Coordinate Systems for Solar Image Data

Total Page:16

File Type:pdf, Size:1020Kb

Coordinate Systems for Solar Image Data A&A 449, 791–803 (2006) Astronomy DOI: 10.1051/0004-6361:20054262 & c ESO 2006 Astrophysics Coordinate systems for solar image data W. T. Thompson L-3 Communications GSI, NASA Goddard Space Flight Center, Code 612.1, Greenbelt, MD 20771, USA e-mail: [email protected] Received 27 September 2005 / Accepted 11 December 2005 ABSTRACT A set of formal systems for describing the coordinates of solar image data is proposed. These systems build on current practice in applying coordinates to solar image data. Both heliographic and heliocentric coordinates are discussed. A distinction is also drawn between heliocentric and helioprojective coordinates, where the latter takes the observer’s exact geometry into account. The extension of these coordinate systems to observations made from non-terrestial viewpoints is discussed, such as from the upcoming STEREO mission. A formal system for incorporation of these coordinates into FITS files, based on the FITS World Coordinate System, is described, together with examples. Key words. standards – Sun: general – techniques: image processing – astronomical data bases: miscellaneous – methods: data analysis 1. Introduction longitude and latitude – only need to worry about two spatial dimensions. The same can be said for normal cartography of Solar research is becoming increasingly more sophisticated. a planet such as Earth. However, to properly treat the complete Advances in solar instrumentation have led to increases in spa- range of solar phenomena, from the interior out into the corona, tial resolution, and will continue to do so. Future space mis- a complete three-dimensional coordinate system is required. sions will view the Sun from different perspectives than the Unfortunately, not all the information necessary to determine current view from ground-based observatories, or satellites in the full three-dimensional position of a solar feature is usually Earth orbit. Both of these advances will require more careful at- available. Therefore, in developing coordinate systems for so- tention to the coordinate systems used for solar image data. In lar data, one must take into account that one of the axes of the fact, some taste of this has already occured with the Solar and coordinate system may be missing. Heliospheric Observatory (SOHO) satellite (Domingo et al. Also, since the Sun is a gaseous body, there are no fixed 1995), which views the Sun from the inner Lagrange point be- points of reference on the Sun. What’s more, different parts tween Earth and the Sun. The Sun appears approximately 1% of the Sun rotate at different rates. The rotation rate depends bigger from SOHO than it does from Earth, requiring adjust- not only on latitude, but also on how deeply the magnetic field ment whenever SOHO images are compared with data from lines of a given feature are anchored in the photosphere. Thus, ground-based observatories, or satellites in low Earth orbit. for example, active regions follow different differential rotation Although there is widespread agreement on the coordi- laws than smaller-scale magnetic features at the same latitudes. nate systems to be used for interplanetary space (Russell 1971; For the above reasons, attention will be given to coordi- Hapgood 1992; Fränz & Harper 2002) no formal structure ex- nate systems which take the observer’s viewing geometry into ists for solar image coordinates, except for the well-established consideration. Some coordinate systems will be rotating with heliographic coordinate systems. In particular, there is no respect to other coordinate systems, and in all the coordinate agreement on how these coordinates should appear in FITS systems, at least some part of the Sun will be moving rela- headers, with potential confusion when data from one observa- tive to that coordinate system. For those reasons, the coordinate tory is compared to data from another. This document outlines system should not really be considered complete without also the various possible coordinate systems which may be used for taking time into account. In the discussion which follows, all solar image data, and to show how these coordinate systems re- coordinates will assume a given observation time t. late to the World Coordinate System (WCS) formalism used in With solar imaging instrumentation now planned for space- FITS files. In devising the coordinate systems outlined below, craft which will operate at large distances away from the attention is given to current practice within the solar imaging Earth-Sun line, such as STEREO (Socker et al. 1996), con- community. sideration must also be given as to how the viewpoint of the Normal coordinate systems used for extra-solar observa- instrument should be taken into account in the coordinate sys- tions – such as right ascension and declination, or galactic tem. This is discussed in Sect. 9.1. Article published by EDP Sciences and available at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20054262 792 W. T. Thompson: Coordinate systems for solar image data 1.1. Coordinate systems within FITS files matrix replaces the older CROTAn keyword, which is deprecated in the WCS formalism. As well as ro- Two different styles of including coordinate information within tations, the PC matrix can also encode other trans- FITS files will be considered here. The first is the coordinate formations, such as skew. (There is also an optional system from the original FITS specification, while the second is form of the WCS formalism in which both the PCi_ j the more modern World Coordinate System. The latter allows and CDELTi keywords are combined into a single for much more flexibility in the types of coordinate systems CDi_ j matrix.) which can be expressed, as well as in describing how the in- CTYPEi: For spherical coordinates, the first four char- strument coordinate axes map into real-world coordinates. For acters express the coordinate type, while the second those reasons, we will concentrate on the World Coordinate four characters express the map projection used. System implementations of the coordinate systems. However, PVi_m: Additional parameters required in some coor- the older system will also be considered where appropriate. dinate systems. CUNITi: The units of the coordinates along axis i. 1.1.1. The original FITS coordinate system LONPOLE, LATPOLE: Angles used for spherical coordi- nate transformations. These keywords have default In the original FITS paper (Wells et al. 1981), the coordinates values which depend on the map projection used. of a data array were specified with the following keywords in the FITS header: For spherical coordinates, some care must be taken in the selec- CRPIXn: Reference pixel to subtract from the pixel co- tion of the reference pixel, depending on the projection being ordinates along axis n. Note that CRPIXn follows the used. Fortran convention of counting from 1 to N, instead It is a requirement in FITS files, and in WCS in particular, of from 0 to N − 1 as is done in some programming that all angles must be in degrees. (However, see Sect. 9.2.) languages. For simplicity, in the following, all trigonometric functions are CRVALn: Coordinate value of the reference pixel along assumed to have their arguments in degrees, while the inverse axis n. functions are assumed to return values in degrees. CDELTn: Pixel spacing along axis n. It is possible in WCS to have more than one coordinate CROTAn: Rotation angle, in degrees, to apply to axis n. system for any given data set. An alternate coordinate system The exact method of applying the rotation angle would be expressed using all the above keywords followed by was not specified in the original paper, but com- one of the letters “A” to “Z”, e.g. CRPIX1A, PC1_1A,etc.The monly used conventions have developed over the keywords WCSNAMEa can be used to label each alternative years, as discussed in Sect. 8. coordinate system – see Figs. 4 and 5. CTYPEn: A string value labeling each coordinate axis. Modified versions of the above keywords for use in binary A common system, used by the SOHO spacecraft, tables and pixel lists are listed in Greisen & Calabretta (2002) labels the westward axis as SOLARX and the north- and in Calabretta & Greisen (2002). ward axis as SOLARY. In the simple case of linear coordinates with no rotation, the 2. Heliographic coordinates transformation from pixel to real world coordinates is then 2 x = CRVALn + CDELTn × (i − CRPIXn). The well-known heliographic coordinate system expresses the latitude Θ and longitude Φ of a feature on the solar surface, and (The case where CROTAn 0 is discussed in Sect. 8.) Later, we can be extended to three dimensions by adding the radial dis- will show that this older system can be considered a special tance r from the center of the Sun. The rotational axis used to case of the coordinate systems described below. define the coordinate system is based on the original work of Carrington (1863). Seidelmann et al. (2002) lists the right as- α = ◦. 1.1.2. The World Coordinate System cension and declination of the solar north pole as 0 286 13, ◦ δ0 = 63.87. There are two basic variations on the heliographic The World Coordinate System (WCS) (Greisen & Calabretta system, which we will refer to as Stonyhurst and Carrington 2002; Calabretta & Greisen 2002) is a system for describing heliographic. Both use the same solar rotational axis, and differ the coordinates of a FITS array, and includes a system of de- only in the definition of longitude. 1 scribing various map projections for spherical coordinates .In There are several limitations to the use of heliographic simplified form, the keywords CRPIXn, CRVALn, CDELTn are coordinates when used with two-dimensional image data: retained from the original specification, combined with the following additional or modified keywords: – Without the r axis, coordinates can only be expressed for PCi_ j: A coordinate transformation matrix, describing pixels on the solar disk.
Recommended publications
  • Trajectory Coordinate System Information We Have Calculated the New Horizons Trajectory and Full State Vector Information in 11 Different Coordinate Systems
    Trajectory Coordinate System Information We have calculated the New Horizons trajectory and full state vector information in 11 different coordinate systems. Below we describe the coordinate systems, and in the next section we describe the trajectory file format. Heliographic Inertial (HGI) This system is Sun centered with the X-axis along the intersection line of the ecliptic (zero longitude occurs at the +X-axis) and solar equatorial planes. The Z-axis is perpendicular to the solar equator, and the Y-axis completes the right-handed system. This coordinate system is also referred to as the Heliocentric Inertial (HCI) system. Heliocentric Aries Ecliptic Date (HAE-DATE) This coordinate system is heliocentric system with the Z-axis normal to the ecliptic plane and the X-axis pointes toward the first point of Aries on the Vernal Equinox, and the Y- axis completes the right-handed system. This coordinate system is also referred to as the Solar Ecliptic (SE) coordinate system. The word “Date” refers to the time at which one defines the Vernal Equinox. In this case the date observation is used. Heliocentric Aries Ecliptic J2000 (HAE-J2000) This coordinate system is heliocentric system with the Z-axis normal to the ecliptic plane and the X-axis pointes toward the first point of Aries on the Vernal Equinox, and the Y- axis completes the right-handed system. This coordinate system is also referred to as the Solar Ecliptic (SE) coordinate system. The label “J2000” refers to the time at which one defines the Vernal Equinox. In this case it is defined at the J2000 date, which is January 1, 2000 at noon.
    [Show full text]
  • A Decadal Strategy for Solar and Space Physics
    Space Weather and the Next Solar and Space Physics Decadal Survey Daniel N. Baker, CU-Boulder NRC Staff: Arthur Charo, Study Director Abigail Sheffer, Associate Program Officer Decadal Survey Purpose & OSTP* Recommended Approach “Decadal Survey benefits: • Community-based documents offering consensus of science opportunities to retain US scientific leadership • Provides well-respected source for priorities & scientific motivations to agencies, OMB, OSTP, & Congress” “Most useful approach: • Frame discussion identifying key science questions – Focus on what to do, not what to build – Discuss science breadth & depth (e.g., impact on understanding fundamentals, related fields & interdisciplinary research) • Explain measurements & capabilities to answer questions • Discuss complementarity of initiatives, relative phasing, domestic & international context” *From “The Role of NRC Decadal Surveys in Prioritizing Federal Funding for Science & Technology,” Jon Morse, Office of Science & Technology Policy (OSTP), NRC Workshop on Decadal Surveys, November 14-16, 2006 2 Context The Sun to the Earth—and Beyond: A Decadal Research Strategy in Solar and Space Physics Summary Report (2002) Compendium of 5 Study Panel Reports (2003) First NRC Decadal Survey in Solar and Space Physics Community-led Integrated plan for the field Prioritized recommendations Sponsors: NASA, NSF, NOAA, DoD (AFOSR and ONR) 3 Decadal Survey Purpose & OSTP* Recommended Approach “Decadal Survey benefits: • Community-based documents offering consensus of science opportunities
    [Show full text]
  • Solar Activity Affecting Space Weather
    March 7, 2006, STP11, Rio de Janeiro, Brazil Solar Activity Affecting Space Weather Kazunari Shibata Kwasan and Hida Observatories Kyoto University, Japan contents • Introduction • Flares • Coronal Mass Ejections(CME) • Solar Wind • Future Projects Japanese newspaper reporting the big flare of Oct 28, 2003 and its impact on the Earth big flare (third largest flare in record) on Oct 28, 2003 X17 X-ray Intensity time A big flare on Oct 28, 2003 (third largest X-ray intensity in record) EUV Visible light SOHO/EIT SOHO/LASCO • Flare occurred at UT11:00 on Oct 28 Magnetic Storm on the Earth Around UT 6:00- Aurora observed in Japan on Oct 29, 2003 at around UT 14:00 on Oct 29, 2003 During CAWSES campaign observations (Shinohara) Xray X17 X6.2 Proton 10MeV 100MeV Vsw 44h 30h Bt Bz Dst Flares What is a flare ? Hα chromosphere 10,000 K Discovered in Mid 19C Near sunspots=> energy source is magnetic energy size~(1-10)x 104 km Total energy 1029 -1032erg (~ 105ー108 hydrogen bombs ) (Hida Observatory) Prominence eruption (biggest: June 4, 1946) Electro- magnetic Radio waves emitted from a flare (Svestka Visible 1976) UV 1hour time Solar corona observed in soft X-rays (Yohkoh) Soft X-ray telescope (1keV) Coronal plasma 2MK-10MK X-ray view of a flare Magnetic reconneciton Hα X-ray MHD simulation of a solar flare based on reconnection model including heat conduction and chromospheric evaporation (Yokoyama-Shibata 1998, 2001) A solar flare Observed with Yohkoh soft X-ray telescope (Tsuneta) Relation between filament (prominence) eruption and flare A flare
    [Show full text]
  • Solar Data Handling
    United Nations Educational. Scientific The Abdus Salam International Centre for Theoretical Physics Intem3tion.1l Atomic Energy Agency 310/1749-25 ICTP-COST-USNSWP-CAWSES-INAF-INFN International Advanced School on Space Weather 2-19 May 2006 Solar Data Handling Robert BENTLEY UCL Department of Space and Climate Physics Mullard Space Science Laboratory Hombury St. Mary Dorking Surrey RH5 6NT U.K. These lecture notes are intended only for distribution to participants Strada Costiera 11, 34014 Trieste, Italy - Tel. +39 040 2240 11 I; Fax +39 040 224 163 - [email protected], www.ictp.it i f Solar data Handling 1 Rob Bentley University College London (UCL) C Mullard Space Science Laboratory Trieste, 3 May 2006 International Advanced School on Space Weather Nature of Observations Data management issues • Types of data | • Storage of data I • Access to data (current) : • Standards • Temporal and spatial coordinates • File Formats • Types of Metadata I • Data Models egso Nature of solar observations The appearance of the Sun changes dramatically with wavelength • Emissions originate from different layers in the atmosphere and different physical phenomena K • For a complete picture we need to use as 2x106K wide a range of observations as possible 1 • Mixture of types of observations • Different wavelengths and time intervals • Mixture of observations from space- and ground-based platforms 8x104K • Increasing desire to study problems that span communities • Desire relevant to Space Weather, climate I physics, planetary physics, astrophysics 3 • Identifying observations across community 6x10 K boundaries and then retrieving them are major problems r Sun at different wavelengths egso o J K I egso TVPes of Data • Types of data/observation: • single values • spectra (includes and dispersed quantity) • images | • compound - e.g.
    [Show full text]
  • Optical and Radio Solar Observation for Space Weather
    2 Solar and Solar wind 2-1 Optical and Radio Solar Observation for Space Weather AKIOKA Maki, KONDO Tetsuro, SAGAWA Eiichi, KUBO Yuuki, and IWAI Hironori Researches on solar observation technique and data utilization are important issues of space weather forecasting program. Hiraiso Solar Observatory is a facility for R & D for solar observation and routine solar observation for CRL's space environment information service. High definition H alpha solar telescope is an optical telescope with very narrow pass-band filter for high resolution full-disk imaging and doppler mapping of upper atmos- phere dynamics. Hiraiso RAdio-Spectrograph (HiRAS) provides information on coronal shock wave and particle acceleration in the soar atmosphere. These information are impor- tant for daily space weather forecasting and alert. In this article, high definition H alpha solar telescope and radio spectrograph system are briefly introduced. Keywords Space weather forecast, Solar observation, Solar activity 1 Introduction X-ray and ultraviolet radiation resulting from solar activities and solar flares cause distur- 1.1 The Sun as the Origin of Space bances in the ionosphere and the upper atmos- Environment Disturbances phere, which in turn cause communication dis- The space environment disturbance phe- ruptions and affect the density structure of the nomena studied in space weather forecasting Earth's atmosphere. CME induce geomagnet- at CRL include a wide range of phenomena ic storms and ionospheric disturbances upon such as solar energetic particle (SEP) events, reaching the Earth's magnetosphere, and are geomagnetic storms, ionospheric disturbances, believed to be responsible for particle acceler- and radiation belt activity. All of these space environment disturbance events are believed to have solar origins.
    [Show full text]
  • Minima, When the Type B Redauroras Are Predominant. SOLAR
    VOL. 43, 1957 GEOPHYSICS: J. BARTELS 75 are being slowed down much higher in the atmosphere than occurs at sunspot minima, when the Type B red auroras are predominant. From the general physical interpretation of the observations of unusual heights of aurora, it seems probable that a consideration of the degree of ionization of the upper atmosphere may account for the wide range found in auroral heights. For this reason the degree of ionization may become one of the problems of auroral morphol- ogy. The auroral program for the International Geophysical Year, 1957-1958, was de- signed with many of the above-mentioned problems in auroral morphology in mind. Hence we may expect to have answers for some of the problems in the next two or three years. 1 J. A. Van Allen, Phys. Rev., 99, 609, 1955. 2 S. Chapman and C. G. Little, J. Atm. and Terrest. Phys. (in press). 3 J. P. Heppner, J. Geophys. Research, 59, 329, 1954. 4 C. W. Gartlein, Nat. Geographic Mag., 92, 683, 1947. 5 F. T. Davies, Transactions of the Oslo Meeting, August 19-928, 1948 (Washington: Interna- tional Union of Geodesy and Geophysics, 1950). 6 A. B. Meinel, Astrophys. J., 113, 50, 1951; 114, 431, 1951. 7 A. B. Meinel and C. Y. Fan, Astrophys. J., 115, 330, 1952. 8 H. Leinbach, Sky and Telescope, 15, 329, 1956. 9 C. T. Elvey, Seventh Alaska Science Conference, Alaska Division, AAAS, Juneau, September 26-29, 1956. 10 C. St0rmer, The Polar Aurora (Oxford: Clarendon Press, 1955). 1 M. Sugiura, Proceedings of the Third Alaska Science Conference, September 22-97, 1962, p.
    [Show full text]
  • Determining the Rotation Period of the Sun
    SOLAR PHYSICS AND TERRESTRIAL EFFECTS 2+ Activity 8 4= Activity 8 Determining the Rotation Period of the Sun Relevant Reading Chapter 2, section 3 Purpose Determine the rotation period of the Sun. Although numerous methods for accurate measurement are used in solar research, the method described here, using photographs taken over several days, will allow determination to within an Earth-day. Materials Photo set that shows at least one solar feature that can be followed over a several-day period. For real challenge, take the photos yourself, or make a simple projection sketch of sunspots over several days. 1 sheet of clear plastic used for overhead transparencies or viewgraphs, or something similar such as a clear plastic report folder a mm ruler, compass and protractor a fine-tipped marking pen suitable for plastic graph paper with 1-mm squares Procedures 1. Measure, to the nearest millimeter, the diameter of the Sun on the photo taken near the middle of the data period. 2. Use a compass and draw a circle with the same diameter on the transpar- ent sheet. 3. With the circle aligned over the photo on the date used for the diameter, trace the axis orientation marks onto the transparency. 4. Pick a solar feature that traverses the solar disk for as many days as pos- sible. Align the circle on the transparency over each successive photo and carefully mark the position of the chosen solar feature along with its date. 5. Carefully draw the best fitting straight line through the marked positions and measure its length across the circle as accurately as possible.
    [Show full text]
  • CESRA Workshop 2019: the Sun and the Inner Heliosphere Programme
    CESRA Workshop 2019: The Sun and the Inner Heliosphere July 8-12, 2019, Albert Einstein Science Park, Telegrafenberg Potsdam, Germany Programme and abstracts Last update: 2019 Jul 04 CESRA, the Community of European Solar Radio Astronomers, organizes triennial workshops on investigations of the solar atmosphere using radio and other observations. Although special emphasis is given to radio diagnostics, the workshop topics are of interest to a large community of solar physicists. The format of the workshop will combine plenary sessions and working group sessions, with invited review talks, oral contributions, and posters. The CESRA 2019 workshop will place an emphasis on linking the Sun with the heliosphere, motivated by the launch of Parker Solar Probe in 2018 and the upcoming launch of Solar Orbiter in 2020. It will provide the community with a forum for discussing the first relevant science results and future science opportunities, as well as on opportunity for evaluating how to maximize science return by combining space-borne observations with the wealth of data provided by new and future ground-based radio instruments, such as ALMA, E-OVSA, EVLA, LOFAR, MUSER, MWA, and SKA, and by the large number of well-established radio observatories. Scientific Organising Committee: Eduard Kontar, Miroslav Barta, Richard Fallows, Jasmina Magdalenic, Alexander Nindos, Alexander Warmuth Local Organising Committee: Gottfried Mann, Alexander Warmuth, Doris Lehmann, Jürgen Rendtel, Christian Vocks Acknowledgements The CESRA workshop has received generous support from the Leibniz Institute for Astrophysics Potsdam (AIP), which provides the conference venue at Telegrafenberg. Financial support for travel and organisation has been provided by the Deutsche Forschungsgemeinschaft (DFG) (GZ: MA 1376/22-1).
    [Show full text]
  • On the Determination and Constancy of the Solar Oblateness
    On the determination and constancy of the solar oblateness Mustapha Meftah, Abdanour Irbah, Alain Hauchecorne, Thierry Corbard, Sylvaine Turck-Chièze, Jean-François Hochedez, Patrick Boumier, A. Chevalier, S. Dewitte, S. Mekaoui, et al. To cite this version: Mustapha Meftah, Abdanour Irbah, Alain Hauchecorne, Thierry Corbard, Sylvaine Turck-Chièze, et al.. On the determination and constancy of the solar oblateness. Solar Physics, Springer Verlag, 2015, 290 (3), pp.673-687. 10.1007/s11207-015-0655-6. hal-01110569 HAL Id: hal-01110569 https://hal.archives-ouvertes.fr/hal-01110569 Submitted on 16 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Solar Phys (2015) 290:673–687 DOI 10.1007/s11207-015-0655-6 On the Determination and Constancy of the Solar Oblateness M. Meftah1 · A. Irbah1 · A. Hauchecorne1 · T. Corbard2 · S. Turck-Chièze3 · J.-F. Hochedez1,4 · P. Boumier 5 · A. Chevalier6 · S. Dewitte6 · S. Mekaoui6 · D. Salabert3 Received: 19 November 2013 / Accepted: 21 January 2015 / Published online: 11 February 2015 © The Author(s) 2015. This article is published with open access at Springerlink.com Abstract The equator-to-pole radius difference (r = Req −Rpol) is a fundamental property of our star, and understanding it will enrich future solar and stellar dynamical models.
    [Show full text]
  • Mission Operations and Communication Services
    Space Communications and Navigation (SCaN) Overview Astrophysics Explorers SMEX Preproposal Conference Jerry Mason May 2, 2019 Agenda • Space Communications and Navigation (SCaN) overview • AO Considerations and Requirements • Spectrum Access & Licensing • SCaN’s Mission Commitment Offices • Points of contact •2 SCaN is Responsible for all NASA Space Communications • Responsible for Agency-wide operations, management, and development of all NASA space communications capabilities and enabling technology. • Expand SCaN capabilities to enable and enhance robotic and human exploration. • Manage spectrum and represent NASA on national and international spectrum management programs. • Develop space communication standards as well as Positioning, Navigation, and Timing (PNT) policy. • Represent and negotiate on behalf of NASA on all matters related to space telecommunications in coordination with the appropriate offices and flight mission directorates. •3 Supporting Over 100 Missions • SCaN supports over 100 space missions with the three networks. – Which includes every US government launch and early orbit flight • Earth Science – Earth observation missions – Global observation of climate, Land, Sea state and Atmospheric conditions. – Aura, Aqua, Landsat, Ice Cloud and Land Elevation Satellite (ICESAT-2), Orbiting Carbon Observatory (OCO- 2) • Heliophysics – Solar observation-Understanding the Sun and its effect on Space and Earth. – Parker Solar Probe, Solar Dynamics Observer (SDO), Solar Terrestrial Relations Observatory (STEREO) • Astrophysics – Studying the Universe and its origins. – Hubble Space Telescope, Chandra X-ray Observatory, James E. Webb Space Telescope (JWST), WFIRST • Planetary – Exploring our solar system’s content and composition – Voyagers-1/2, Mars Atmosphere and Volatile Evolution (MAVEN), InSight, Lunar Reconnaissance Orbiter (LRO) • Human Space Flight – Human tended Exploration missions, Commercial Space transportation and Space Communications.
    [Show full text]
  • ESA Bulletin No
    MARSDEN 6/12/03 5:08 PM Page 60 Artist’s impression of Ulysses’ exploratory mission (by D. Hardy) Science 60 esa bulletin 114 - may 2003 www.esa.int MARSDEN 6/12/03 5:08 PM Page 61 News from the Sun’s Poles News from the Sun’s Poles Courtesy of Ulysses Richard G. Marsden ESA Directorate of Scientific Programmes, ESTEC, Noordwijk, The Netherlands Edward J. Smith Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA True to its classical namesake in Dante’s Introduction Launched from Cape Canaveral more than 13 years ago, Ulysses Inferno, the ESA-NASA Ulysses mission has is well on its way to completing two full circuits of the Sun in a unique orbit that takes it over the north and south poles of our ventured into the ‘unpeopled world star. In doing so, the European-built space probe and its payload of scientific instruments have added a fundamentally new beyond the Sun’,in the pursuit of perspective to our knowledge of the bubble in space in which the Sun and the Solar System exist, called ‘the heliosphere’. ‘knowledge high’! www.esa.int esa bulletin 114 - may 2003 61 MARSDEN 6/12/03 5:09 PM Page 62 Science A small spacecraft by today’s standards, Ulysses weighed just 367 kg at launch, including its scientific payload of 55 kg. The nine scientific instruments on board measure the solar wind, the heliospheric magnetic field, natural radio emission and plasma waves, energetic particles and cosmic rays, interplanetary and interstellar dust, neutral interstellar helium atoms, and cosmic gamma-ray bursts.
    [Show full text]
  • Proposed Changes to Sacramento Peak Observatory Operations: Historic Properties Assessment of Effects
    TECHNICAL REPORT Proposed Changes to Sacramento Peak Observatory Operations: Historic Properties Assessment of Effects Prepared for National Science Foundation October 2017 CH2M HILL, Inc. 6600 Peachtree Dunwoody Rd 400 Embassy Row, Suite 600 Atlanta, Georgia 30328 Contents Section Page Acronyms and Abbreviations ............................................................................................................... v 1 Introduction ......................................................................................................................... 1-1 1.1 Definition of Proposed Undertaking ................................................................................ 1-1 1.2 Proposed Alternatives Background ................................................................................. 1-1 1.3 Proposed Alternatives Description .................................................................................. 1-1 1.4 Area of Potential Effects .................................................................................................. 1-3 1.5 Methodology .................................................................................................................... 1-3 1.5.1 Determinations of Eligibility ............................................................................... 1-3 1.5.2 Finding of Effect .................................................................................................. 1-9 2 Identified Historic Properties ...............................................................................................
    [Show full text]