Fusions-Enabled Pluto Orbiter and Lander
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Magnetic Nozzle Plasma Plume: Review of Crucial Physical Phenomena
48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit AIAA 2012-4274 30 July - 01 August 2012, Atlanta, Georgia Magnetic Nozzle Plasma Plume: Review of Crucial Physical Phenomena Frans H. Ebersohn∗, Sharath S. Girimaji y, and David Staack z Texas A & M University, College Station, Texas 77843, USA John V. Shebalinx Astromaterials Research & Exploration Science Office, NASA Johnson Space Center, Houston, Texas 77058 Benjamin Longmier{ University of Michigan, Ann Arbor, Michigan, 48109, USA Chris Olsenk Ad Astra Rocket Company, Webster, Texas 77598 This paper presents a review of the current understanding of magnetic nozzle physics. The crucial steps necessary for thrust generation in magnetic nozzles are energy conver- sion, plasma detachment, and momentum transfer. The currently considered mechanisms by which to extract kinetic energy from the plasma include the conservation of the mag- netic moment adiabatic invariant, electric field forces, thermal energy directionalization, and Joule heating. Plasma detachment mechanisms discussed include resistive diffusion, recombination, magnetic reconnection, loss of adiabaticity, inertial forces, and self-field detachment. Momentum transfer from the plasma to the spacecraft occurs due to the interaction between the applied field currents and induced currents which are formed due to the magnetic pressure. These three physical phenomena are crucial to thrust generation and must be understood to optimize magnetic nozzle design. The operating dimension- less parameter ranges of six prominent experiments -
Nasa Tm X-1864 *
NASA TECHNICAL. • £HP2fKit NASA TM X-1864 * ... MEMORANDUM oo fe *' > ;ff f- •* '• . ;.*• f PROPULSION • FOR *MANN1D E30PLORATION-k '* *Of THE SOEAE " • » £ Moedkel • - " *' ' ' y Lem$ Research Center Cleveland, Qbt® NATIONAL AERONAUTICS AND SFACE ADMINISTRATION • WASHINGTON, D. €, * AUCUST 1969 NASA TM X-1864 PROPULSION SYSTEMS FOR MANNED EXPLORATION OF THE SOLAR SYSTEM By W. E. Moeckel Lewis Research Center Cleveland, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and. Technical Information Springfield, Virginia 22151 - CFSTI price $3.00 ABSTRACT What propulsion systems are in sight for fast interplanetary travel? Only a few show promise of reducing trip times to values comparable to those of 16th century terrestrial expeditions. The first portion of this report relates planetary round-trip times to the performance parameters of two types of propulsion systems: type I is specific-impulse limited (with high thrust), and type n is specific-mass limited (with low thrust). The second part of the report discusses advanced propulsion concepts of both types and evaluates their limitations. The discussion includes nuclear-fission . rockets (solid, liquid, and gaseous core), nuclear-pulse propulsion, nuclear-electric rockets, and thermonuclear-fusion rockets. Particular attention is given to the last of these, because it is less familiar than the others. A general conclusion is that the more advanced systems, if they prove feasible, will reduce trip time to the near planets by factors of 3 to 5, and will make several outer planets accessible to manned exploration. PROPULSION SYSTEMS FOR MANNED EXPLORATION OF THE SOLAR SYSTEM* byW. E. Moeckel Lewis Research Center SUMMARY What propulsion systems are in sight for fast interplanetary travel? Only a few show promise of reducing trip times to values comparable to those of 16th century terrestrial expeditions. -
Pulsed Fusion Space Propulsion: Computational Ideal Magneto-Hydro Dynamics of a Magnetic Flux Compression Reaction Chamber
Pulsed Fusion Space Propulsion: Computational Ideal Magneto-Hydro Dynamics of a Magnetic Flux Compression Reaction Chamber G. Romanelli Master of Science Thesis Space Systems Engineering PULSED FUSION SPACE PROPULSION: COMPUTATIONAL IDEAL MAGNETO-HYDRO DYNAMICS OFA MAGNETIC FLUX COMPRESSION REACTION CHAMBER by Gherardo ROMANELLI to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Friday February 26, 2016 at 10:00 AM. Student number: 4299876 Thesis committee: Dr. A. Cervone, TU Delft, supervisor Prof. Dr. E. K. A. Gill, TU Delft Dr. Ir. E. Mooij, TU Delft Prof. A. Mignone, Politecnico di Torino An electronic version of this thesis is available at http://repository.tudelft.nl/. To boldly go where no one has gone before. James T. Kirk ACKNOWLEDGEMENTS First of all I would like to thank my supervisor Dr. A. Cervone who has always sup- ported me despite my “quite exotic” interests. He left me completely autonomous in shaping my thesis project, and still, was always there every time I needed help. Then, I would of course like to thank Prof. A. Mignone who decided to give his contribute to this seemingly crazy project of mine. His advice arrived just in time to give an happy ending to this story. Il ringraziamento più grande, però, va di certo alla mia famiglia. Alla mia mamma e a mio babbo, perché hanno sempre avuto fiducia in me e non hanno mai chiesto ragioni o spiegazioni alle mie scelte. Ai miei nonni, perché se di punto in bianco, un giorno di novembre ho deciso di intraprendere questa lunga strada verso l’Olanda, l’ho potuto fare anche per merito loro. -
Pluto and Doubling"
Archived version from NCDOCKS Institutional Repository http://libres.uncg.edu/ir/asu/ Column -- "Pluto And Doubling" By: Craig Fischer Abstract Welcome to the first installment of “Monsters Eat Critics,” a monthly column I’ll be writing for TCJ.com. I hope that “Monsters Eat Critics” sounds like the title of a Z-grade science-fiction movie, because I plan to write about genre comics, including science-fiction comics, rather than the alt-, art- and mini-comics so ably covered by other TCJ critics. Let me make clear, though, that I’ll be saying little about contemporary superhero comics, because I’m bored by the ones I’ve read and have nothing to express about them beyond a shrug and an annoyance that hype like “The New 52” gets so much attention, even negative attention, on comics blogs. Even though future columns will discuss creators who simultaneously labored in and transcended the superhero genre—we’ll trot Kirby out for obligatory analysis, if only to rile Pat Ford—I don’t care about superheroes or the superhero-driven business of American mainstream comics. I’m looking for art in other genres, and I’ll begin with one of the most artistically accomplished genre comics of the last ten years, Naoki Urasawa’s Pluto (2003-2009). Specifically, my argument is that Urasawa builds Pluto on overlapping, complex systems of doubling, and in reading closely to uncover these systems, I’ll be giving away all of Pluto’s major plot points, so beware. We spoil to dissect here. Fischer, C. (2011). "Pluto And Doubling" The Comics Journal (TCJ), October 3, 2011. -
Tianwen-1: China's Mars Mission
Tianwen-1: China's Mars Mission drishtiias.com/printpdf/tianwen-1-china-s-mars-mission Why In News China will launch its first Mars Mission - Tianwen-1- in July, 2020. China's previous ‘Yinghuo-1’ Mars mission, which was supported by a Russian spacecraft, had failed after it did not leave the earth's orbit and disintegrated over the Pacific Ocean in 2012. The National Aeronautics and Space Administration (NASA) is also going to launch its own Mars mission in July, the Perseverance which aims to collect Martian samples. Key Points The Tianwen-1 Mission: It will lift off on a Long March 5 rocket, from the Wenchang launch centre. It will carry 13 payloads (seven orbiters and six rovers) that will explore the planet. It is an all-in-one orbiter, lander and rover system. Orbiter: It is a spacecraft designed to orbit a celestial body (astronomical body) without landing on its surface. Lander: It is a strong, lightweight spacecraft structure, consisting of a base and three sides "petals" in the shape of a tetrahedron (pyramid- shaped). It is a protective "shell" that houses the rover and protects it, along with the airbags, from the forces of impact. Rover: It is a planetary surface exploration device designed to move across the solid surface on a planet or other planetary mass celestial bodies. 1/3 Objectives: The mission will be the first to place a ground-penetrating radar on the Martian surface, which will be able to study local geology, as well as rock, ice, and dirt distribution. It will search the martian surface for water, investigate soil characteristics, and study the atmosphere. -
Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects
Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects NASA Grant No. NNX17AE81G First Year Report Prepared by: Marc G. Millis, Jeff Greason, Rhonda Stevenson Tau Zero Foundation Business Office: 1053 East Third Avenue Broomfield, CO 80020 Prepared for: NASA Headquarters, Space Technology Mission Directorate (STMD) and NASA Innovative Advanced Concepts (NIAC) Washington, DC 20546 June 2018 Millis 2018 Grant NNX17AE81G_for_CR.docx pg 1 of 69 ABSTRACT Progress toward developing an evaluation process for interstellar propulsion and power options is described. The goal is to contrast the challenges, mission choices, and emerging prospects for propulsion and power, to identify which prospects might be more advantageous and under what circumstances, and to identify which technology details might have greater impacts. Unlike prior studies, the infrastructure expenses and prospects for breakthrough advances are included. This first year's focus is on determining the key questions to enable the analysis. Accordingly, a work breakdown structure to organize the information and associated list of variables is offered. A flow diagram of the basic analysis is presented, as well as more detailed methods to convert the performance measures of disparate propulsion methods into common measures of energy, mass, time, and power. Other methods for equitable comparisons include evaluating the prospects under the same assumptions of payload, mission trajectory, and available energy. Missions are divided into three eras of readiness (precursors, era of infrastructure, and era of breakthroughs) as a first step before proceeding to include comparisons of technology advancement rates. Final evaluation "figures of merit" are offered. Preliminary lists of mission architectures and propulsion prospects are provided. -
9.0 BACKGROUND “What Do I Do First?” You Need to Research a Card (Thruster Or 9.1 DESIGNER’S NOTES Robonaut) with a Low Fuel Consumption
9.2 TIPS FOR INEXPERIENCED ROCKET CADETS 9.0 BACKGROUND “What do I do first?” You need to research a card (thruster or 9.1 DESIGNER’S NOTES robonaut) with a low fuel consumption. A “1” is great, a “4” The original concept for this game was a “Lords of the Sierra Madre” in is marginal. The PRC player*** can consider an dash to space. With mines, ranches, smelters, and rail lines all purchased and claim Hellas Basin on Mars, using just his crew card. He controlled by different players, who have to negotiate between them- needs 19 fuel steps (6 WT) along the red route to do this. selves to expand. But space does not work this way. “What does my rocket need?” Your rocket needs 4 things: Suppose you have a smelter on one main-belt asteroid, powered by a • A card with a thruster triangle (2.4D) to act as a thruster. • A card with an ISRU rating, if its mission is to prospect. beam-station on another asteroid, and you discover platinum on a third • A refinery, if its mission is to build a factory. nearby asteroid. Unfortunately for long-term operations, next year these • Enough fuel to get to the destination. asteroids will be separated by 2 to 6 AUs.* Furthermore, main belt Decide between a small rocket able to make multiple claims, Hohmann transfers are about 2 years long, with optimal transfer opportu- or a big rocket including a refinery and robonaut able to nities about 7 years apart. Jerry Pournelle in his book “A Step Farther industrialize the first successful claim. -
+ New Horizons
Media Contacts NASA Headquarters Policy/Program Management Dwayne Brown New Horizons Nuclear Safety (202) 358-1726 [email protected] The Johns Hopkins University Mission Management Applied Physics Laboratory Spacecraft Operations Michael Buckley (240) 228-7536 or (443) 778-7536 [email protected] Southwest Research Institute Principal Investigator Institution Maria Martinez (210) 522-3305 [email protected] NASA Kennedy Space Center Launch Operations George Diller (321) 867-2468 [email protected] Lockheed Martin Space Systems Launch Vehicle Julie Andrews (321) 853-1567 [email protected] International Launch Services Launch Vehicle Fran Slimmer (571) 633-7462 [email protected] NEW HORIZONS Table of Contents Media Services Information ................................................................................................ 2 Quick Facts .............................................................................................................................. 3 Pluto at a Glance ...................................................................................................................... 5 Why Pluto and the Kuiper Belt? The Science of New Horizons ............................... 7 NASA’s New Frontiers Program ........................................................................................14 The Spacecraft ........................................................................................................................15 Science Payload ...............................................................................................................16 -
Magnetic Nozzle Simulation Studies for Electric Propulsion
Aneutronic Fusion Spacecraft Architecture 1 2 3 A. G. Tarditi , G. H. Miley and J. H. Scott 1University of Houston – Clear Lake, Houston, TX 2University of Illinois-Urbana-Champaign, Urbana, IL 3NASA Johnson Space Center, Houston, TX NIAC 2012 – Spring Meeting, Pasadena, CA Aneutronic Fusion Spacecraft Architecture 1 2 3 A. G. Tarditi , G. H. Miley and J. H. Scott 1University of Houston – Clear Lake, Houston, TX 2University of Illinois-Urbana-Champaign, Urbana, IL 3NASA Johnson Space Center, Houston, TX NIAC 2012 – Spring Meeting, Pasadena, CA Summary • Exploration of a new concept for space propulsion suitable for aneutronic fusion • Fusion energy-to-thrust direct conversion: turn fusion products kinetic energy into thrust • Fusion products beam conditioning: specific impulse and thrust compatible with needs practical mission Where all this fits: the Big Picture • “Big time” space travel needs advanced propulsion at the 100-MW level • This really means electric propulsion • Electric propulsion needs fusion Electric Space Propulsion Plasma Advanced Electric Fusion Research Propulsion Utility Technology Fusion Propulsion Introduction - Space Exploration Needs ? ? “Game changers” in the evolution of human transportation Introduction - Space Exploration Needs • Incremental modifications of existing space transportation ? designs can only go so far… • Aerospace needs new propulsion technologies Introduction - Priorities • A new propulsion paradigm that enables faster and longer distance space travel is arguably the technology development that could have the largest impact on the overall scope of the NASA mission • In comparison, every other space technology development would probably look merely incremental • Investing in R&D on new, advanced space propulsion architectures could have the largest impact on the overall scope of the NASA mission. -
Global Nomads: Techno and New Age As Transnational Countercultures
1111 2 Global Nomads 3 4 5 6 7 8 9 1011 1 2 A uniquely ‘nomadic ethnography,’ Global Nomads is the first in-depth treat- 3111 ment of a counterculture flourishing in the global gulf stream of new electronic 4 and spiritual developments. D’Andrea’s is an insightful study of expressive indi- vidualism manifested in and through key cosmopolitan sites. This book is an 5 invaluable contribution to the anthropology/sociology of contemporary culture, 6 and presents required reading for students and scholars of new spiritualities, 7 techno-dance culture and globalization. 8 Graham St John, Research Fellow, 9 School of American Research, New Mexico 20111 1 D'Andrea breaks new ground in the scholarship on both globalization and the shaping of subjectivities. And he does so spectacularly, both through his focus 2 on neomadic cultures and a novel theorization. This is a deeply erudite book 3 and it is a lot of fun. 4 Saskia Sassen, Ralph Lewis Professor of Sociology 5 at the University of Chicago, and Centennial Visiting Professor 6 at the London School of Economics. 7 8 Global Nomads is a unique introduction to the globalization of countercultures, 9 a topic largely unknown in and outside academia. Anthony D’Andrea examines 30111 the social life of mobile expatriates who live within a global circuit of counter- 1 cultural practice in paradoxical paradises. 2 Based on nomadic fieldwork across Spain and India, the study analyzes how and why these post-metropolitan subjects reject the homeland to shape an alternative 3 lifestyle. They become artists, therapists, exotic traders and bohemian workers seek- 4 ing to integrate labor, mobility and spirituality within a cosmopolitan culture of 35 expressive individualism. -
Hall2de Simulations of a Magnetic Nozzle
AIAA Propulsion and Energy Forum 10.2514/6.2020-3642 August 24-28, 2020, VIRTUAL EVENT AIAA Propulsion and Energy 2020 Forum Hall2De Simulations of a Magnetic Nozzle Thomas A. Marks∗ University of Michigan, Ann Arbor, MI, 48109 Alejandro Lopez-Ortega † and Ioannis G. Mikellides ‡ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 Benjamin A. Jorns§ University of Michigan, Ann Arbor, MI, 48109 The two-dimensional, fluid-based Hall thruster code Hall2De is adapted to simulate a low temperature propulsive magnetic nozzle. Electron cyclotron resonance (ECR) thrusters developed at the Office National d’Etudes et de Recherches Aérospatiales (ONERA) in France and the University of Michigan are investigated. For each device, the simulated domain is defined from the nozzle throat to a location 10 thruster radii downstream. A numerical mesh is defined based on the measured magnetic field, and the governing fluid equations for singly- charge ions, electrons, and neutrals are solved. The boundary conditions for the throat of the magnetic nozzle are based on measured values of electron temperature and ion velocity. Multiple boundary conditions for the electron temperature in the downstream regions of the domain are considered. The simulated ion velocity and potential agrees well with experiment, while the simulated current densities and therefore thrusts are 50-75% higher than experiment. When a Neumann boundary condition for electron temperature is applied to the far-plume boundaries, the nozzle was seen to be purely isothermal. This suggests that the thermal conductivity along field lines in real devices is much lower than classical simulations predict, and anomalous resistivity may be needed to reproduce the temperature distribution observed in experiment. -
JAXA's Space Exploration Activities
JAXA’s Space Exploration Activities Jun Gomi, Deputy Director General, JAXA Hayabusa 2 ✓ Asteroid Explorer of the C-type asteroid ✓ Launched in December, 2014 ✓ Reached target asteroid “Ryugu” in 2018 ✓ First successful touchdown to Ryugu on February 22, 2019 ✓ Return to Earth in 2020 (162173) Ryugu 2 Hayabusa 2 (c) JAXA, University of Tokyo, Kochi University, Rikkyo University, (c) JAXA, University of Tokyo, Kochi University, Rikkyo University, Nagoya University, Chiba Institute of Technology, Meiji University, Nagoya University, Chiba Institute of Technology, Meiji University, University of Aizu and AIST. University of Aizu, AIST Asteroid Ryugu photographed from a Asteroid Ryugu from an altitude of 6km. distance of about 20 km. The image Image was captured with the Optical was taken on June 30, 2018. Navigation Camera on July 20, 2018. Hayabusa 2 4 JAXA’s Plan for Space Exploration International • Utilization of ISS/Kibo • Cis-Lunar Platform (Gateway) Cooperation • Lunar exploration and beyond Industry & • JAXA Space Exploration Innovation Academia Hub Partnerships • Science Community discussions JAXA’s Overall Scenario for International Space Exploration Mars, others ★ Initial Exploration ★ Full Fledge Exploration MMX: JFY2024 • Science and search for life • Utilization feasibility exam. Kaguya Moon ©JAXA ©JAXA ©JAXA ©JAXA ©JAXA Full-fledged Exploration & SLIM Traversing exploration(2023- ) Sample Return(2026- ) Utilization (JFY2021) • Science exploration • S/R from far side • Cooperative science/resource • Water prospecting • Technology demo for human mission exploration by robotic and human HTV-X der.(2026- ) • Small probe deploy, data relay etc. Gateway Phase 1 Gateway (2022-) Phase 2 • Support for Lunar science Earth • Science using deep space Promote Commercialization International Space Station 6 SLIM (Smart Lander for Investigating Moon) ✓ Demonstrate pin-point landing on the moon.