Silurian to Basal Devonian Conodonts from the Broken River Crossing, Northern Australia

Total Page:16

File Type:pdf, Size:1020Kb

Silurian to Basal Devonian Conodonts from the Broken River Crossing, Northern Australia Records of the Western AlIstralian MlIsellm Supplement No. 58: 145-162 (2000). Silurian to basal Devonian conodonts from the Broken River Crossing, northern Australia Andrew Simpson Research Associate, Centre for Ecostratigraphy and Palaeobiology, Macquarie University, NSW, Australia 2109 Abstract - Stratigraphy and conodont biostratigraphy of the Graveyard Creek Group, particularly the Jack Formation, near the Broken River Crossing, northwest of Charters Towers, are described. A minor lenticular limestone within pelitic lithologies near the Crossing, yielded a late Llandovery Cs fauna, consistent with evidence from graptolites. Diagnostic conodonts were obtained from two limestone units in the overlying Jack Formation. The lowest 72 m of the lower of these units is referred to the Ludlow (but not latest Ludlow) ploeckensis and siluricus zones, and correlates broadly with the interval Silverdale Formation to lower Hume Limestone of the Yass Basin, southeastern Australia. The upper unit yielded IcriodllS wosclzmidti Izesperius from two localities, which indicates a latest Pridoli-early Lochkov age and provides the possibility of recognising the Silurian-Devonian boundary within the sequence. INTRODUCTION and Talent (1989). Strata younger than the Graveyard The Graveyard Creek Group crops out in Creek Group have been described by Wyatt and Jell northern Queensland in the Broken River Province (1980). Models for the geological evolution of the (White 1959; Arnold and Henderson 1976) west of Broken River and Hodgkinson Provinces have been Townsville. The outcrops investigated in this study presented by Arnold and Fawkner (1980) and (Figures 1 and 2) are adjacent to the Wandovale­ Withnall et al. (1988). Pandanus Creek road where it crosses the Broken Previous work on the Graveyard Creek Group River approximately 230 km northwest of Charters has focused mainly on broad scale regional Towers. mapping, based largely on air-photo interpretation. Pioneer investigations of the geology of the The only prior age data come from a few rare Broken River area have been chronicled by White graptolite occurrences (middle to late Llandovery; (1965) and Jell (1967). White (1959) defined the Thomas 1960), and from spot sampling of rugose Graveyard Creek Formation and differentiated, in and tabulate coral faunas (Hill in White 1959, 1965). parts of the formation, two members: the Jack This latter work provided field parties with Limestone Member at the top of the sequence in the generalised ages for the numerous Silurian and south, and a basal unit, the Crooked Creek Devonian carbonates of the region but did not allow Conglomerate Member. White (1961, 1962, 1965) for age determinations and correlations of high produced the first synthesis of the geological history resolution. The only previous study of Silurian of the region. Since White's time there has been conodonts from the region was incidental to a study increased awareness of a major time break between of the Devonian faunas of the Broken River his Jack Limestone Member and underlying strata Formation by Telford (1975). Of the succession of equated, though with some uncertainty Qell pers. eight faunas discriminated by Telford (1975), only comm.), with the Graveyard Creek Formation the oldest, from two localities in the Jack Formation, developed typically in the Pandanus Creek area 35 was referred to the Pridoli (latest Silurian). More km to the north. recent work (Simpson 1999) documents Early Amold and Henderson (1976) re-interpreted the Silurian conodonts from allochthonous carbonates pre-Devonian stratigraphy of the region, including in the Graveyard Creek Group. the area about the Broken River Crossing. The There are three major studies of Australian Geological Survey of Queensland completed field Silurian conodont faunas to date. They are the late work in the Clarke River 1:250,000 sheet area in 1987 Silurian faunas of the Yass Basin (Link and Druce and accorded the Graveyard Creek Formation group 1972), the early and middle Silurian faunas from status and the Jack Limestone Member fom1ation midwestem New South Wales (Bischoff 1986) and status (Withnall et al. 1988). Additional data on the the early to late Silurian faunas of the Limestone Silurian of the region have been presented by Jell Creek region (Simpson and Talent 1995). 146 A. Simpson GRAVEYARD CREEK SUBPROVINCE IDIIlllJ Ba sol t I~'I Bundoek Creek Group t:·::·:;.:·1 Broken River Group . / I Broken River I Area ~ Undifferentiated } Graveyard Creek i_..., D Crooked Creek Conglomerate Group I 1':'<:':·1 Judea Formation 1._.__........... .../ • Gray Creek Complex CAMel CREEK SUBPROVINCE o Clarke River Group D Quartz intermediate flysch 1~:j';'J Everets Creek Volcanics • ',«" Carriers Wen limestone Ih(~] Quartz rich flysch 10, 20, 30, 40 50 I I Kilometres Figure 1 Geology of the Broken River Province, north Queensland, Australia, after Arnold and Henderson (1976) and Arnold and Fawkner (1980). Reconnaissance sampling, yielding some age­ monotonous, thickly bedded and massive diagnostic conodonts, was undertaken prior to this limestones. A small number of limestone clasts were project by a number of field workers. A full record collected from calcirudites and acid-leached of faunas recovered from this earlier sampling was independently to determine if there might be not available and the precise stratigraphic position detectable divergence in age between them and the of individual samples was unclear (see explanation associated, presumably indigenous matrix. No such of Figure 3). disharmony was proved. A total of 93 samples of The area in the vicinity of the Broken River limestone and other carbonates was collected from Crossing was subsequently mapped and three the Bullock Creek-Broken River Crossing area. stratigraphic sections were measured; two in the Basal samples of each section are designated 00; Bullock Creek valley and a third along the axis of sample numbers increase up-section. Specimens the major syncline close to the road crossing (Figure were photographed with the Jeol scanning electron 2). Another short section on the eastern limb of the microscope housed in the School of Biological syncline was measured by J.A. Talent and Sciences at Macquarie University. colleagues in 1983. These sections were sampled at 2-5 m intervals in lithologies such as thin, STRATIGRAPHY interbedded limestone and siltstone from which rich coral faunas have been documented (Munson Graveyard Creek Group 1987), but at 5-30 m intervals in the lithologically This group consists primarily of shales, siltstones, Broken River Silurian-basal Devonian conodonts 147 '"0- o'" o o o 05 10 ...---.J.- Fau It I: :ITertiary Basalt --v-- Unconlormity t----l Section Upper Limestone Unit] JACK FORMATION Spot Sample Lower limestone Unit G Graptolite Locality Siltstones POLEY COW ~ Judea Beds Greywacke /S iIts tone Interbedded FORMATION o Troiemites ',. Conglomerates Australian Mopping 7843000 Grid Coordinates Figure 2 Geology of the Broken River Crossing area showing locations of sections through the Jack Formation. and greywackes with conglomeratic and minor et al. (1995) have argued that the two represent the carbonate lenses. Typical sequences occur abqut 35 same sedimentary tract. Simpson (1999) has argued km north of the Broken River in the watershed of that only one name, the Quintan Formation be Gray Creek and its tributaries. Withnall et al. (1988) retained for this sedimentary tract. defined the Poley Cow and Quintan formations In the vicinity of Broken River Crossing, the within the Graveyard Creek Group. The latter crops underlying clastic unit (Poley Cow Formation sensu out in the north of the Graveyard Creek Withnall et a1. 1988; Quinton Formation sensu Subprovince and the former underlies the shelf Simpson 1999) consists almost entirely of carbonates of the Jack Formation in the south. Sloan conglomerates, greywackes and pelites. The 148 A. Simpson conglomerates vary greatly in lithology (Amold and BIOSTRATIGRAPHY Henderson 1976). Graptolites of middle to late Llandovery age (White and Stewart 1959; Thomas Conodonts from the underlying clastic unit 1960; Jell and Talent 1989) have been recovered BR12-08, a small isolated limestone lens within from pelitic rocks near the Broken River Crossing. the pelitic lithologies yielded elements of One small isolated limestone body from within Distomodus staurognathoides and a number of siltstones was sampled and yielded conodonts of fragments of ?Astropentagnathus irregularis comparable age (Sample BR12-08). Apart from (Mostler). Mostler (1967) considered mapping and sampling of such rare carbonates, this Astropentagnathus as characteristic of the early investigation has not focused on this unit. celloni Zone, whereas Aldridge (1972, 1975) indicated a range equivalent to the late celloni Zone Jack Formation (British Cs division). Extensive outcrops of the Jack Formation occur in In Australia, Astropentagnathus irregularis is the Jack Hills region and about the Broken River known from the Burly Jack Sandstone Member of Crossing. In the latter area they form the core of a the Glendalough Formation and the Liscombe Pools broad southwest-plunging syncline on which Limestone of New South Wales, which have been secondary and tertiary folding has been developed correlated with the griestoniensis and crispus as well as complications from extensive minor graptolite Biozones (Bischoff 1986: 161-162). There faulting (Figure 2). Two units within the Jack is no discordance in age between the limestone lens Formation
Recommended publications
  • CONODONTS of the MOJCZA LIMESTONE -.: Palaeontologia Polonica
    CONODONTS OF THE MOJCZA LIMESTONE JERZY DZIK Dzik, J. 1994. Conodonts of the M6jcza Limestone. -In: J. Dzik, E. Olemp ska, and A. Pisera 1994. Ordovician carbonate platform ecosystem of the Holy Cross Moun­ tains. Palaeontologia Polonica 53, 43-128. The Ordovician organodetrital limestones and marls studied in outcrops at M6jcza and Miedzygorz, Holy Cross Mts, Poland, contains a record of the evolution of local conodont faunas from the latest Arenig (Early Kundan, Lenodus variabilis Zone) to the Ashgill (Amorphognathus ordovicicus Zone), with a single larger hiatus corre­ sponding to the subzones from Eop/acognathus pseudop/anu s to E. reclinatu s. The conodont fauna is Baltic in general appearance but cold water genera , like Sagitto­ dontina, Scabbardella, and Hamarodus, as well as those of Welsh or Chinese af­ finities, like Comp/exodus, Phragmodus, and Rhodesognathu s are dominant in par­ ticular parts of the section while others common in the Baltic region, like Periodon , Eop/acognathus, and Sca/pellodus are extremely rare. Most of the lineages continue to occur throughout most of the section enabling quantitative studies on their phyletic evolut ion. Apparatuses of sixty seven species of thirty six genera are described and illustrated. Phyletic evolution of Ba/toniodus, Amorphognathu s, Comp/exodus, and Pygodus is biometrically documented. Element s of apparatu ses are homolog ized and the standard notation system is applied to all of them. Acodontidae fam. n., Drepa­ nodus kie/censis sp. n., and D. santacrucensis sp. n. are proposed . Ke y w o r d s: conodonts, Ordovici an, evolut ion, taxonomy. Jerzy Dzik, Instytut Paleobiologii PAN, A/eja Zwirk i i Wigury 93, 02-089 Warszawa , Poland.
    [Show full text]
  • Two New Early Balognathid Conodont Genera from the Ordovician Of
    Two new early balognathid conodont genera from the Ordovician of Oman and comments on the early evolution of prioniodontid conodonts Miller, Giles; Heward, Alan; Mossoni, Angelo; Sansom, Ivan DOI: 10.1080/14772019.2017.1314985 License: Other (please specify with Rights Statement) Document Version Peer reviewed version Citation for published version (Harvard): Miller, G, Heward, A, Mossoni, A & Sansom, I 2017, 'Two new early balognathid conodont genera from the Ordovician of Oman and comments on the early evolution of prioniodontid conodonts', Journal of Systematic Palaeontology, pp. 1-23. https://doi.org/10.1080/14772019.2017.1314985 Link to publication on Research at Birmingham portal Publisher Rights Statement: This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Systematic Palaeontology on 05/05/2017, available online: http://www.tandfonline.com/10.1080/14772019.2017.1314985 General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.
    [Show full text]
  • BIASES in INTERPRETATION of the FOSSIL RECORD of CONODONTS by MARK A
    [Special Papers in Palaeontology, 73, 2005, pp. 7–25] BETWEEN DEATH AND DATA: BIASES IN INTERPRETATION OF THE FOSSIL RECORD OF CONODONTS by MARK A. PURNELL* and PHILIP C. J. DONOGHUE *Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK; e-mail: [email protected] Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK; e-mail: [email protected] Abstract: The fossil record of conodonts may be among and standing generic diversity. Analysis of epoch ⁄ stage-level the best of any group of organisms, but it is biased nonethe- data for the Ordovician–Devonian interval suggests that less. Pre- and syndepositional biases, including predation there is generally no correspondence between research effort and scavenging of carcasses, current activity, reworking and and generic diversity, and more research is required to bioturbation, cause loss, redistribution and breakage of ele- determine whether this indicates that sampling of the cono- ments. These biases may be exacerbated by the way in which dont record has reached a level of maturity where few genera rocks are collected and treated in the laboratory to extract remain to be discovered. One area of long-standing interest elements. As is the case for all fossils, intervals for which in potential biases and the conodont record concerns the there is no rock record cause inevitable gaps in the strati- pattern of recovery of different components of the skeleton graphic distribution of conodonts, and unpreserved environ- through time. We have found no evidence that the increas- ments lead to further impoverishment of the recorded ing abundance of P elements relative to S and M elements spatial and temporal distributions of taxa.
    [Show full text]
  • Late Devonian Conodont Fauna of the Gümüflali Formation
    TurkishJournalofEarthSciences (TurkishJ.EarthSci.),Vol.9, 2000,pp.69-89. Copyright©TÜB‹TAK LateDevonianConodontFaunaoftheGümüflali Formation,theEasternTaurides,Turkey fiENOLÇAPKINO⁄LU&‹SMETGED‹K KaradenizTeknikÜniversitesi,JeolojiMühendisli¤iBölümü,TR-61080Trabzon,TURKEY (e-mail:[email protected]) Abstract: TheLateDevonianGümüflaliformationoftheeasternTauridesisaterrigenous-carbonaterocksequence about600mthick,consistingmainlyofquartzsandstone,quartzsiltstone,shale,andcarbonaterocks. Palaeontologicandsedimentologicdatamainlyindicateashallowsubtidaldepositionalenvironment.Thissequence generallyrepresentstheshallow-waterpolygnathid-icriodidbiofacies,andcontainsconodontfaunasthatrange fromtheUpperfalsiovalis ZoneintotheUpperpraesulcata Zone.However,theydonotcorrelatewelltotheLate Devonianstandardconodontzonationbecauseofthelackofzonallydiagnosticspeciesandtheirregularvertical distributionsofthepresenttaxa.Herein,54taxabelongingtoninegeneraaredescribedandillustratedfromthe studiedsection.Icriodusadanaensis,Icriodusfekeensis,andPolygnathusantecompressus arethenewlydescribed species. KeyWords: LateDevonian,conodont,Gümüflaliformation,easternTaurides,Turkey. GümüflaliFormasyonu’nun(Do¤uToroslar,Türkiye)GeçDevoniyen KonodontFaunas› Özet: Do¤uToroslarboyuncayayg›nyüzeylemeleriolanGeçDevoniyenyafll›Gümüflaliformasyonu,yaklafl›k600 metrekal›nl›¤aulaflanbirk›r›nt›l›-karbonatkayadizisidir.Litolojisinibafll›cakuvarskumtafl›,kuvarsmiltafl›,fleylve karbonatkayalar›n›noluflturdu¤ububiriminpaleontolojikvesedimantolojiközellikleri,çökelmeninbafll›cas›¤,gel- gitalt›ortamdageliflti¤ineiflareteder.Konodontfaunas›genelliklek›y›-yak›n›polygnathid-icriodidbiyofasiyesini
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis arxi dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing In this copy for an additional charge. Contact UMI directly to order. Bell & Howell Information and Learning 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 800-521-0600 UMI NOTE TO USERS This reproduction is the best copy available. UMI Stratigraphy, Conodont Taxonomy and Biostratigraphy of Upper Cambrian to Lower Silurian Platform to Basin Facies, Northern British Columbia by Leanne Pyle B. Sc., University of Saskatchewan, 1994 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in the School of Earth and Ocean Sciences We accept this dissertation as conforming to the required standard , Supervisor (School of Earth and Ocean Sciences) Dr.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses The palaeobiology of the panderodontacea and selected other euconodonts Sansom, Ivan James How to cite: Sansom, Ivan James (1992) The palaeobiology of the panderodontacea and selected other euconodonts, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5743/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk The copyright of this thesis rests with the author. No quotation from it should be pubHshed without his prior written consent and information derived from it should be acknowledged. THE PALAEOBIOLOGY OF THE PANDERODONTACEA AND SELECTED OTHER EUCONODONTS Ivan James Sansom, B.Sc. (Graduate Society) A thesis presented for the degree of Doctor of Philosophy in the University of Durham Department of Geological Sciences, July 1992 University of Durham. 2 DEC 1992 Contents CONTENTS CONTENTS p. i ACKNOWLEDGMENTS p. viii DECLARATION AND COPYRIGHT p.
    [Show full text]
  • New Biostratigraphical Findings on the Padeha Formation Based on Conodont Accumulation in Yazdanshahr, Kerman, Central Iran - 993
    Nasehi: New biostratigraphical findings on the Padeha formation based on conodont accumulation in Yazdanshahr, Kerman, central Iran - 993 - NEW BIOSTRATIGRAPHICAL FINDINGS ON THE PADEHA FORMATION BASED ON CONODONT ACCUMULATION IN YAZDANSHAHR, KERMAN, CENTRAL IRAN NASEHI, E. Department of Geology, Faculty of Science, Islamic Azad University, Natanz Branch Natanz, Iran e-mail: [email protected] (Received 9th Jun 2017; accepted 27th Oct 2017) Abstract. The aim of the study was the biostratigraphical evaluation of Padeha Formation based on conodont accumulation in Yazdanshahr. The section under study is located north of Yazdanshahr in northwestern Zarand County in Kerman, central Iran. After investigating several sections of the Padeha formation in the Kerman area, one fossiliferous section was chosen for study. In terms of lithology, the section is composed mainly of red-colored clastic and evaporative rock with carbonate intercalations. The conodont accumulations indicate two local biozones: the Zieglerodina remscheidensis and Pandorinellina steinhornensis assemblage zones and the Eugenathodontidae-Icriodus assemblage zone. Based on the abundance of Spathognathodontidae and similarities to global biozones, these biozones were found to be of the Late Silurian (Early Pridoli) age. No evidence of the Icriodus genus (especially woschmidti or post- woschmidti species) was observed in this assemblage. The latter biozones manifest the appearance of Eugenathodontidae in the Early Devonian; therefore, a sedimentary hiatus exists within the Late Silurian to the start of Early Devonian (Late Pridoli to Pragian). The sediment was deposited in a depositional environment ranging from lagoons to shallow waters (inner carbonate platform). The Yazdanshahr section was the most complete of the Padeha formation because conodonts were found in the lower, middle and upper parts of the section.
    [Show full text]
  • Pander Society Newsletter
    Pander Society Newsletter Compiled and edited by P.H. von Bitter and J. Burke DEPARTMENT OF NATURAL HISTORY (PALAEOBIOLOGY SECTION), ROYAL ONTARIO MUSEUM, TORONTO, ONTARIO, CANADA M5S 2C6 Number 38 June 2006 www.conodont.net CHIEF PANDERER’S REMARKS Dear Conodont Colleagues: A year has gone by since I last communicated like this, and I’m pleased (and relieved) that another Pander Society Newsletter is ready to ‘go’. Thank you for having sent in your reports and questionnaires; without your willingness to going through a bit of pain there would be no Pander Society Newsletter, and our communications would be the poorer. I am very grateful to compiler and editor Joan Burke (Toronto) and webmaster Mark Purnell (Leicester) for their dedication and ongoing interest; they have helped me greatly and continue to make me look better than I really am, particularly in a time of personal and professional transition. You, the Pander Society membership, continue to ‘re-invent’ and apply conodonts in startling new ways. Some of this re-invention was seen at the Pander Society Symposium in Harrisburg, Pennsylvania, where on March 20-22, 2006 our (mostly) North American members focused on Conodonts & Sequence Stratigraphy. Looking ahead, the programme of ICOS 2006 on July 12-30/ 2006 in Leicester, England, promises not only to surprise and delight, but looks remarkably diverse and imaginative. Christian Pander, would, on the 150th anniversary of the publication of his major conodont study, no doubt be enormously impressed and pleased with the innovativeness and progress of his intellectual grandchildren. My best wishes to all of you.
    [Show full text]
  • Sepkoski, J.J. 1992. Compendium of Fossil Marine Animal Families
    MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. Department of the Geophysical Sciences University of Chicago Chicago, Illinois 60637 Milwaukee Public Museum Contributions in Biology and Geology Rodney Watkins, Editor (Reviewer for this paper was P.M. Sheehan) This publication is priced at $25.00 and may be obtained by writing to the Museum Gift Shop, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Orders must also include $3.00 for shipping and handling ($4.00 for foreign destinations) and must be accompanied by money order or check drawn on U.S. bank. Money orders or checks should be made payable to the Milwaukee Public Museum. Wisconsin residents please add 5% sales tax. In addition, a diskette in ASCII format (DOS) containing the data in this publication is priced at $25.00. Diskettes should be ordered from the Geology Section, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Specify 3Y. inch or 5Y. inch diskette size when ordering. Checks or money orders for diskettes should be made payable to "GeologySection, Milwaukee Public Museum," and fees for shipping and handling included as stated above. Profits support the research effort of the GeologySection. ISBN 0-89326-168-8 ©1992Milwaukee Public Museum Sponsored by Milwaukee County Contents Abstract ....... 1 Introduction.. ... 2 Stratigraphic codes. 8 The Compendium 14 Actinopoda.
    [Show full text]
  • Conodonts (Vertebrata)
    Journal of Systematic Palaeontology 6 (2): 119–153 Issued 23 May 2008 doi:10.1017/S1477201907002234 Printed in the United Kingdom C The Natural History Museum The interrelationships of ‘complex’ conodonts (Vertebrata) Philip C. J. Donoghue Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, UK Mark A. Purnell Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK Richard J. Aldridge Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK Shunxin Zhang Canada – Nunavut Geoscience Office, 626 Tumit Plaza, Suite 202, PO Box 2319, Iqaluit, Nunavut, Canada X0A 0H0 SYNOPSIS Little attention has been paid to the suprageneric classification for conodonts and ex- isting schemes have been formulated without attention to homology, diagnosis and definition. We propose that cladistics provides an appropriate methodology to test existing schemes of classification and in which to explore the evolutionary relationships of conodonts. The development of a multi- element taxonomy and a concept of homology based upon the position, not morphology, of elements within the apparatus provide the ideal foundation for the application of cladistics to conodonts. In an attempt to unravel the evolutionary relationships between ‘complex’ conodonts (prioniodontids and derivative lineages) we have compiled a data matrix based upon 95 characters and 61 representative taxa. The dataset was analysed using parsimony and the resulting hypotheses were assessed using a number of measures of support. These included bootstrap, Bremer Support and double-decay; we also compared levels of homoplasy to those expected given the size of the dataset and to those expected in a random dataset.
    [Show full text]
  • Conodont Apparatus Reconstruction from the Lower Carboniferous Hart River Formation, Norther Yukon Territory
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2016 Conodont Apparatus Reconstruction from the Lower Carboniferous Hart River Formation, Norther Yukon Territory Lanik, Amanda Lanik, A. (2016). Conodont Apparatus Reconstruction from the Lower Carboniferous Hart River Formation, Norther Yukon Territory (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/25420 http://hdl.handle.net/11023/3324 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Conodont Apparatus Reconstruction from the Lower Carboniferous Hart River Formation, Northern Yukon Territory by Amanda Lanik A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN GEOLOGY AND GEOPHYSICS CALGARY, ALBERTA SEPTEMBER, 2016 © Amanda Lanik 2016 Abstract Conodonts sampled from the Lower Carboniferous Hart River Formation have yielded abundant, well-preserved elements with a relatively low diversity of species. In addition, they do not display much platform-overrepresentation, a phenomenon affecting the majority of Late Paleozoic conodont samples. These qualities make the Hart River conodont samples ideal for statistical apparatus reconstruction. The elements were divided into groups based on morphology and counted. Cluster analysis, in addition to empirical observations made during the counting process, was then used to reconstruct the original apparatus composition for the species present.
    [Show full text]
  • 1 STEPHEN ANDREW LESLIE Department of Geology And
    STEPHEN ANDREW LESLIE Department of Geology and Environmental Science James Madison University, MSC 6903 Harrisonburg, VA 22807 Phone: (540) 568-6144; Fax: (540) 568-8058 E-mail: [email protected] EDUCATION Ph.D. Geology, The Ohio State University, June 1995 Dissertation: Upper Middle Ordovician conodont biofacies distribution patterns in eastern North America and northwestern Europe: Evaluations using the Deicke, Millbrig and Kinnekulle K-bentonite beds as time planes. M.S. Geology, University of Idaho, May 1990 Thesis: The Late Cambrian-Middle Ordovician Snow Canyon Formation of the Valmy Group, Northeastern Nevada. B.S. Geology, Bowling Green State University, May 1988, Cum Laude Minor in Classical Studies GEOLOGY EMPLOYMENT 7/07-present Department Head and Professor with tenure, Department of Geology and Environmental Science, James Madison University. 7/04-7/06 Department Chair, Department of Earth Sciences, University of Arkansas at Little Rock. 8/02-7/06 Acting Director/Director of the Master of Science in Integrated Science and Mathematics Program, College of Science and Mathematics 8/05 – 7/06 Professor with tenure, Department of Earth Sciences, University of Arkansas at Little Rock. 8/00 -7/05 Associate Professor with tenure, Department of Earth Sciences, University of Arkansas at Little Rock. 8/96 -7/00 Assistant Professor, Department of Earth Sciences, University of Arkansas at Little Rock. 6/95 - 8/96 Postdoctoral Research Scientist at The Ohio State University. 1/95 - 3/96 Lecturer at Otterbein College. 6/95 - 8/95 Lecturer at The Ohio State Univ.-Marion & Marion Correctional Institution 9/94 - 12/94 Lecturer at The Ohio State Univ.-Marion & Marion Correctional Institution 9/93 - 6/94 Doctoral Fellow at The Ohio State University.
    [Show full text]