Solvation in Pure and Mixed Solvents: Some Recent Developments*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Development and Validation of Liquid Chromatography-Based Methods to Assess the Lipophilicity of Cytotoxic Platinum(IV) Complexes
Article Development and Validation of Liquid Chromatography-Based Methods to Assess the Lipophilicity of Cytotoxic Platinum(IV) Complexes Matthias H. M. Klose 1,2, Sarah Theiner 3, Hristo P. Varbanov 1,4, Doris Hoefer 1, Verena Pichler 1,5, Markus Galanski 1, Samuel M. Meier-Menches 2,3,* and Bernhard K. Keppler 1,2,* 1 Institute of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria; [email protected] (M.H.M.K.); [email protected] (D.H.); [email protected] (M.G.) 2 Research Cluster ‘Translational Cancer Therapy Research’, University of Vienna, 1090 Vienna, Austria 3 Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria; [email protected] 4 Institute of Chemistry—Inorganic Chemistry, University of Graz, 8010 Graz, Austria; [email protected] (H.P.V.) 5 Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; [email protected] (V.P.) * Correspondence: [email protected] (S.M.M.-M.); [email protected] (B.K.K.); Tel.: +43-1-4277-52373 (S.M.M.-M.); +43-1-4277-52602 (B.K.K.) Received: 2 October 2018; Accepted: 29 November 2018; Published: 4 December 2018 Abstract: Lipophilicity is a crucial parameter for drug discovery, usually determined by the logarithmic partition coefficient (Log P) between octanol and water. However, the available detection methods have restricted the widespread use of the partition coefficient in inorganic medicinal chemistry, and recent investigations have shifted towards chromatographic lipophilicity parameters, frequently without a conversion to derive Log P. -
NBO Applications, 2020
NBO Bibliography 2020 2531 publications – Revised and compiled by Ariel Andrea on Aug. 9, 2021 Aarabi, M.; Gholami, S.; Grabowski, S. J. S-H ... O and O-H ... O Hydrogen Bonds-Comparison of Dimers of Thiocarboxylic and Carboxylic Acids Chemphyschem, (21): 1653-1664 2020. 10.1002/cphc.202000131 Aarthi, K. V.; Rajagopal, H.; Muthu, S.; Jayanthi, V.; Girija, R. Quantum chemical calculations, spectroscopic investigation and molecular docking analysis of 4-chloro- N-methylpyridine-2-carboxamide Journal of Molecular Structure, (1210) 2020. 10.1016/j.molstruc.2020.128053 Abad, N.; Lgaz, H.; Atioglu, Z.; Akkurt, M.; Mague, J. T.; Ali, I. H.; Chung, I. M.; Salghi, R.; Essassi, E.; Ramli, Y. Synthesis, crystal structure, hirshfeld surface analysis, DFT computations and molecular dynamics study of 2-(benzyloxy)-3-phenylquinoxaline Journal of Molecular Structure, (1221) 2020. 10.1016/j.molstruc.2020.128727 Abbenseth, J.; Wtjen, F.; Finger, M.; Schneider, S. The Metaphosphite (PO2-) Anion as a Ligand Angewandte Chemie-International Edition, (59): 23574-23578 2020. 10.1002/anie.202011750 Abbenseth, J.; Goicoechea, J. M. Recent developments in the chemistry of non-trigonal pnictogen pincer compounds: from bonding to catalysis Chemical Science, (11): 9728-9740 2020. 10.1039/d0sc03819a Abbenseth, J.; Schneider, S. A Terminal Chlorophosphinidene Complex Zeitschrift Fur Anorganische Und Allgemeine Chemie, (646): 565-569 2020. 10.1002/zaac.202000010 Abbiche, K.; Acharjee, N.; Salah, M.; Hilali, M.; Laknifli, A.; Komiha, N.; Marakchi, K. Unveiling the mechanism and selectivity of 3+2 cycloaddition reactions of benzonitrile oxide to ethyl trans-cinnamate, ethyl crotonate and trans-2-penten-1-ol through DFT analysis Journal of Molecular Modeling, (26) 2020. -
Solvatochromism and Fluorescence Response of a Halogen Bonding Anion Receptor
New Journal of Chemistry Solvatochromism and Fluorescence Response of a Halogen Bonding Anion Receptor Journal: New Journal of Chemistry Manuscript ID NJ-LET-02-2018-000558.R2 Article Type: Letter Date Submitted by the Author: 26-Apr-2018 Complete List of Authors: Sun, Jiyu; University of Montana, Chemistry and Biochemistry Riel, Asia Marie; University of Montana, Chemistry and Biochemistry Berryman, Orion; University of Montana, Chemistry and Biochemistry Page 1 of 6 PleaseNew Journaldo not adjustof Chemistry margins Journal Name COMMUNICATION Solvatochromism and fluorescence response of a halogen bonding anion receptor Received 00th January 20xx, a a a Accepted 00th January 20xx Jiyu Sun , Asia Marie S. Riel and Orion B. Berryman * DOI: 10.1039/x0xx00000x www.rsc.org/ Herein, we present on two 2,6-bis(4-ethynylpyridinyl)-4- supported our hypothesis that the intramolecular HB between fluoroaniline receptors that display solvatochromic absorption and emission. Neutral derivatives displayed opposite solvatochromic behavior as compared to the alkylated receptors. Adding anions induced changes in the absorption and emission spectra. In general, the fluorescence of the halogen bonding receptor was quenched less efficiently when compared to the hydrogen bonding receptor. A halogen bond (XB) is an attractive noncovalent interaction between an electron-deficient halogen atom and a Fig 1. Structures of 2,6-bis(4-ethynylpyridinyl)-4-fluoroaniline XB donor 1a, HB donor Lewis base. XBs are more directional and display different 1b and octyl derivatives -
TAYLOR-DISSERTATION-2019.Pdf
Copyright by William Victor Taylor 2019 The Dissertation Committee for William Victor Taylor Certifies that this is the approved version of the following Dissertation: Exploring the Interaction of Antimony Ligands with Late 3d Transition Metals: Enhancements in Metal Deposition, Magnetism and Luminescence through Heavy Atom Ligation Committee: Michael J. Rose, Supervisor Simon M. Humphrey Richard A. Jones Sean T. Roberts Xiaoqin Li Exploring the Interaction of Antimony Ligands with Late 3d Transition Metals: Enhancements in Metal Deposition, Magnetism and Luminescence through Heavy Atom Ligation by William Victor Taylor Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin May 2019 Dedication To my family: Thank you for all your love and support over the years. You kept me grounded and reminded me what was important through all of this. I love you all. Acknowledgements Mike: You taught me so much about chemistry and were a truly excellent role model. Thank you for all of your guidance and support. My friends: Thanks for all the fun times and distractions necessary to get through grad school. I’m going to miss our hang outs and game sessions. The Rose group: Thanks for all the fantastic conversations—especially the ones that burned through sub-group time. I couldn’t have asked for a better group of co-workers and friends, good luck in all of your endeavors. v Abstract Exploring the Interaction of Antimony Ligands with Late 3d Transition Metals: Enhancements in Metal Deposition, Magnetism and Luminescence through Heavy Atom Ligation William Victor Taylor, Ph. -
101 Lime Solvent
Sure Klean® CLEANING & PROTECTIVE TREATMENTS 101 Lime Solvent Sure Klean® 101 Lime Solvent is a concentrated acidic cleaner for dark-colored brick and tile REGULATORY COMPLIANCE surfaces which are not subject to metallic oxidation. VOC Compliance Safely removes excess mortar and construction dirt. Sure Klean® 101 Lime Solvent is compliant with all national, state and district VOC regulations. ADVANTAGES • Removes construction dirt and excess mortar with TYPICAL TECHNICAL DATA simple cold water rinse. Clear, brown liquid • Removes efflorescence from new brick and new FORM Pungent odor stone construction. SPECIFIC GRAVITY 1.12 • Safer than muriatic acid on colored mortar and dark-colored new masonry surfaces. pH 0.50 @ 1:6 dilution • Proven effective since 1954. WT/GAL 9.39 lbs Limitations ACTIVE CONTENT not applicable • Not generally effective in removal of atmospheric TOTAL SOLIDS not applicable stains and black carbon found on older masonry VOC CONTENT not applicable surfaces. Use the appropriate Sure Klean® FLASH POINT not applicable restoration cleaner to remove atmospheric staining from older masonry surfaces. FREEZE POINT <–22° F (<–30° C) • Not for use on polished natural stone. SHELF LIFE 3 years in tightly sealed, • Not for use on treated low-E glass; acrylic and unopened container polycarbonate sheet glazing; and glazing with surface-applied reflective, metallic or other synthetic coatings and films. SAFETY INFORMATION Always read full label and SDS for precautionary instructions before use. Use appropriate safety equipment and job site controls during application and handling. 24-Hour Emergency Information: INFOTRAC at 800-535-5053 Product Data Sheet • Page 1 of 4 • Item #10010 – 102715 • ©2015 PROSOCO, Inc. -
Lipophilicity (Logd7.4) of N-Aryl Benzo Hydroxamic Acids
Global Journal of Pharmacy & Pharmaceutical Sciences ISSN: 2573-2250 Mini Review Glob J Pharmaceu Sci Volume 4 Issue 5 - february 2018 Copyright © All rights are reserved by Ajita Dixit DOI: 10.19080/GJPPS.2018.04.555648 Lipophilicity (LogD7.4) of N-Aryl Benzo Hydroxamic Acids Ajita Dixit* Pandit Ravishankar Shukla University, India Submission: July 24, 2017; Published: February 21, 2018 *Corresponding author: Ajita Dixit, Pandit Ravishankar Shukla University, India, Email: Abstract Hydroxamic acids are polyfunctional molecules which show a wide spectrum of biological and medicinal activities. Lipophilicity is known to be important for absorption, permeability and in vivo distribution of organic compound. Lipophilicity is also a major structural factor that influences the pharmacokinetic and pharmacodynamic behaviour of compound. Introduction homogeneously but rather, a gradient is formed that varies Lipophilicity is known to be important for absorption, with the composition and geometry of membrane [7]. The high permeability and in vivo distribution of organic compound degree of ordering of solutes in a lipid bi layer compared with a [1]. Since about one century, it is recognized as a meaningful parameter in Structure-activity relationship studies and with and partitioning. Never the less good correlation between the epoch making contributions of Hansch et al. [2] has become bulk liquid phase also significantly changes the thermodynamic the single most informative and successful physico-chemical membrane /buffer and octanol/water two phase’s systems has the partition coefficient of various lipophilic compounds in been observed [8]. property in medicinal chemistry. Lipophilicity is defined for a lipophilic environment.” Lipophilicity is determined Material and Methods “Lipophilicity represents the affinity of a molecule or a moiety valid only for a single chemical species) or as distribution experimentally as partition coefficients (written as logP and In the present investigation partition coefficient or n-Octanol and buffer as solvent. -
Solvent Effects on the Thermodynamic Functions of Dissociation of Anilines and Phenols
University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 1982 Solvent effects on the thermodynamic functions of dissociation of anilines and phenols Barkat A. Khawaja University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Khawaja, Barkat A., Solvent effects on the thermodynamic functions of dissociation of anilines and phenols, Master of Science thesis, Department of Chemistry, University of Wollongong, 1982. -
Solvent-Tunable Binding of Hydrophilic and Hydrophobic Guests by Amphiphilic Molecular Baskets Yan Zhao Iowa State University, [email protected]
Chemistry Publications Chemistry 8-2005 Solvent-Tunable Binding of Hydrophilic and Hydrophobic Guests by Amphiphilic Molecular Baskets Yan Zhao Iowa State University, [email protected] Eui-Hyun Ryu Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/chem_pubs Part of the Chemistry Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ chem_pubs/197. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Chemistry at Iowa State University Digital Repository. It has been accepted for inclusion in Chemistry Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Solvent-Tunable Binding of Hydrophilic and Hydrophobic Guests by Amphiphilic Molecular Baskets Abstract Responsive amphiphilic molecular baskets were obtained by attaching four facially amphiphilic cholate groups to a tetraaminocalixarene scaffold. Their binding properties can be switched by solvent changes. In nonpolar solvents, the molecules utilize the hydrophilic faces of the cholates to bind hydrophilic molecules such as glucose derivatives. In polar solvents, the molecules employ the hydrophobic faces of the cholates to bind hydrophobic guests. A water-soluble basket can bind polycyclic aromatic hydrocarbons including anthracene, pyrene, and perylene. The binding free energy (−ΔG) ranges from 5 to 8 kcal/mol and is directly proportional to the surface area of the aromatic hosts. Binding of both hydrophilic and hydrophobic guests is driven by solvophobic interactions. Disciplines Chemistry Comments Reprinted (adapted) with permission from Journal of Organic Chemistry 70 (2005): 7585, doi:10.1021/ jo051127f. -
Lipophilicity As a Central Component of Drug-Like Properties of Chalchones and Flavonoid Derivatives
molecules Article Lipophilicity as a Central Component of Drug-Like Properties of Chalchones and Flavonoid Derivatives Teodora Constantinescu 1, Claudiu Nicolae Lungu 2,* and Ildiko Lung 3 1 Department of Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University, 400012 Cluj-Napoca, Romania; [email protected] 2 Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400028 Cluj-Napoca, Romania 3 National Institute for Research & Development of Isotopic and Molecular Technologies 67-103 Donath street, 400293 Cluj-Napoca, Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-(0)-742-255-099 Received: 11 March 2019; Accepted: 10 April 2019; Published: 17 April 2019 Abstract: Lipophilcity is an important physico-chemical parameter that influences membrane transport and binding ability to action. Migration distance following complete elution of compounds was used to calculate different lipophilicity-related parameters. The aim of this study is to show that lipophilicity is a central component of thiazole chalcones and flavonoid derivatives regarding their drug-like properties. Experimental and computational methods were used. This study considers 44 previously synthesized compounds (thiazole chalcones, flavanones, flavones, 3-hydroxyflavones, and their acetylated derivatives). The concerned compounds have shown antitumoral hallmarks and antibacterial activity in vitro. The experimental method used to determine compounds’ lipophilicity was the reverse-phase thin layer chromatography (RP-TLC). Lipophilicity related 0 parameters—isocratic retention factor (RM), relative lipophily (RM ), slope (b), chromatographic hydrophobic index ('0), scores of principal components (PC1/RM)—were determined based on reverse-phase chromatography results. Keywords: lipophilicity; retention factor; chalcones; QSAR; chromatography; drug design 1. Introduction Lipophilicity is an important feature of molecules in pharmaceutical, biochemical, and medical chemistry fields. -
I. the Nature of Solutions
Solutions The Nature of Solutions Definitions Solution - homogeneous mixture Solute - substance being dissolved Solvent - present in greater amount Types of Solutions SOLUTE – the part of a Solute Solvent Example solution that is being dissolved (usually the solid solid ? lesser amount) solid liquid ? SOLVENT – the part of a solution that gas solid ? dissolves the solute (usually the greater liquid liquid ? amount) gas liquid ? Solute + Solvent = Solution gas gas ? Is it a Solution? Homogeneous Mixture (Solution) Tyndall no Effect? Solution Is it a Solution? Solution • homogeneous • very small particles • no Tyndall effect • particles don’t settle • Ex: •rubbing alcohol Is it a Solution? Homogeneous Mixture (Solution) Tyndall no Effect? yes Solution Suspension, Colloid, or Emulsion Will mixture separate if allowed to stand? no Colloid (very fine solid in liquid) Is it a Solution? Colloid • homogeneous • very fine particles • Tyndall effect • particles don’t settle • Ex: •milk Is it a Solution? Homogeneous Mixture (Solution) Tyndall Effect? no yes Solution Suspension, Colloid, or Emulsion Will mixture separate if allowed to stand? no yes Colloid Suspension or Emulsion Solid or liquid particles? solid Suspension (course solid in liquid) Is it a Solution? Suspension • homogeneous • large particles • Tyndall effect • particles settle if given enough time • Ex: • Pepto-Bismol • Fresh-squeezed lemonade Is it a Solution? Homogeneous Mixture (Solution) Tyndall no Effect? yes Solution Suspension, Colloid, or Emulsion Will mixture separate if allowed to stand? no yes Colloid Suspension or Emulsion Solid or liquid particles? solid liquid Suspension (course solid in liquid) Emulsion (liquid in liquid) Is it a Solution? Emulsion • homogeneous • mixture of two immiscible liquids • Tyndall effect • particles settle if given enough time • Ex: • Mayonnaise Pure Substances vs. -
Chapter 18 Solutions and Their Behavior
Chapter 18 Solutions and Their Behavior 18.1 Properties of Solutions Lesson Objectives The student will: • define a solution. • describe the composition of solutions. • define the terms solute and solvent. • identify the solute and solvent in a solution. • describe the different types of solutions and give examples of each type. • define colloids and suspensions. • explain the differences among solutions, colloids, and suspensions. • list some common examples of colloids. Vocabulary • colloid • solute • solution • solvent • suspension • Tyndall effect Introduction In this chapter, we begin our study of solution chemistry. We all might think that we know what a solution is, listing a drink like tea or soda as an example of a solution. What you might not have realized, however, is that the air or alloys such as brass are all classified as solutions. Why are these classified as solutions? Why wouldn’t milk be classified as a true solution? To answer these questions, we have to learn some specific properties of solutions. Let’s begin with the definition of a solution and look at some of the different types of solutions. www.ck12.org 394 E-Book Page 402 Homogeneous Mixtures A solution is a homogeneous mixture of substances (the prefix “homo-” means “same”), meaning that the properties are the same throughout the solution. Take, for example, the vinegar that is used in cooking. Vinegar is approximately 5% acetic acid in water. This means that every teaspoon of vinegar contains 5% acetic acid and 95% water. When a solution is said to have uniform properties, the definition is referring to properties at the particle level. -
Photophysical Properties of Donor-Acceptor Stenhouse Adducts and Their Inclusion Complexes with Cyclodextrins and Cucurbit[7]Uril
molecules Article Photophysical Properties of Donor-Acceptor Stenhouse Adducts and Their Inclusion Complexes with Cyclodextrins and Cucurbit[7]uril Liam Payne 1 , Jason D. Josephson 2 , R. Scott Murphy 2 and Brian D. Wagner 1,* 1 Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; [email protected] 2 Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada; [email protected] (J.D.J.); [email protected] (R.S.M.) * Correspondence: [email protected]; Tel.: +1-902-628-4351 Academic Editor: Edward Lee-Ruff Received: 9 October 2020; Accepted: 22 October 2020; Published: 24 October 2020 Abstract: Donor-acceptor Stenhouse adducts (DASAs) are a novel class of solvatochromic photoswitches with increasing importance in photochemistry. Known for their reversibility between open triene and closed cyclized states, these push-pull molecules are applicable in a suite of light-controlled applications. Recent works have sought to understand the DASA photoswitching mechanism and reactive state, as DASAs are vulnerable to irreversible “dark switching” in polar protic solvents. Despite the utility of fluorescence spectroscopy for providing information regarding the electronic structure of organic compounds and gaining mechanistic insight, there have been few studies of DASA fluorescence. Herein, we characterize various photophysical properties of two common DASAs based on Meldrum’s acid and dimethylbarbituric acid by fluorescence spectroscopy. This approach is applied in tandem with complexation by cyclodextrins and cucurbiturils to reveal the zwitterionic charge separation of these photoswitches in aqueous solution and the protective nature of supramolecular complexation against degradative dark switching. DASA-M, for example, was found to form a weak host-guest 1 inclusion complex with (2-hydroxypropyl)-γ-cyclodextrin, with a binding constant K = 60 M− , but a 1 very strong inclusion complex with cucurbit[7]uril, with K = 27,000 M− .