed around the world, plunging Thomas Jefferson into serious Credit: Jialiang Gao (peace-on- debt for the rest of his life. Oats became scarce in Germany, earth.org) via Wikimedia Commons making horse travel expensive—and leading to the invention (CC BY-SA 3.0 [http://creative- of the bicycle. Struggling farmers in China began raising opium, commons.org/licenses/by-sa/3.0]) giving rise to a drug trade that has lasted to modern times. And famine in many areas led to widespread disease, including a cholera outbreak that killed millions. What was the cause of all this chaos? A year earlier, a volcano erupted in Indonesia. Larger than Krakatoa, Vesuvius, or Mount St. Helens, Mount Tambora erupted for 2 weeks straight. Around it, nearly 100,000 people died, buried under thick layers of ash like in Pompeii. Greenhouse-gas emissions from the eruption, which could have warmed the atmosphere, were offset by particulates and sulfur dioxide gas. Ash and dust blocked out the sun temporarily, darkening skies around the world. The sulfur dioxide was longer-lasting, becoming aerosols that reflected the sun’s heat for 3 years! This turned 1816 into “The Year Without a Summer,” as it was called, with long-term global effects.
    [Show full text]
  • Download the PDF File
    Romanticism on the Net #74-75 (Spring-Fall 2020) 1816 and 2020: The Years Without Summers Kandice Sharren Simon Fraser University Kate Moffatt Simon Fraser University Abstract The WPHP Monthly Mercury is the podcast for the Women’s Print History Project (WPHP), a bibliographical database that seeks to provide a comprehensive account of women’s involvement in print in a long Romantic period. The podcast provides us with an opportunity to develop in- depth analyses of our data. The December 2020 episode, “1816 and 2020: The Years Without Summers,” explores women’s writing in the WPHP inspired by 1816, known as the Year Without a Summer, when abnormally cold weather, exacerbated by the aftermath of the Napoleonic Wars, led to crop failures and typhus and cholera epidemics. Often remembered as the cold and fog-laden year in which an 18-year-old Mary Shelley came up with the idea for Frankenstein, 1816 was a year of catastrophe more generally. In this episode, hosts Kate Moffatt and Kandice Sharren explore how the bibliographical metadata contained in the WPHP can uncover a wider range of voices writing about catastrophe. Our findings, which include political writing, travel memoirs, and poetry, reveal the lived experiences of women in a tumultuous time. We conclude by meditating on the nature of literary production during catastrophe, and how our own experiences during the upheavals of 2020 influenced our approach to the books that we uncovered. Biographical Note Kandice Sharren completed her PhD in English at Simon Fraser University in 2018. Her research investigates the relationship between the material features of the printed book and narrative experimentation during the Romantic period.
    [Show full text]
  • The Year ' Without a Summer"
    Ships' Logbooks and "The Year ' Without a Summer" , Michael Chenoweth Elkridge, Maryland ABSTRACT Weather data extracted from the logbooks of 227 ships of opportunity are used to document the state of the global climate system in the summer of 1816 ("The Year Without a Summer"). Additional land-based data, some never be- fore used, supplement the marine network. The sources of the data are given and briefly discussed. The main highlights of the global climate system in the 3-year period centered on the summer of 1816 include: • a cold-phase Southern Oscillation (SO) (La Nina) event in the Northern Hemisphere (NH) winter of 1815-16, which was preceded and followed by warm-phase SO (El Nino) events in the winters of 1814/15 and 1816/17; • strong Asian winter and summer monsoons, which featured anomalous cold in much of south and east Asia in the winter of 1815/16 and near- or above-normal rains in much of India in the summer of 1816; • below-normal air temperatures (1°-2°C below 1951-80 normals) in parts of the tropical Atlantic and eastern Pacific (in the Galapagos Islands), which imply below-normal sea surface temperatures in the same areas; • a severe drought in northeast Brazil in 1816-17; • an active and northward-displaced intertropical zone in most areas from Mexico eastward to Africa; • generally colder-than-normal extratropical temperature anomalies in both hemispheres; • an area of anomalous warmth (1°-2°C above 1951-80 normals) in the Atlantic between Greenland and the Azores during at least the spring and summer of 1816; and • an active Atlantic hurricane season in both 1815 and 1816.
    [Show full text]
  • Will the Next Global Crisis Be Produced by Volcanic Eruptions? Constraining the Source Volcanoes for 6Th Century Eruptions
    Will the Next Global Crisis Be Produced by Volcanic Eruptions? Constraining the Source Volcanoes for 6th Century Eruptions Background: The fifteen year period from 536 to 545 CE was hard on both trees and on people. There were numerous famines during this time. Trees grew very slowly, putting on light rings in 536 CE and for four consecutive years from 539 to 542 CE. (Light rings are rare- they typically form a few times per century.) An extremely large eruption occurred in early 541 CE. It was larger than the 1815 eruption of Tambora that produced the “year without a summer in 1816” and subsequent starvation in much of the northern hemisphere. An eruption in early 536 CE produced the lowest tree growth in the last 2500 years but is ranked 18th in sulfate loading. Previous work found two significant eruptions: one in 536 and one in 540/541 CE. Because tree growth recovered after 536 CE, the light rings in 539 and 540 are difficult to explain with only two eruptions. The big climatic effects of the 536 CE eruption are also hard to explain. Using our data from the GISP ice core , we found volcanic glass from 6 significant eruptions, three in early 535, 536 and 537 CE and three in late 537, early 541 and late 541 CE. The latter three eruptions may explain the four years of light rings from 539 to 542 CE. We believe the climatic effects of three of these eruptions (all submarine and low latitude) were magnified by their ejection of tropical to subtropical marine microfossils, marine clay and carbonate dust.
    [Show full text]
  • The 1816 'Year Without a Summer' in an Atmospheric Reanalysis
    Clim. Past Discuss., doi:10.5194/cp-2016-78, 2016 Manuscript under review for journal Clim. Past Published: 12 July 2016 c Author(s) 2016. CC-BY 3.0 License. The 1816 ‘year without a summer’ in an atmospheric reanalysis Philip Brohan1, Gilbert P. Compo2,3, Stefan Brönnimann4, Robert J. Allan1, Renate Auchmann4, Yuri Brugnara4, Prashant D. Sardeshmukh2,3, and Jeffrey S. Whitaker3 1Met Office Hadley Centre, Exeter, EX1 3PB, UK 2CIRES/University of Colorado, Boulder, 80309-0216, USA 3NOAA Earth System Research Laboratory/PSD 4Oeschger Centre, University of Bern, Bern, Switzerland Correspondence to: Philip Brohan (philip.brohan@metoffice.gov.uk) Abstract. Two hundred years ago a very cold and wet summer devastated agriculture in Europe and North America, causing widespread food shortages, unrest and suffering — the "year without a summer". This is usually blamed on the eruption of Mount Tambora, in Indonesia, the previous April, but making a link between these two events has proven difficult, as the major impacts were at 5 smaller space and time-scales than we can reconstruct with tree-ring observations and climate model simulations. Here we show that the very limited network of station barometer observations for the period is nevertheless enough to enable a dynamical atmospheric reanalysis to reconstruct the daily weather of summer 1816, over much of Europe. Adding stratospheric aerosol from the Tambora eruption to the reanalysis improves its reconstruction, explicitly linking the volcano to the weather 10 impacts. 1 Introduction The summer of 1816 saw very severe weather in Europe and eastern North America (Luterbacher and Pfister, 2015). Killing frosts destroyed crops in New England, Great Britain saw cold weather and exceptional rain, and in Central Europe there were persistent cold anomalies of 3–4◦C along 15 with increases in cloud cover and rainfall (Auchmann et al., 2012).
    [Show full text]
  • Optimal Climate Strategy with Mitigation, Carbon Removal, and Solar Geoengineering
    Optimal Climate Strategy with Mitigation, Carbon Removal, and Solar Geoengineering Mariia Belaia Harvard John A. Paulson School of Engineering and Applied Sciences The John F. Kennedy School of Government Harvard University, Cambridge, MA 02138, USA Abstract Until recently, analysis of optimal global climate policy has focused on mitigation. Exploration of policies to meet the 1.5°C target have brought carbon dioxide removal (CDR), a second instrument, into the climate policy mainstream. Far less agreement exists regarding the role of solar geoengineering (SG), a third instrument to limit global climate risk. Integrated assessment modelling (IAM) studies offer little guidance on trade-offs between these three instruments because they have dealt with CDR and SG in isolation. Here, I extend the Dynamic Integrated model of Climate and Economy (DICE) to include both CDR and SG to explore the temporal ordering of the three instruments. Contrary to implicit assumptions that SG would be employed only after mitigation and CDR are exhausted, I find that SG is introduced parallel to mitigation temporary reducing climate risks during the era of peak CO2 concentrations. CDR reduces concentrations after mitigation is exhausted, enabling SG phasing out. Keywords: Integrated Assessment Modelling, climate policy, DICE, solar geoengineering, carbon dioxide removal 1 Introduction We need to understand our full potential to limit global climate risk. A wide range of climate policy instruments exists that, combined, equip us with the tools necessary to safeguard the global public good that is a stable climate. These instruments span across different economic sectors and can be market or non-market, private or public, international or regional.
    [Show full text]
  • The Year Without a Summer J
    commentary The year without a summer J. Luterbacher and C. Pfister The 1815 eruption of Tambora caused an unusually cold summer in much of Europe in 1816. The extreme weather led to poor harvests and malnutrition, but also demonstrated the capability of humans to adapt and help others in worse conditions. arge volcanic eruptions in the tropics The British Isles, France, Benelux countries, Likewise, most crops in the hilly areas of can temporarily alter climate around Germany and Switzerland experienced western and central Europe and the Balkans Lthe world, causing global cooling1 approximately twice the amount of rainfall did not reach maturity. In the lowlands and shifting precipitation patterns. One in June than the 1951 to 1980 baseline. For of central and western Europe, grain and particularly well-described example is the these regions, July was generally less wet, potatoes suffered under unending rain. 1815 eruption of Tambora, which caused the with wet conditions returning again in And of the potatoes and grains that were 1816 “year without a summer” in Europe2–5. August for areas north of 40°N and east of eventually harvested, substantial amounts The unusual cooling and anomalous rainfall 5°E. Recently recovered rainfall data from went on to rot in barns and grain silos14. led to a host of problems for many residents Iberia (not included in Fig. 1) suggests that The cold summer in Iberia had similarly of western and central Europe, and may for much of the summer 1816, eastern Spain strong impacts on agriculture: fruit was of have helped to spur emigration to the was drier than average (M.
    [Show full text]
  • Potentially Dangerous Consequences for Biodiversity of Solar Geoengineering Implementation and Termination
    ARTICLES https://doi.org/10.1038/s41559-017-0431-0 Potentially dangerous consequences for biodiversity of solar geoengineering implementation and termination Christopher H. Trisos 1*, Giuseppe Amatulli2,3,4, Jessica Gurevitch 5, Alan Robock 6, Lili Xia6 and Brian Zambri 6 Solar geoengineering is receiving increased policy attention as a potential tool to offset climate warming. While climate responses to geoengineering have been studied in detail, the potential biodiversity consequences are largely unknown. To avoid extinction, species must either adapt or move to track shifting climates. Here, we assess the effects of the rapid implementa- tion, continuation and sudden termination of geoengineering on climate velocities—the speeds and directions that species would need to move to track changes in climate. Compared to a moderate climate change scenario (RCP4.5), rapid geoengineer- ing implementation reduces temperature velocities towards zero in terrestrial biodiversity hotspots. In contrast, sudden ter- mination increases both ocean and land temperature velocities to unprecedented speeds (global medians > 10 km yr−1) that are more than double the temperature velocities for recent and future climate change in global biodiversity hotspots. Furthermore, as climate velocities more than double in speed, rapid climate fragmentation occurs in biomes such as temperate grasslands and forests where temperature and precipitation velocity vectors diverge spatially by >90°. Rapid geoengineering termination would significantly increase the threats to biodiversity from climate change. he redistribution of species caused by climate change repre- take action given the current lack of regulatory constraints12,13. sents one of the greatest threats this century to biodiversity, Rapid termination is also feasible given the weakness of the global Taffecting ecosystem functioning and human wellbeing1.
    [Show full text]
  • Emerging Risk Governance for Stratospheric Aerosol Injection As a Climate Management Technology
    Environment Systems and Decisions https://doi.org/10.1007/s10669-019-09730-6 PERSPECTIVES Emerging risk governance for stratospheric aerosol injection as a climate management technology Khara D. Grieger1,2 · Tyler Felgenhauer2 · Ortwin Renn3 · Jonathan Wiener4 · Mark Borsuk2 © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Stratospheric aerosol injection (SAI) as a solar radiation management (SRM) technology may provide a cost-efective means of avoiding some of the worst impacts of climate change, being perhaps orders of magnitude less expensive than greenhouse gas emissions mitigation. At the same time, SAI technologies have deeply uncertain economic and environmental impacts and complex ethical, legal, political, and international relations ramifcations. Robust governance strategies are needed to manage the many potential benefts, risks, and uncertainties related to SAI. This perspective reviews the International Risk Governance Council (IRGC)’s guidelines for emerging risk governance (ERG) as an approach for responsible consideration of SAI, given the IRGC’s experience in governing other more conventional risks. We examine how the fve steps of the IRGC’s ERG guidelines would address the complex, uncertain, and ambiguous risks presented by SAI. Diverse risks are identifed in Step 1, scenarios to amplify or dissipate the risks are identifed in Step 2, and applicable risk management options identifed in Step 3. Steps 4 and 5 involve implementation and review by risk managers within an established organization. For full adoption and promulgation of the IRGC’s ERG guidelines, an international consortium or governing body (or set of bodies) should be tasked with governance and oversight. This Perspective provides a frst step at reviewing the risk governance tasks that such a body would undertake and contributes to the growing literature on best practices for SRM governance.
    [Show full text]
  • Volcanic Influence on European Summer Precipitation Through
    15 MAY 2014 W E G M A N N E T A L . 3683 Volcanic Influence on European Summer Precipitation through Monsoons: Possible Cause for ‘‘Years without Summer’’* MARTIN WEGMANN AND STEFAN BRO¨ NNIMANN Oeschger Centre for Climate Change Research and Institute of Geography, University of Bern, Bern, Switzerland JONAS BHEND Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland, and CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia JO¨ RG FRANKE Oeschger Centre for Climate Change Research and Institute of Geography, University of Bern, Bern, Switzerland DORIS FOLINI AND MARTIN WILD Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland JU¨ RG LUTERBACHER Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus Liebig University of Giessen, Giessen, Germany (Manuscript received 29 August 2013, in final form 15 January 2014) ABSTRACT Strong tropical volcanic eruptions have significant effects on global and regional temperatures. Their effects on precipitation, however, are less well understood. Analyzing hydroclimatic anomalies after 14 strong eruptions during the last 400 years in climate reconstructions and model simulations, a reduction of the Asian and African summer monsoons and an increase of south-central European summer precipitation in the year following the eruption was found. The simulations provide evidence for a dynamical link between these phenomena. The weaker monsoon circulations weaken the northern branch oftheHadleycirculation,alter the atmospheric cir- culation over the Atlantic–European sector, and increase precipitation over Europe. This mechanism is able to explain, for instance, the wet summer in parts of Europe during the ‘‘year without a summer’’ of 1816, which up to now has not been explained.
    [Show full text]