The Rotation of the Sun
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Physics (I-Introduction)
1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay. -
Effect of Solar Variability on the Earth's Climate Patterns
Advances in Space Research 40 (2007) 1146–1151 www.elsevier.com/locate/asr Effect of solar variability on the Earth’s climate patterns Alexander Ruzmaikin Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA Received 30 October 2006; received in revised form 8 January 2007; accepted 8 January 2007 Abstract We discuss effects of solar variability on the Earth’s large-scale climate patterns. These patterns are naturally excited as deviations (anomalies) from the mean state of the Earth’s atmosphere-ocean system. We consider in detail an example of such a pattern, the North Annular Mode (NAM), a climate anomaly with two states corresponding to higher pressure at high latitudes with a band of lower pres- sure at lower latitudes and the other way round. We discuss a mechanism by which solar variability can influence this pattern and for- mulate an updated general conjecture of how external influences on Earth’s dynamics can affect climate patterns. Ó 2007 COSPAR. Published by Elsevier Ltd. All rights reserved. Keywords: Solar irradiance; Climate and inter-annual variability; Solar variability impact; Climate dynamics 1. Introduction in solar irradiance. The solar cycle variations in total solar irradiance are small, 0.1%. However the magnitude of The center of attention of this paper is the response of irradiance variations strongly depends on the wavelength the Earth to solar variability on Space Climate time scales. and increases for the shorter wavelengths. Thus solar UV, In the context of Space Climate, the Earth can respond to which amounts to only a few percentage of the total irradi- solar variability on the 27-day solar rotation time scale, the ance, contributes 15% to the change in total irradiance 11-year solar cycle, the century scale Grand Minima, and (Lean et al., 2005). -
M204; the Doppler Effect
MISN-0-204 THE DOPPLER EFFECT by Mary Lu Larsen THE DOPPLER EFFECT Towson State University 1. Introduction a. The E®ect . .1 b. Questions to be Answered . 1 2. The Doppler E®ect for Sound a. Wave Source and Receiver Both Stationary . 2 Source Ear b. Wave Source Approaching Stationary Receiver . .2 Stationary c. Receiver Approaching Stationary Source . 4 d. Source and Receiver Approaching Each Other . 5 e. Relative Linear Motion: Three Cases . 6 f. Moving Source Not Equivalent to Moving Receiver . 6 g. The Medium is the Preferred Reference Frame . 7 Moving Ear Away 3. The Doppler E®ect for Light a. Introduction . .7 b. Doppler Broadening of Spectral Lines . 7 c. Receding Galaxies Emit Doppler Shifted Light . 8 4. Limitations of the Results . 9 Moving Ear Toward Acknowledgments. .9 Glossary . 9 Project PHYSNET·Physics Bldg.·Michigan State University·East Lansing, MI 1 2 ID Sheet: MISN-0-204 THIS IS A DEVELOPMENTAL-STAGE PUBLICATION Title: The Doppler E®ect OF PROJECT PHYSNET Author: Mary Lu Larsen, Dept. of Physics, Towson State University The goal of our project is to assist a network of educators and scientists in Version: 4/17/2002 Evaluation: Stage 0 transferring physics from one person to another. We support manuscript processing and distribution, along with communication and information Length: 1 hr; 24 pages systems. We also work with employers to identify basic scienti¯c skills Input Skills: as well as physics topics that are needed in science and technology. A number of our publications are aimed at assisting users in acquiring such 1. -
Trajectory Coordinate System Information We Have Calculated the New Horizons Trajectory and Full State Vector Information in 11 Different Coordinate Systems
Trajectory Coordinate System Information We have calculated the New Horizons trajectory and full state vector information in 11 different coordinate systems. Below we describe the coordinate systems, and in the next section we describe the trajectory file format. Heliographic Inertial (HGI) This system is Sun centered with the X-axis along the intersection line of the ecliptic (zero longitude occurs at the +X-axis) and solar equatorial planes. The Z-axis is perpendicular to the solar equator, and the Y-axis completes the right-handed system. This coordinate system is also referred to as the Heliocentric Inertial (HCI) system. Heliocentric Aries Ecliptic Date (HAE-DATE) This coordinate system is heliocentric system with the Z-axis normal to the ecliptic plane and the X-axis pointes toward the first point of Aries on the Vernal Equinox, and the Y- axis completes the right-handed system. This coordinate system is also referred to as the Solar Ecliptic (SE) coordinate system. The word “Date” refers to the time at which one defines the Vernal Equinox. In this case the date observation is used. Heliocentric Aries Ecliptic J2000 (HAE-J2000) This coordinate system is heliocentric system with the Z-axis normal to the ecliptic plane and the X-axis pointes toward the first point of Aries on the Vernal Equinox, and the Y- axis completes the right-handed system. This coordinate system is also referred to as the Solar Ecliptic (SE) coordinate system. The label “J2000” refers to the time at which one defines the Vernal Equinox. In this case it is defined at the J2000 date, which is January 1, 2000 at noon. -
Determining the Motion of Galaxies Using Doppler Redshift
Determining the Motion of Galaxies Using Doppler Redshift Caitlin M. Matyas The Arts Academy at Benjamin Rush Overview Rationale Objective Strategies Classroom Activities Annotated Bibliography / Resources Standards Appendices Overview The Doppler effect of sound is a method used to determine the relative speeds of an object emitting a sound and an observer. Depending on whether the source and/or observer are moving towards or away from each other, the frequency of the wave will change. This in turn creates a change in pitch perceived by the observer. The relative speeds can easily be calculated using the following formula: � ± �′ = �( ), � ± where f’ represents the shifted frequency, f represents the frequency of the source, v is the speed of sound, vo is the speed of the observer, and vs is the speed of the source. Vo is added if moving towards and subtracted if moving away from the source. vs is added if moving away and subtracted if moving towards the observer. The figures below help to demonstrate the perceived change in frequency. The source is located at the center of the smallest circle. The picture shows waves expanding as they move outwards away from the source, so the earliest emitted waves create the biggest circles. If both the source and observer were stationary, the waves appear to pass at equal periods of time, as seen in figure IA. However, if the source is moving, the frequency appears to change. Figure IB shows what would happen if the source moves towards the right. Although the waves are emitted at a constant frequency, they seem closer together on the right side and farther spaced on the left. -
Glossary | Speed Measuring Device Resources 191.94 KB
GLOSSARY Absorption - The transmitted R.A.D.A.R. beam will, unless otherwise acted upon (absorbed, reflected, or refracted), travel infinitely far. Under practical circumstances, the beam may be partially absorbed by natural and man-made substances. Vegetation such as trees, grass, and bushes will absorb R.A.D.A.R. energy. Freshly turned earth, such as that in a freshly plowed field, will also absorb R.A.D.A.R. Plastics of certain types and foam products will absorb R.A.D.A.R., as makers of "stealth" automotive accessories have discovered. Absorption of R.A.D.A.R. will not result in any inaccuracies in the R.A.D.A.R. readings. It will reduce the strength of the returned signal, and the operational range of the device depending upon the circumstances. Absolute speed limits - Holds that a given speed limit is in force, regardless of environment conditions, i.e., 35 mph or 50 mph. Accuracy - When used in conjunction with R.A.D.A.R. devices means the degree to which the R.A.D.A.R. device measures and displays the correct speed of a target vehicle that it is tracking. Ambient interference - The conducted and/or radiated electromagnetic interference and/or mechanical motion interference at a specific location and at a time which would be detrimental to proper R.A.D.A.R. performance. Antenna horn - The antenna horn is that portion of the R.A.D.A.R. device that shapes and directs the microwave energy (beam). The antenna horn also "catches" the returning microwave energy and directs it to the R.A.D.A.R. -
Solar Data Handling
United Nations Educational. Scientific The Abdus Salam International Centre for Theoretical Physics Intem3tion.1l Atomic Energy Agency 310/1749-25 ICTP-COST-USNSWP-CAWSES-INAF-INFN International Advanced School on Space Weather 2-19 May 2006 Solar Data Handling Robert BENTLEY UCL Department of Space and Climate Physics Mullard Space Science Laboratory Hombury St. Mary Dorking Surrey RH5 6NT U.K. These lecture notes are intended only for distribution to participants Strada Costiera 11, 34014 Trieste, Italy - Tel. +39 040 2240 11 I; Fax +39 040 224 163 - [email protected], www.ictp.it i f Solar data Handling 1 Rob Bentley University College London (UCL) C Mullard Space Science Laboratory Trieste, 3 May 2006 International Advanced School on Space Weather Nature of Observations Data management issues • Types of data | • Storage of data I • Access to data (current) : • Standards • Temporal and spatial coordinates • File Formats • Types of Metadata I • Data Models egso Nature of solar observations The appearance of the Sun changes dramatically with wavelength • Emissions originate from different layers in the atmosphere and different physical phenomena K • For a complete picture we need to use as 2x106K wide a range of observations as possible 1 • Mixture of types of observations • Different wavelengths and time intervals • Mixture of observations from space- and ground-based platforms 8x104K • Increasing desire to study problems that span communities • Desire relevant to Space Weather, climate I physics, planetary physics, astrophysics 3 • Identifying observations across community 6x10 K boundaries and then retrieving them are major problems r Sun at different wavelengths egso o J K I egso TVPes of Data • Types of data/observation: • single values • spectra (includes and dispersed quantity) • images | • compound - e.g. -
Doppler Effect
Physical Science Workshop: Astronomy Applications of Light & Color 1 Activity: Doppler Effect Background: • The Doppler effect causes a train whistle, car, or airplane to sound higher when it is moving towards you, and lower when it is moving away from you. From: http://www.physics.purdue.edu/astr263l/inlabs/doppler.html • For sound: high pitch = high frequency = short wavelength • Light is also a wave, and affected by the Doppler effect o longer wavelengths (lower frequencies) of light appear redder o The spectrum of a star moving towards you will appear blueshifted (shorter wavelengths / higher frequencies) o The spectrum of a star moving away from you will appear redshifted (longer wavelengths / lower frequencies) From: http://www.astrosociety.org/education/publications/tnl/55/astrocappella3.html Lab Materials: • computer with internet access S. Sallmen Activity: Doppler Effect Physical Science Workshop: Astronomy Applications of Light & Color 2 Activity: Doppler Basics: • Go to: http://www.fearofphysics.com/Sound/dopwhy2.html 1. Watch the waves reaching your ear if: • the source moves towards your ear at 100 meters / second • the source moves away from your ear at 100 meters / second a. In which case is the frequency of sound higher? b. In which case is the wavelength of the sound waves longest? c. If these were light waves, in which case would the light reaching your eye be redder? d. If these were light waves, in which case would the light reaching your eye be bluer? 2. Watch the waves reaching your ear if: • the source moves away from your ear at 100 meters / second • the source moves away from your ear at 200 meters / second a. -
Gravity Tests with Radio Pulsars
universe Review Gravity Tests with Radio Pulsars Norbert Wex 1,* and Michael Kramer 1,2 1 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany; [email protected] 2 Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK * Correspondence: [email protected] Received: 19 August 2020; Accepted: 17 September 2020; Published: 22 September 2020 Abstract: The discovery of the first binary pulsar in 1974 has opened up a completely new field of experimental gravity. In numerous important ways, pulsars have taken precision gravity tests quantitatively and qualitatively beyond the weak-field slow-motion regime of the Solar System. Apart from the first verification of the existence of gravitational waves, binary pulsars for the first time gave us the possibility to study the dynamics of strongly self-gravitating bodies with high precision. To date there are several radio pulsars known which can be utilized for precision tests of gravity. Depending on their orbital properties and the nature of their companion, these pulsars probe various different predictions of general relativity and its alternatives in the mildly relativistic strong-field regime. In many aspects, pulsar tests are complementary to other present and upcoming gravity experiments, like gravitational-wave observatories or the Event Horizon Telescope. This review gives an introduction to gravity tests with radio pulsars and its theoretical foundations, highlights some of the most important results, and gives a brief outlook into the future of this important field of experimental gravity. Keywords: gravity; general relativity; pulsars 1. -
Minima, When the Type B Redauroras Are Predominant. SOLAR
VOL. 43, 1957 GEOPHYSICS: J. BARTELS 75 are being slowed down much higher in the atmosphere than occurs at sunspot minima, when the Type B red auroras are predominant. From the general physical interpretation of the observations of unusual heights of aurora, it seems probable that a consideration of the degree of ionization of the upper atmosphere may account for the wide range found in auroral heights. For this reason the degree of ionization may become one of the problems of auroral morphol- ogy. The auroral program for the International Geophysical Year, 1957-1958, was de- signed with many of the above-mentioned problems in auroral morphology in mind. Hence we may expect to have answers for some of the problems in the next two or three years. 1 J. A. Van Allen, Phys. Rev., 99, 609, 1955. 2 S. Chapman and C. G. Little, J. Atm. and Terrest. Phys. (in press). 3 J. P. Heppner, J. Geophys. Research, 59, 329, 1954. 4 C. W. Gartlein, Nat. Geographic Mag., 92, 683, 1947. 5 F. T. Davies, Transactions of the Oslo Meeting, August 19-928, 1948 (Washington: Interna- tional Union of Geodesy and Geophysics, 1950). 6 A. B. Meinel, Astrophys. J., 113, 50, 1951; 114, 431, 1951. 7 A. B. Meinel and C. Y. Fan, Astrophys. J., 115, 330, 1952. 8 H. Leinbach, Sky and Telescope, 15, 329, 1956. 9 C. T. Elvey, Seventh Alaska Science Conference, Alaska Division, AAAS, Juneau, September 26-29, 1956. 10 C. St0rmer, The Polar Aurora (Oxford: Clarendon Press, 1955). 1 M. Sugiura, Proceedings of the Third Alaska Science Conference, September 22-97, 1962, p. -
Lecture 21: the Doppler Effect
Matthew Schwartz Lecture 21: The Doppler effect 1 Moving sources We’d like to understand what happens when waves are produced from a moving source. Let’s say we have a source emitting sound with the frequency ν. In this case, the maxima of the 1 amplitude of the wave produced occur at intervals of the period T = ν . If the source is at rest, an observer would receive these maxima spaced by T . If we draw the waves, the maxima are separated by a wavelength λ = Tcs, with cs the speed of sound. Now, say the source is moving at velocity vs. After the source emits one maximum, it moves a distance vsT towards the observer before it emits the next maximum. Thus the two successive maxima will be closer than λ apart. In fact, they will be λahead = (cs vs)T apart. The second maximum will arrive in less than T from the first blip. It will arrive with− period λahead cs vs Tahead = = − T (1) cs cs The frequency of the blips/maxima directly ahead of the siren is thus 1 cs 1 cs νahead = = = ν . (2) T cs vs T cs vs ahead − − In other words, if the source is traveling directly towards us, the frequency we hear is shifted c upwards by a factor of s . cs − vs We can do a similar calculation for the case in which the source is traveling directly away from us with velocity v. In this case, in between pulses, the source travels a distance T and the old pulse travels outwards by a distance csT . -
Coordinate Systems for Solar Image Data
A&A 449, 791–803 (2006) Astronomy DOI: 10.1051/0004-6361:20054262 & c ESO 2006 Astrophysics Coordinate systems for solar image data W. T. Thompson L-3 Communications GSI, NASA Goddard Space Flight Center, Code 612.1, Greenbelt, MD 20771, USA e-mail: [email protected] Received 27 September 2005 / Accepted 11 December 2005 ABSTRACT A set of formal systems for describing the coordinates of solar image data is proposed. These systems build on current practice in applying coordinates to solar image data. Both heliographic and heliocentric coordinates are discussed. A distinction is also drawn between heliocentric and helioprojective coordinates, where the latter takes the observer’s exact geometry into account. The extension of these coordinate systems to observations made from non-terrestial viewpoints is discussed, such as from the upcoming STEREO mission. A formal system for incorporation of these coordinates into FITS files, based on the FITS World Coordinate System, is described, together with examples. Key words. standards – Sun: general – techniques: image processing – astronomical data bases: miscellaneous – methods: data analysis 1. Introduction longitude and latitude – only need to worry about two spatial dimensions. The same can be said for normal cartography of Solar research is becoming increasingly more sophisticated. a planet such as Earth. However, to properly treat the complete Advances in solar instrumentation have led to increases in spa- range of solar phenomena, from the interior out into the corona, tial resolution, and will continue to do so. Future space mis- a complete three-dimensional coordinate system is required. sions will view the Sun from different perspectives than the Unfortunately, not all the information necessary to determine current view from ground-based observatories, or satellites in the full three-dimensional position of a solar feature is usually Earth orbit.