Carbohydrate Metabolism I & II Central Aspects of Macronutrient

Total Page:16

File Type:pdf, Size:1020Kb

Carbohydrate Metabolism I & II Central Aspects of Macronutrient Carbohydrate Metabolism I & II - General concepts of glucose metabolism - - Glycolysis - -TCA - FScN4621W Xiaoli Chen, PhD Food Science and Nutrition University of Minnesota 1 Central Aspects of Macronutrient Metabolism Macronutrients (carbohydrate, lipid, protein) Catabolic metabolism Oxidation Metabolites (smaller molecules) Anabolic metabolism Energy (ATP) Synthesis of cellular components or energy stores Chemical Reactions Cellular Activities 2 Central Aspects of Macronutrient Metabolism High-energy compounds ◦ ATP (adenosine triphosphate) ◦ NADPH (reduced nicotinamide adenine dinucleotide phosphate) ◦ NADH (reduced nicotinamide adenine dinucleotide) ◦ FADH2 (reduced flavin adenine dinucleotide) Oxidation of macronutrients NADH NADPH FADH2 ATP and NADPH are required ATP for anabolic metabolism 3 1 Unit I General Concepts of Glucose Metabolism Metabolic pathways of glucose Glucose homeostasis Glucose transport in tissues Glucose metabolism in specific tissues 4 Overview Digestion, Absorption and Transport of Carbs ◦ Final products of digestion: ________,glucose ________, fructose and ________galactose Cellular fuels ◦ Glucose, fatty acids, ketone bodies, amino acids, other gluoconeogenic precursors (glycerol, lactate, propionate) Glucose: primary metabolic fuel in humans ◦ Provide 32% to 70% of the energy in diet of American population All tissues are able to use glucose as energy fuels ◦ Glucose has different metabolic fate in different tissues Physiological states determine glucose metabolic fate ◦ Fed/fasted – glucose is metabolized through distinct pathways Main goal – the maintenance of circulating glucose 5 Overview How your body metabolizes carbohydrates At the tissue and organ level ◦ Different tissues/organs have different roles in the regulation of energy metabolism (metabolic pathways and substrates and metabolite flows) At the subcellular level ◦ Each organelle or compartment has specific roles in the regulation of metabolic pathways 6 2 General Concepts Anabolic pathways ◦ Synthesis of larger compounds/molecules from smaller precursors Catabolic pathways ◦ Breakdown of larger molecules Amphibolic pathways ◦ Links between anabolic and catabolic pathways ◦ Example: citric acid cycle (TCA cycle) 7 General Concepts Aerobic pathway ◦ Aerobic is an adjective that means "requiring air", where "air" usually means oxygen ◦ Where does aerobic metabolism occur in the cell? ◦ What are the end products of aerobic metabolism? ◦ Example: Anaerobic pathway ◦ Anaerobic – without air, as opposed to aerobic ◦ Where does anaerobic metabolism occur in the cell? ◦ What are the end products of anaerobic metabolism? ◦ Example: 8 What you need to know about Carbohydrate Metabolic Pathways Pathway Catabolic/ Physiological Tissue Function Anabolic State Glycolysis Glycogenesis Gluconeogenesis Glycogenolysis Pentose phosphate pathway 9 3 What you need to know about Carbohydrate Metabolic Pathways Pathway Rate-limiting Key How is it regulated reaction(s) enzymes by hormones? Glycolysis Glycogenesis Gluconeogenesis Glycogenolysis Pentose phosphate pathway 10 Circulating Glucose Glucose levels in the blood are kept within a strictly regulated concentration range ◦ Postabsorptive state: 4.5-5.5 m mol/L ◦ In starvation: 3.3-3.9 m mol/L ◦ After ingestion of carbohydrate meal: 6.5-7.2 m mol/L 11 Pathways of glucose metabolism Glycolysis ◦ the metabolic pathway that converts glucose C6H12O6, into pyruvate Glycogenesis = glycogen synthesis ◦ the process of glycogen synthesis Gluconeogenesis ◦ Gluconeogenesis, (GNG) is a metabolic pathway that ◦ results in the generation of glucose from non-carbohydrate carbon substrates Glycogenolysis = glycogen breakdown ◦ the breakdown of glycogen (n) to glucose-6-phosphate and glycogen (n-1). 12 4 Glucose Homeostasis How dietary glucose is metabolized after a meal In the fed state After a meal Glycolysis Other glycolytic Liver Glycogenesis tissues Pancreas Gluconeogenesis FAT Glycogenolysis 2-3% brain insulin 20% of Glucose GLUT3 Glycolysis absorpted 22% GLUT1 glucose Glucose In the circulation insulin Glycolysis GLUT4 Glycogenesis Glycogenolysis muscle insulin Lactate Diet Glycolysis Glucose CHO conversion carbohydrate GLUT4 to Fat Small intestine Adipose tissue 13 Glucose Homeostasis How the circulating glucose is maintained during fasting FOOD GLYCOGEN X Fed NON HEXOSE STORES PRECURSORS FastCirculating Fast Glucose Gluconeogenesis Glycogenolysis Prolonged Fast Kidney Gluconeogenesis 14 How does each tissue or organ play a role in glucose homeostasis? Fed state 1. What happens to blood glucose levels after a meal? 2. What does the body do to maintain normal blood glucose levels? Pancreas – Islet ◦ Secrets insulin in response to high blood glucose levels Liver ◦ Makes glycogen from dietary glucose ◦ Converts glucose to fatty acids if the amount of absorbed glucose is more than what the body can use and store. Muscle ◦ Takes up glucose from the circulation ◦ Oxidizes it for energy ◦ Makes glycogen from it Adipose tissue ◦ Takes up glucose from the circulation 15 5 How does each tissue or organ play a role in glucose homeostasis? Fasting 1. What happens to blood glucose levels during fasting? 2. What does the body do to maintain normal blood glucose levels? Liver ◦ Breaks down glycogen and releases glucose to the circulation ◦ Makes glucose and releases it to the circulation Kidneys ◦ Makes glucose and releases it to the circulation Pancreas - Islet ◦ Stops making and secreting insulin Muscle and Adipose tissue ◦ GLUT4 activity decreases ◦ Slows down taking up glucose form the circulation 16 Glucose Uptake by Tissues A key regulatory step controlling glucose homeostasis Glucose uptake is facilitated by glucose transporters Glucose transporters: GLUT1, GLUT2, GLUT3, GLUT4, GLUT5 Different tissue expression and functional regulation of glucose transport ◦ Insulin-independent glucose uptake: GLUT1, GLUT2, GLUT3 and GLUT5 ◦ Insulin-dependent glucose uptake: GLUT4 17 Glucose Uptake by Tissues Transporter Major site Proposed function GLUT2 Liver, pancreatic β-cells, kidney, Glucose small intestine, regulation GLUT4 Skeletal muscle, cardiac Insulin-mediated muscle, adipose tissue glucose uptake GLUT5 Small intestine, adipose tissue, Fructose muscle transporter SGLT-1 Small intestine, kidney Glucose uptake GLUT1 Placenta, brain,erythrocytes, Basal glucose adipose tissue uptake GLUT3 Brain, nerve, placenta, kidney High-affinity glucose uptake 18 6 How GLUTs regulate glucose metabolism? In fed state, two main GLUTs are involved in glucose metabolism ◦ GLUT2 ◦ GLUT4 Insulin-dependent glucose uptake via GLUT4 ◦ ~80% of blood glucose is transported into skeletal muscle via GLUT4 ◦ ~20% of blood glucose to adipose tissue via GLUT4 Insulin-independent glucose uptake via GLUT2 ◦ Liver ◦ Pancreatic β-cells 19 How GLUT2 regulate glucose metabolism in fed state? Diet Glucose Liver Pancreas Energy storage Glucose sensor Glycogen Insulin Fatty acids 20 Glucose-stimulated insulin release (First-tier response to elevated blood glucose) Pancreas -β cells: insulin -α cells: glucagon GLUT2 1. What is the organ/cell that produces insulin? 2. What is the trigger of insulin release? 3. What is the glucose transporter that transports glucose into the β cell? 4. What does insulin do to the body? 21 7 How GLUT2 regulate glucose homeostasis in fed state? First-tier response: high glucose levels stimulate insulin secretion from β cells in panaceas GLUT2 plays an important role in the control of first-tier response to elevated blood glucose levels GLUT2 facilitates the influx (uptake) of glucose into the β cell, which then triggers insulin release GLUT2 facilitates the uptake of glucose into liver cells for glycogen synthesis and fatty acid synthesis (upon the consumption of high carbohydrate diet) How GLUT4 plays a role in the regulation of glucose homeostasis in fed state? Insulin-Stimulated Glucose Uptake by Tissues (Second-tier response to elevated blood glucose) 1st tier response Dietary glucose Insulin secretion 2nd tier response After a meal, elevated blood glucose levels trigger 1st tier response How does insulin Insulin starts 2nd tier response regulate the uptake of glucose into tissues? Glucose transporter and tissues are involved in 2nd tier response in glucose metabolism • Glucose transporter : __________GLUT4 • Tissues: _________,Muscle ____________ Adipose tissue 24 8 Insulin regulates GLUT4 translocation from the intracellular compartment to the cell surface Adipose tissue and skeletal muscle basal + insulin Insulin-stimulated Fed Fasting Insulin resistance Type2 diabetes 25 Exercise stimulates GLUT4 translocation from the intracellular compartment to the cell surface Skeletal muscle Rest Exercise Exercise-stimulated Exercise Insulin resistance Type2 diabetes 26 How GLUT4 regulate glucose homeostasis in fed state? Second-tier response: high insulin levels stimulate GLUT4 translocation and activity GLUT4 plays an important role in the control of second-tier response GLUT4 facilitates glucose uptake into muscle and adipose tissue, causing the reduction in circulating glucose levels 9 Different role of GLUT2 and GLUT4 in glucose homeostasis Tissue distribution Role in body response to dietary glucose What happens to glucose homeostasis if GLUT2 or GLUT4 is defective, respectively? 28 Carbohydrate Metabolism in Liver LIVER: Central organ for glucose Glucose homeostasis • In liver glucose can be: - completely oxidized for energy - stored as glycogen - partially oxidized to provide carbon
Recommended publications
  • Amphibolic Nature of Krebs Cycle
    Amphibolic nature of Krebs Cycle How what we are is what we eat • In aerobic organisms, the citric acid cycle is an amphibolic pathway, one that serves in both catabolic and anabolic processes. • Since the citric acid does both synthesis (anabolic) and breakdown (catabolic) activities, it is called an amphibolic pathway • The citric acid cycle is amphibolic (i.e it is both anabolic and catabolic in its function). • It is said to be an AMPHIBOLIC pathway, because it functions in both degradative or catabolic and biosynthetic or anabolic reactions (amphi = both) A central metabolic pathway or amphibolic pathway is a set of reactions which permit the interconversion of several metabolites, and represents the end of the catabolism and the beginning of anabolism • The KREBS CYCLE or citric acid cycle is a series of reactions that degrades acetyl CoA to yield carbon dioxide, and energy, which is used to produce NADH, H+ and FADH. • The KREBS CYCLE connects the catabolic pathways that begin with the digestion and degradation of foods in stages 1 and 2 with the oxidation of substrates in stage 3 that generates most of the energy for ATP synthesis. • The citric acid cycle is the final common pathway in the oxidation of fuel molecules. In stage 3 of metabolism, citric acid is a final common catabolic intermediate in the form of acetylCoA. • This is why the citric acid cycle is called a central metabolic pathway. Anaplerosis and Cataplerosis Anaplerosis is a series of enzymatic reactions in which metabolic intermediates enter the citric acid cycle from the cytosol. Cataplerosis is the opposite, a process where intermediates leave the citric acid cycle and enter the cytosol.
    [Show full text]
  • Fructose Metabolism from a Functional
    SSE #174 Sports Science Exchange (2017) Vol. 28, No. 174, 1-5 FRUCTOSE METABOLISM FROM A FUNCTIONAL PERSPECTIVE: IMPLICATIONS FOR ATHLETES Luke Tappy, MD | Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Service of Endocrinology, Diabetes and Metabolism | Lausanne University Hospital, and Cardio-metabolic Center, Broye Hospital | Estavayer-le-lac, Switzerland • Fructose was originally a seasonal natural nutrient, mainly consumed in summer and fall in fruits and vegetables. In the industrial era, it became a permanent constituent of our diet, essentially a constituent of added sugars (sucrose, high-fructose corn syrup). • Fructose cannot be directly metabolized by most cells in our body. It has to be processed first in the gut, liver and kidneys, where it is converted into glucose, lactate and fatty acids. • Too much dietary fructose along with excess energy intake and low physical activity can cause hepatic insulin resistance, hypertriglyceridemia and increased hepatic fat content. GAT11LOGO_GSSI_vert_fc_grn • In exercising athletes, net carbohydrate oxidation increases with glucose ingestion in a dose-dependent manner until a plateau is reached at about 1g/min. The addition of fructose to glucose drinks can further increase carbohydrate oxidation. • During exercise, substantial amounts of fructose can be converted into lactate in splanchnic organs if available and released in the systemic circulation to be oxidized in contracting muscles. This “reverse fructose-lactate Cori cycle” provides additional energy substrate to muscle during exercise. • Conversion of fructose into glucose and lactate in splanchnic organs is associated with enhanced splanchnic energy expenditure, while muscle energy efficiency is minimally altered. • During recovery after exercise, glucose and fructose mutually enhance their gut absorption and their storage as glycogen in the liver.
    [Show full text]
  • • Glycolysis • Gluconeogenesis • Glycogen Synthesis
    Carbohydrate Metabolism! Wichit Suthammarak – Department of Biochemistry, Faculty of Medicine Siriraj Hospital – Aug 1st and 4th, 2014! • Glycolysis • Gluconeogenesis • Glycogen synthesis • Glycogenolysis • Pentose phosphate pathway • Metabolism of other hexoses Carbohydrate Digestion! Digestive enzymes! Polysaccharides/complex carbohydrates Salivary glands Amylase Pancreas Oligosaccharides/dextrins Dextrinase Membrane-bound Microvilli Brush border Maltose Sucrose Lactose Maltase Sucrase Lactase ‘Disaccharidase’ 2 glucose 1 glucose 1 glucose 1 fructose 1 galactose Lactose Intolerance! Cause & Pathophysiology! Normal lactose digestion Lactose intolerance Lactose Lactose Lactose Glucose Small Intestine Lactase lactase X Galactose Bacteria 1 glucose Large Fermentation 1 galactose Intestine gases, organic acid, Normal stools osmotically Lactase deficiency! active molecules • Primary lactase deficiency: อาการ! genetic defect, การสราง lactase ลด ลงเมออายมากขน, พบมากทสด! ปวดทอง, ถายเหลว, คลนไสอาเจยนภาย • Secondary lactase deficiency: หลงจากรบประทานอาหารทม lactose acquired/transient เชน small bowel เปนปรมาณมาก เชนนม! injury, gastroenteritis, inflammatory bowel disease! Absorption of Hexoses! Site: duodenum! Intestinal lumen Enterocytes Membrane Transporter! Blood SGLT1: sodium-glucose transporter Na+" Na+" •! Presents at the apical membrane ! of enterocytes! SGLT1 Glucose" Glucose" •! Co-transports Na+ and glucose/! Galactose" Galactose" galactose! GLUT2 Fructose" Fructose" GLUT5 GLUT5 •! Transports fructose from the ! intestinal lumen into enterocytes!
    [Show full text]
  • Inhibition of Fructolytic Enzymes in Boar Spermatozoa by (S)-A-Chlorohydrin and L-Chloro-3-Hydroxypropanone
    Aust. J. BioI. Sci., 1986, 39, 395-406 Inhibition of Fructolytic Enzymes in Boar Spermatozoa by (S)-a-Chlorohydrin and l-Chloro-3-hydroxypropanone A. R. Jones, W. A. Bubb, S. R. Murdoch, and D. A. Stevenson Department of Biochemistry, The University of Sydney, New South Wales 2006. Abstract When boar spermatozoa were incubated with the (S)-isomer of the male antifertility agent a-chlorohydrin the activity of glyceraldehyde-3-phosphate dehydrogenase was inhibited. The (R)-isomer had no significant effect on the activity of this enzyme whereas (R,S)-3-chlorolactaldehyde caused an inhibition of its activity and also in that of lactate dehydrogenase. The in vitro production of (S)-3-chlorolactaldehyde, the active metabolite of (S)-a-chlorohydrin, was attempted by incubating boar spermatozoa with l-chloro-3- hydroxypropanone. Preliminary results lead us to propose that this compound is converted into (S)-3- chlorolactaldehyde as well as to another metabolite which is an inhibitor of other enzymes within the fructolytic pathway. Introduction Of the many non-steroidal chemicals which are known to elicit an antifertility response in the male (Jackson 1966), only one compound has most of the attributes of an ideal male contraceptive. This compound, (S)-a-chlorohydrin [(S)-3-chloro­ propan-l,2-diol, I (Fig. 1)], affects the metabolic activity of mature spermatozoa by inhibiting the activity of the glycolytic or fructolytic enzyme glyceraldehyde- 3-phosphate dehydrogenase (Ee 1.2.1.12) thereby causing a decrease in the fructolytic flux. This limits the capability of the spermatozoa to synthesize ATP so that when CHpH I c=o I CH2C1 III Fig.
    [Show full text]
  • Energy Metabolism: Gluconeogenesis and Oxidative Phosphorylation
    International Journal for Innovation Education and Research www.ijier.net Vol:-8 No-09, 2020 Energy metabolism: gluconeogenesis and oxidative phosphorylation Luis Henrique Almeida Castro ([email protected]) PhD in the Health Sciences Graduate Program, Federal University of Grande Dourados Dourados, Mato Grosso do Sul – Brazil. Leandro Rachel Arguello Dom Bosco Catholic University Campo Grande, Mato Grosso do Sul – Brazil. Nelson Thiago Andrade Ferreira Motion Science Graduate Program, Federal University of Mato Grosso do Sul Campo Grande, Mato Grosso do Sul – Brazil. Geanlucas Mendes Monteiro Heath and Development in West Central Region Graduate Program, Federal University of Mato Grosso do Sul Campo Grande, Mato Grosso do Sul – Brazil. Jessica Alves Ribeiro Federal University of Mato Grosso do Sul Campo Grande, Mato Grosso do Sul – Brazil. Juliana Vicente de Souza Motion Science Graduate Program, Federal University of Mato Grosso do Sul Campo Grande, Mato Grosso do Sul – Brazil. Sarita Baltuilhe dos Santos Motion Science Graduate Program, Federal University of Mato Grosso do Sul Campo Grande, Mato Grosso do Sul – Brazil. Fernanda Viana de Carvalho Moreto MSc., Nutrition, Food and Health Graduate Program, Federal University of Grande Dourados Dourados, Mato Grosso do Sul – Brazil. Ygor Thiago Cerqueira de Paula Motion Science Graduate Program, Federal University of Mato Grosso do Sul Campo Grande, Mato Grosso do Sul – Brazil. International Educative Research Foundation and Publisher © 2020 pg. 359 International Journal for Innovation Education and Research ISSN 2411-2933 September 2020 Vanessa de Souza Ferraz Motion Science Graduate Program, Federal University of Mato Grosso do Sul Campo Grande, Mato Grosso do Sul – Brazil. Tayla Borges Lino Motion Science Graduate Program, Federal University of Mato Grosso do Sul Campo Grande, Mato Grosso do Sul – Brazil.
    [Show full text]
  • Development of in Vivo Flux Analysis of Hepatic Glucose Production in Type 2 Diabetes
    Gluconeogenesis as a System: Development of in vivo Flux Analysis of Hepatic Glucose Production in Type 2 Diabetes By José Orlando Alemán B.S. Chemical Engineering Cornell University, 2001 SUBMITTED TO THE HARVARD-MIT DIVISION OF HEALTH SCIENCES AND TECHNOLOGY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MEDICAL ENGINEERING AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2008 © 2008 Massachusetts Institute of Technology All rights reserved Signature of Author_________________________________________________________ Harvard-MIT Division of Health Sciences and Technology September 24, 2007 Certified by________________________________________________________________ Gregory Stephanopoulos, PhD Willard Henry Dow Professor of Chemical Engineering and Biotechnology Massachusetts Institute of Technology Thesis Supervisor Accepted by_______________________________________________________________ Martha L. Gray, Ph.D. Edward Hood Taplin Professor of Medical and Electrical Engineering Co-Director, Harvard-MIT Division of Health Sciences and Technology Gluconeogenesis as a System: Development of in vivo Flux Analysis of Hepatic Glucose Production in Type 2 Diabetes by José O. Alemán Submitted to the Division of Health Sciences and Technology on September 24, 2007 in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Medical Engineering ABSTRACT Metabolic diseases are an increasing health concern in the developed world. Type 2 Diabetes, (T2D) affects over 100 million people worldwide and significantly contributes to chronic diseases such as atherosclerosis and kidney failure. This condition is characterized by deregulation of glucose homeostasis through the development of insulin resistance, manifested as increased glucose production in the liver. Hepatic gluconeogenesis provides de novo formation of glucose from three- carbon precursors such as glycerol, lactate, pyruvate and alanine. The upregulation of this pathway underlies the persistent hyperglycemia observed in diabetic patients.
    [Show full text]
  • ORGANIZING and COMPUTING METABOLIC PATHWAY DATA in TERMS of BINARY RELATIONS 1 Introduction
    yqexssxq exh gyw sxq wiefyvsg ere hee sx iw yp fsxe ivesyx F qyyD rF fyxyD rF yqeeD F p tsf grsD F xsrsyueD uF eyD wF uexirse snstitute for ghemil eserhD uyoto niversityD jiD uyoto TIID tpn e new dtse system nmed uiqq is eing orgnized to omputerize funE tionl sp ets of genes nd genomes in terms of the inry reltions of interting moleules or genesF e re urrently working on the metoli pthwy dtse tht is omp osed of three interonneted setionsX genesD moleulesD nd pthwysD whih re lso linked to num er of existing dtses through our hfqi reE trievl systemF rere we present the si onept of inry reltions nd hierE rhil lssitions to represent the metoli pthwy dtF he dtse opertions re then dened s n extension of the reltionl opertionsD nd the pth omputtion prolem is onsidered s dedution from inry reltionsF en exmple of using uiqq for the funtionl predition of genomi sequenes is preE sentedF I sntrodution I he rst omplete genome of n orgnismD 0xIURD ws determined in IWUUD whihws followed y the explosion of hxe sequene dt for sp ei genesD s well s for smll genomes of viruses nd orgnellesF he rst omplete genome of freeEliving orgnismD remophilus inuenze Dws determined in P IWWSD whihwould ertinly e followed y the explosion of omplete genomi sequenes nd omplete gene tlogs of num er of orgnisms from teri to eukryotesF heres the exp erimentl tehnologies hve een rened to systemtilly nlyze whole genomeD the omputtionl metho ds for deiE phering funtionl implitions re still sed on the nlysis of eh gene or gene pro dut t timeF e systemti omputtionl
    [Show full text]
  • Fermentation and Cellular Respiration 1. Define: Glycolysis – Glycolysis Is
    Fermentation and Cellular Respiration 1. Define: Glycolysis – Glycolysis is a metabolic pathway allowing for the partial catabolism of glucose. During glycolysis, each glucose molecule is split into two pyruvic acid molecules with the associated production of two molecules of ATP and the reduction of two molecules of NAD to form NADH + H+ (also known as the Embden-Meyerhof-Parnas pathway). Fermentation – Fermentation is the anaerobic decomposition of organic compounds (especially carbohydrates) that involves an organic compound (usually) as the final electron acceptor. For those examples used in class, pyruvic acid serves as the final electron acceptor, but some organisms use other compounds. Heterofermentative – The term heterofermentative applies to organisms that produce a variety of end products (more than one) as the result of their fermentation activities. For example, Saccharomyces cerevisiae produces both ethanol and CO2 during its fermentation activities, so is heterofermentative. Krebs cycle – The Krebs cycle, also known as the tricarboxylic acid (TCA) cycle or citric acid cycle, is a cyclic series of chemical reactions that plays a central role in metabolism. When functioning catabolically, it involves the decarboxylation of organic acids (isocitric acid and a-ketoglutaric acid). The carboxyl groups removed form carbon dioxide, a waste gas. Most of the energy released during the cycle is captured in the form of reduced + coenzymes (NADH + H and FADH2). A small amount of energy is captured in the form of GTP or ATP. When functioning anabolically, the TCA cycle provides precursors for various biosynthetic pathways. In eukaryotic cells, the enzymes involved in this cycle are found in the matrix of mitochondria, while in prokaryotic cells they are found in the cytoplasm.
    [Show full text]
  • Production of Butyric Acid and Hydrogen by Metabolically Engineered Mutants of Clostridium Tyrobutyricum
    PRODUCTION OF BUTYRIC ACID AND HYDROGEN BY METABOLICALLY ENGINEERED MUTANTS OF CLOSTRIDIUM TYROBUTYRICUM DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Xiaoguang Liu, M.S. ***** The Ohio State University 2005 Dissertation committee: Approved by Professor Shang-Tian Yang, Adviser Professor Barbara E Wyslouzil Adviser Professor Hua Wang Department of Chemical Engineering ABSTRACT Butyric acid has many applications in chemical, food and pharmaceutical industries. The production of butyric acid by fermentation has become an increasingly attractive alternative to current petroleum-based chemical synthesis. Clostridium tyrobutyricum is an anaerobic bacterium producing butyric acid, acetic acid, hydrogen and carbon dioxide as its main products. Hydrogen, as an energy byproduct, can add value to the fermentation process. The goal of this project was to develop novel bioprocess to produce butyric acid and hydrogen economically by Clostridial mutants. Conventional fermentation technologies for butyric acid and hydrogen production are limited by low reactor productivity, product concentration and yield. In this project, novel engineered mutants of C. tyrobutyricum were created by gene manipulation and cell adaptation. Fermentation process was also optimized using immobilizing cells in the fibrous-bed bioreactor (FBB) to enhance butyric acid and hydrogen production. First, metabolic engineered mutants with knocked-out acetate formation pathway were created and characterized. Gene inactivation technology was used to delete the genes of phosphotransacetylase (PTA) and acetate kinase (AK), two key enzymes in the acetate-producing pathway of C. tyrobutyricum, through homologous recombination. The metabolic engineered mutants were characterized by Southern hybridization, enzyme assay, protein expression and metabolites production.
    [Show full text]
  • Carbohydrate Metabolism-1.Pptx
    Carbohydrate Metabolism Assist.Prof.Dr. Filiz BAKAR ATEŞ Introduction to Metabolism ò In cells, enzymatic reactions are organized into multistep sequences called pathways, ò Glycolysis, gluconeogeesis, etc. ò In a pathway: the product of one reaction serves as the substrate of the subsequent reaction. Introduction to Metabolism ò Metabolism: the sum of all the chemical changes occurring in a cell, a tissue, or the body. ò Most pathways can be classified as either catabolic (degradative) or anabolic (synthetic). ò Catabolic reactions break down complex molecules, such as proteins, polysaccharides, and lipids, to a few simple molecules, for example, CO2, NH3 (ammonia), and water. ò Anabolic pathways form complex end products from simple precursors, for example, the synthesis of the polysaccharide, glycogen, from glucose Metabolic Map ò Each metabolic pathway is composed of multienzyme sequences, and each enzyme, in turn, may exhibit important catalytic or regulatory features. Catabolic Pathways ò Catabolic reactions serve to capture chemical energy in the form of adenosine triphosphate (ATP) from the degradation of energy-rich fuel molecules. ò Catabolism also allows molecules in the diet (or nutrient molecules stored in cells) to be converted into building blocks needed for the synthesis of complex molecules. Anabolic pathways ò Anabolic reactions combine small molecules, such as amino acids, to form complex molecules, such as proteins ò Require energy (endergonic), which is generally provided by the breakdown of ATP to adenosine diphosphate (ADP) and inorganic phosphate (Pi). ò Anabolic reactions often involve chemical reductions in which the reducing power is most frequently provided by the electron donor NADPH. ò Catabolism is a convergent process—that is, a wide variety of molecules are transformed into a few common end products.
    [Show full text]
  • Treated with Steroids Derived from Dehydroepiandrosterone
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 6617-6619, July 1995 Medical Sciences Ergosteroids: Induction of thermogenic enzymes in liver of rats treated with steroids derived from dehydroepiandrosterone HENRY LARDY, BRUCE PARTRIDGE, NANCY KNEER, AND YONG WEI Institute for Enzyme Research, University of Wisconsin, 1710 University Avenue, Madison, WI 53705 Contributed by Henry Lardy, April 24, 1995 ABSTRACT Dehydroepiandrosterone (DHEA), an inter- above normal concentrations (16); they become hirsute and mediate in the biosynthesis of testosterone and estrogens, exhibit other signs of masculinization. exerts several physiological effects not involving the sex It was demonstrated by Tagliaferro et al. (20) that feeding hormones. When fed to rats it induces the thermogenic DHEA to rats enhanced heat production and decreased enzymes mitochondrial sn-glycerol-3-phosphate dehydroge- efficiency of food utilization. We therefore measured its effect nase and cytosolic malic enzyme in their livers. Animals and on the production of liver mitochondrial sn-glycerol-3- humans, and their excised tissues, are known to hydroxylate phosphate dehydrogenase and cytosolic malic enzyme, two DHEA at several positions and to interconvert 7a-hydroxy- enzymes that had been demonstrated (21-24) to be induced by DHEA, 7,8-hydroxy-DHEA, 7-oxo-DHEA, and the correspond- a classic thermogenic agent, the thyroid hormone. Both en- ing derivatives of androst-5-enediol. We report here that these zymes were increased severalfold in livers of rats fed a diet 7-oxygenated derivatives are active inducers of these thermo- containing 0.2-0.5% DHEA for 6 days (25, 26). A possible genic enzymes in rats and that the 7-oxo derivatives are more mechanism by which these enzymes function to decrease active than the parent steroids.
    [Show full text]
  • The Cardiac Fatty Acid Metabolic Pathway in Heart Failure
    THE CARDIAC FATTY ACID METABOLIC PATHWAY IN HEART FAILURE by Eric E. Morgan Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Thesis Advisor: Dr. William C. Stanley Department of Physiology and Biophysics CASE WESTERN RESERVE UNIVERSITY May, 2006 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Eric E. Morgan candidate for the Ph.D degree *. (signed) Richard Eckert (chair of the committee) William C. Stanley Brian D. Hoit Steve Fisher Matthais Buck (date) 01/20/06 *We also certify that written approval has been obtained for any proprietary material contained therein. ii DEDICATION This work is dedicated to Drs. William Stanley, Margaret Chandler and Brian Hoit, whose unique perspectives on research collectively afforded me a very rich and well- rounded educational experience. iii TABLE OF CONTENTS Dedication...........................................................................................................................ii Table of Contents……………………………………………………………………..…iii List of Tables…………………………………………………………...……………….vii List of Figures……………………………………………………………………………ix Acknowledgments…………………………………......………………………………...xi List of Abbreviations………………………………………………………………...…xii Abstract…………………………………………………………..………...…………....xv Chapter 1: Energy Metabolism in the Heart……………………………….…….........1 1.1. Introduction……………………………………………………………………......1 1.2. Myocardial Carbohydrate and Fatty Acid Metabolism…………………....……...2 1.2.1. Overview…………………………………………………………...……...2
    [Show full text]