Evolution and Internal Structure of the Helvetic Nappes in the Bernese Oberland

Total Page:16

File Type:pdf, Size:1020Kb

Evolution and Internal Structure of the Helvetic Nappes in the Bernese Oberland Evolution and internal structure of the Helvetic nappes in the Bernese Oberland Autor(en): Hänni, Reto / Pfiffner, O. Adrian Objekttyp: Article Zeitschrift: Eclogae Geologicae Helvetiae Band (Jahr): 94 (2001) Heft 2 PDF erstellt am: 11.10.2021 Persistenter Link: http://doi.org/10.5169/seals-168886 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch 0012-9402/01/020161-11 $1.50 + 0.20/0 Eclogae geol. Helv. 94(2001) 161-171 Birkhäuser Verlag. Basel. 2001 Evolution and internal structure of the Helvetic nappes in the Bernese Oberland Reto Hänni1-2 & O.Adrian Pfiffner1 Key words: fold-and-thrust structures, synsedimentary faulting. Helvetic nappes, western Switzerland ABSTRACT ZUSAMMENFASSUNG During the last century, many detailed field studies have been carried out in Im vergangnenen Jahrhundert ist die lokale Geologie un Berner Oberland in the Bernese Oberland. Data from these studies were combined with new field /ahlreichen Arbeiten detailiert untersucht worden. Darauf aufbauend und dala to restore the Axen and the Drusherg nappes in three cross sections. The kombiniert mit neuen Felduntersuchungen wurden die Drusberg-Decke und criteria for validating retrodeformable cross sections were used to extend the die Axen-Decke in drei Querschnitten abgewickelt. Die Berücksichtigung limits of interpretation. Results show that synsedimentary normal faults played geometrischer Kriterien für abwickelbare Profile erlaubte dabei eine erhebliche a key role in the evolution of the nappes. Retrodeforming the nappes suggests Einschränkung des Interpretationsspielraums in erodierten Deckenteilen. that Cretaceous synsedimentary faults within the Drusberg nappe had reactivated Es stellte sich heraus, dass kretazische synsedimentäre Normalbrüche in Jurassic faults within the Axen nappe. Alpine compression partly reactivated der Deckenkinematik eine Schlüsselrolle spielten. Derartige Brüche findet these faults once again but simultaneous!) developed coniugate reverse man in der Drusberg-Decke: die Deckenabwicklungen lassen vermuten, dass faults: subsequent folding and shearing lead lo Ihe hitherto enigmatic BQrgle- bei ihrer Entstehung jurassische Normalbrüche in der Unterlage, der heutigen Sylere structure. The Schilthorn thrust fault was found to be an important out- Axen-Decke. reaktiviert wurden. Während der alpinen Kompression wurden of-sequence ihrust. causing complex nappe internal structures such as Ihe lec- diese Brüche teilweise reaktiviert und führten in Kombination mit konjugierten tonic isolation of individual Ihrust slices. Ihe Kiental-phase folding of the Rückaufschiebungen und anschliessender Faltung und Scherung zu der Schilthorn fault clearly indicates a polyphase deformation hisiorv of Ihe Drusberg lokal gut bekannten Burgle-Sylere Struktur. Die Schilthorn-Überschiebung and the Axen nappes. isl eine bedeutende out-of-sequence Überschiebung und führte zu komplexen deckeninternen Strukturen in Form tektonisch vollständig isolierter Schuppen. Die Verfaltung der Schilthorn-Überschiebung während der Kiental- Deformationsphase zeugt von der mehrphasigen Verformungsgeschichte der Drusberg- und der Axen-Decke. Introduction The Helvetic zone of Central Switzerland and the Bernese Mesozoic-Cenozoic cover (e.g. Doldenhorn nappe). Further Oberland is composed of two nappe complexes separated by a north, this complex contains allochthonous cover sheets (Sub- major thrust fault with several tens of kilometers of displacement. alpine Flysch and Subalpine Molasse). This major thrust fault is the basal thrust ofthe Helvetic The sediments of the Helvetic zone were deposited on the nappes proper. The Helvetic nappes are characterized by a European margin of Tethys. In the course ofthe Alpine orogeny complex interplay of folds and faults involving Mesozoic- these sediments were thrust and transported to the north Cenozoic cover rocks. The Axen nappe (Fig. 1) contains and northwest. As a general rule, the paleogeographically essentially Jurassic sediments and is overlain by the Drusberg southern Helvetic units experienced a larger amount of nappe, which is built of Cretaceous-Cenozoic strata (Pfiffner displacement than the northern ones, which resulted in the 1993). The units in the footwall of the basal thrust of the development of an antiformal stack on top of the Aar massif in Helvetic nappes are referred to as Infrahelvetic complex. To the the transect ofthe Bernese Oberland (Fig. 1). The Doldenhorn south, this Infrahelvetic complex is a thick-skinned fold-and- nappe contains recumbent folds with a crystalline core forming thrust belt involving pre-Triassic crystalline basement rocks part of to the Aar massif. Across the Lauterbrunnen Valley to (Aar massif) and their autochthonous-parautochthonous the east, the separation between the Mesozoic cover and the 1 Geologisches Institut. Universität Bern. Baltzerstrasse 1. CH-3012 Bern. Switzerland. E-mail: [email protected] 2 now at Geotechnisches Institut AG. Seestrasse 22. 3700 Spiez. Switzerland. E-mail: [email protected] The Helvetic nappes in the Bernese Oberland 161 •—r ~n Section II Violasse Section Mi tri hern Aar massif Doldenhorn nappe Southern Aar massif Gellihorn nappe 5nj Wildhorn nappe «e Axen nappe <*>. Drusberg nappe Unterhasl Subhehetic unn Ultrahlevetie and Penninic nappes Nappe boundary Thrust fault (Ax.-D Section I H t i Normal fault 10 km Lauterbrunnen •: a Q 1 Menta - Q Fig. 1. Tectonic sketch map of the Bernese Oberland. Thick lines are traces of cross sections shown on plate I. crystalline core diminishes and the Doldenhorn nappe passes Helvetic nappes is missing in the Bernese Oberland owing to into the autochthonous-parautochthonous units typical of the erosion. In order to completely reconstruct the eroded and central and eastern Aar massif. subsurface parts of the nappes, results of former investigations From the Kander Valley to the west, the Gellihorn nappe had to be puzzled together. Fieldwork focussed on the upper separates the Wildhorn nappe from the underlying Doldenhorn parts of the Helvetic nappes, which are particularly important nappe. To the east, the Gellihorn nappe quickly diminishes for the tectonic interpretation of the eroded part of the nappes. in volume along strike until its complete disappearance Three balanced sections were constructed along with their east of the Kiental Valley. restored counterparts. The Jurassic and Cretaceous parts of the Wildhorn nappe The aim of this paper is to analyse the importance of ("Stockwerks") exhibit an increasing tectonic independence synsedimentary extensional structures for section retrodeformation going east, resulting in the eventual separation into two and to discuss their effect on the evolution of nappe distinct nappes which can be traced into eastern Switzerland (see internal structures in subsequent Alpine compression. also Pfiffner 1993). the Drusberg nappe (Cretaceous Stockwerk), and the Axen (Jurassic Stockwerk). nappe 2. Cross sections The Jurassic Stockwerk has been shown to contain a number of tight to nearly isoclinal folds (Arbenz 1922: Günzler-Seiffert 2.1. Construction method 1925; Hänni et al. 1997) cut by numerous tear faults (Pilloud 1990) and low angle reverse faults (Schilthorn. Männlichen). Three digitized sections across the study area were balanced The Cretaceous Stockwerk is disharmonically folded above and retrodeformed using suitable computer software such as the Jurassic Stockwerk owing to the thick, incompetent Palfris Geosec 4.0. Despite these powerful tools, section balancing marls separating the two Stockwerks (cf. Pfiffner 1993). As will and retrodeformation requires a lot of iterative work by hand. be shown later the two Stockwerks experienced a displacement Inevitably, the reconstruction of eroded structures and subsurface of up to 10 km by bedding parallel thrusting on this detachment extrapolation demands a certain amount of interpretation. horizon. However, section balancing allows testing of a profile's The Helvetic nappes are overlain by Ultrahelvetic and geometrical correctness by comparing volumes and line-lengths Penninic units of a more internal origin, which outcrop as erosional before and after deformation. In addition, a retrodeformable relics or "klippen" (Fig. 1). cross section not only has to be geometrically correct but it As a rough estimate,
Recommended publications
  • Alpes Bernoises, De L'archéologie Sur Le Schnidejoch
    Lenk Avez-vous découvert quelque chose dans la 0 1000m glace ou à sa proximité ? – Ne déplacez pas l’objet ou uniquement s’il est directe­ ment menacé. – Photographiez l’objet en détail ainsi que dans son contexte de découverte élargi. Département de la mobilité, du territoire et de l’environnement du canton du Valais – Marquez si possible l’emplacement de découverte. Service des bâtiments, monuments – Relevez les coordonnées de la découverte ou 3 et archéologie inscrivez­la sur une carte. Departement für Mobilität, Raumentwicklung 2 – Les trouvailles appartiennent au canton dans lequel und Umwelt des Kantons Wallis Dienststelle für Hochbau, Denkmalpflege elles ont été découvertes. Annoncez­les au plus vite und Archäologie au service cantonal compétent : Case postale, 1950 Sion Téléphone +41 27 606 38 00 Archäologischer Dienst des Kantons Bern Brünnenstrasse 66 [email protected] Postfach www.vs.ch/web/sbma/patrimoine-archeologique 3001 Bern 4 +41 31 633 98 98 Cabane CAS du Wildhorn [email protected] Erziehungsdirektion des Kantons Bern www.be.ch/archaeologie Direction de l’instruction publique du canton de Berne Service des bâtiments, monuments et archéologie Amt für Kultur | Office de la culture Avenue du midi 18 3 Archäologischer Dienst des Kantons Bern Case postale Service archéologique du canton de Berne 1950 Sion +41 27 606 38 00 Postfach, 3001 Bern SBMA­[email protected] Telefon +41 31 633 98 00 www.vs.ch/web/sbma/patrimoine­archeologique 1 Schnidejoch [email protected] www.be.ch/archaeologie Merci beaucoup ! D’autres services et informations sous www.alparch.ch Informations pratiques : L’Iffigenalp et le barrage de Tseuzier sont acces­ Le Schnidejoch et l’Iffigsee comme objectifs sibles en transports publics.
    [Show full text]
  • Field Trip - Alps 2013
    Student paper Field trip - Alps 2013 Evolution of the Penninic nappes - geometry & P-T-t history Kevin Urhahn Abstract Continental collision during alpine orogeny entailed a thrust and fold belt system. The Penninic nappes are one of the major thrust sheet systems in the internal Alps. Extensive seismic researches (NFP20,...) and geological windows (Tauern-window, Engadin-window, Rechnitz-window), as well as a range of outcrops lead to an improved understanding about the nappe architecture of the Penninic system. This paper deals with the shape, structure and composition of the Penninic nappes. Furthermore, the P-T-t history1 of the Penninic nappes during the alpine orogeny, from the Cretaceous until the Oligocene, will be discussed. 1 The P-T-t history of the Penninic nappes is not completely covered in this paper. The second part, of the last evolution of the Alpine orogeny, from Oligocene until today is covered by Daniel Finken. 1. Introduction The Penninic can be subdivided into three partitions which are distinguishable by their depositional environment (PFIFFNER 2010). The depositional environments are situated between the continental margin of Europe and the Adriatic continent (MAXELON et al. 2005). The Sediments of the Valais-trough (mostly Bündnerschists) where deposited onto a thin continental crust and are summarized to the Lower Penninic nappes (PFIFFNER 2010). The Middle Penninic nappes are comprised of sediments of the Briançon-micro-continent. The rock compositions of the Lower- (Simano-, Adula- and Antigori-nappe) and Middle- Penninic nappes (Klippen-nappe) encompass Mesozoic to Cenozoic sediments, which are sheared off from their crystalline basement. Additionally crystalline basement form separate nappe stacks (PFIFFNER 2010).
    [Show full text]
  • Active Strike-Slip Faulting in the Chablais Area (NW Alps) from Earthquake Focal Mechanisms and Relative Locations
    CORE Metadata, citation and similar papers at core.ac.uk Provided by RERO DOC Digital Library 0012-9402/05/020189-11 Eclogae geol. Helv. 98 (2005) 189–199 DOI 10.1007/s00015-005-1159-4 Birkhäuser Verlag, Basel, 2005 Active strike-slip faulting in the Chablais area (NW Alps) from earthquake focal mechanisms and relative locations BASTIEN DELACOU1,NICHOLAS DEICHMANN2,CHRISTIAN SUE1,FRANÇOIS THOUVENOT3, JEAN-DANIEL CHAMPAGNAC1 & MARTIN BURKHARD1 Key words: Western Alps, Chablais, Prealpes, seismotectonics, relative location, active faulting ABSTRACT d’identifié des failles actives dans une région où les indices néotectoniques sont rares et controversés. L’alignement sismique ainsi défini correspond au The Chablais area is characterized by a complex geological setting, resulting plan nodal E-W du mécanisme au foyer du choc principal, permettant de défi- from the transport of nappes of various internal origins (the Prealpine nir une faille dextre, subverticale, orientée E-W. Ce régime décrochant, repla- nappes), thrusted in Oligocene times onto the Helvetic cover of the external cé dans son contexte tectonique régional, correspond à celui observé dans la zones of the Alps. While the structural setting and timing of nappe emplace- région Jura/Plateau Molassique, caractérisé par un système de décrochements ment are well understood, current tectonics and associated faulting remain un- conjugués (dextre orienté E-W, sénestre orienté NW-SE) et contraste avec clear. The detailed analysis of the Bonnevaux and Samoëns earthquakes, pre- celui exclusivement dextre, orienté NE-SW, observé au niveau de l’alignement sented in this study, constitutes a significant contribution to the active tecton- Wildhorn/Martigny. ics of the Chablais area.
    [Show full text]
  • Tracing the Exhumation of the Eclogite Zone (Tauern Window, Eastern Alps) by 40Ar/39Ar Dating of White Mica in Eclogites
    1661-8726/08/01S191-16 Swiss J. Geosci. 101 (2008) Supplement 1, S191–S206 DOI 10.1007/s00015-008-1281-1 Birkhäuser Verlag, Basel, 2008 Tracing the exhumation of the Eclogite Zone (Tauern Window, Eastern Alps) by 40Ar/39Ar dating of white mica in eclogites WALTER KURZ 1, ROBERT HANDLER 2 & CHRISTIAN BERTOLDI 3 Key words: 40Ar/39Ar dating, white mica, eclogite exhumation, microstructures, Subpenninic nappes, Tauern Window ABSTRACT New radiometric ages from the Subpenninic nappes (Eclogite Zone and Rote maximum age due to the possible influence of homogenously distributed Wand – Modereck Nappe, Tauern Window) show that phengites formed under excess argon. During exhumation deformation was localised along distinct eclogite-facies metamorphic conditions retain their initial isotopic signature, mylonitic shear zones. This stage is mainly characterised by the formation of even when associated lithologies were overprinted by greenschist- to amphib- dynamically recrystallized omphacite2 and phengite. Deformation resulted in olite-facies metamorphism. Different stages of the eclogite-facies evolution the resetting of the Ar isotopic system within the recrystallized white mica. can be dated provided 40Ar/39Ar dating is combined with micro-structural Flat argon release spectra showing ages of 32 Ma within mylonites record the analyses. An age of 39 Ma from the Rote Wand – Modereck Nappe is inter- timing of cooling along the exhumation path, and the emplacement onto the preted to be close to the burial age of this unit. Eclogite deformation within Venediger Nappe. Ar-release patterns and 36Ar/40Ar vs. 39Ar/40Ar isotope cor- the Eclogite Zone started at the pressure peak along distinct shear zones, and relation analyses indicate no significant 40Ar-loss after initial closure, and only prevailed along the exhumation path.
    [Show full text]
  • Strain Localization in the Morcles Nappe (Helvetic Alps, Switzerland)
    1661-8726/08/020341-20 Swiss J. Geosci. 101 (2008) 341–360 DOI 10.1007/s00015-008-1264-2 Birkhäuser Verlag, Basel, 2008 Strain localization in the Morcles nappe (Helvetic Alps, Switzerland) NICHOLAS AUSTIN 1, *, BRIAN EVANS 1, MARCO HERWEGH 2 & ANDREAS EBERT 2 Key words: rheology, calcite, localization, recrystallization, microstructure, crystallographic preferred orientation ABSTRACT Deformation in orogenic belts is frequently accommodated in calcite-rich structure at a range of locations, with varying peak metamorphic tempera- lithologies, owing to their relatively low strength, particularly compared to tures, along the Morcles nappe. The strain-rates predicted by extrapolation quartz-rich rocks. Here, we investigate the coupling between calcite grain size, of these laboratory relationships agree well with the geologic constraints. We the presence and mineralogy of second phases, and crystallographic preferred then applied the same approach to the samples from the present study. The orientation (CPO) in a transect through deformed limestones, perpendicu- results indicate that strain became progressively localized towards the thrust lar to the dominant foliation in the inverted limb of the Morcles nappe of contact of the Morcles nappe, leading to an increase in strain rate of >1 order the Swiss Helvetic Alps. Calcite grain size becomes progressively finer as the of magnitude in a zone <0.50 m thick. For localization to occur system and/or thrust contact is approached, and there is a concomitant increase in CPO in- material softening is necessary. If dislocation activity is positively correlated tensity, with the strongest CPO’s in the finest-grained, quartz-rich limestones, with CPO, then softening cannot have occurred by a complete transition to nearest the thrust contact.
    [Show full text]
  • Archaeology of the Schnidejoch
    Lenk Have you found anything in or around the ice? 0 1000m – Do not recover the object or only if it is directly threatened. – Photograph the object and its wider surroundings. – Mark the location. – Write down the coordinates of the location or mark it Département de la mobilité, du territoire et de l’environnement du canton du Valais on a map. Service des bâtiments, monuments – Archaeological finds belong to the canton in which 3 et archéologie they were found. Report them to the relevant cantonal Departement für Mobilität, Raumentwicklung 2 authority. und Umwelt des Kantons Wallis Dienststelle für Hochbau, Denkmalpflege Archäologischer Dienst des Kantons Bern und Archäologie Brünnenstrasse 66 Case postale, 1950 Sion Postfach Téléphone +41 27 606 38 00 3001 Bern +41 31 633 98 98 [email protected] [email protected] www.vs.ch/web/sbma/patrimoine-archeologique www.be.ch/archaeologie 4 Wildhornhütte SAC Service des bâtiments, monuments et archéologie Erziehungsdirektion des Kantons Bern Avenue du midi 18 Direction de l’instruction publique du canton de Berne Case postale 1950 Sion Amt für Kultur | Office de la culture +41 27 606 38 00 3 Archäologischer Dienst des Kantons Bern [email protected] Service archéologique du canton de Berne www.vs.ch/web/sbma/patrimoine-archeologique Postfach, 3001 Bern Telefon +41 31 633 98 00 Thank you very much! 1 Schnidejoch [email protected] For archaeological services of other cantons and www.be.ch/archaeologie information www.alparch.ch The Schnidejoch and Lake Iffig as hiking destinations Useful information: Iffigenalp and the Barrage du Tseuzier can be reached Nowadays, Lake Iffig and Schnidejoch are popular and worth- by public transport.
    [Show full text]
  • Cretaceous Syn-Sedimentary Faulting in the Wildhorn Nappe (SW Switzerland)
    Swiss J Geosci (2014) 107:223–250 DOI 10.1007/s00015-014-0166-8 Cretaceous syn-sedimentary faulting in the Wildhorn Nappe (SW Switzerland) G. L. Cardello • Neil S. Mancktelow Received: 25 August 2013 / Accepted: 2 September 2014 / Published online: 7 October 2014 Ó Swiss Geological Society 2014 Abstract During Cretaceous time, the area of the future subsequent sediments reflect a passive adaption to the pre- Helvetic nappes (Central Alps, south-western Switzerland) existing topography of the sea floor, established during the was part of a large ramp-type carbonate depositional sys- earlier tectonic movements. (4) Post-Maastrichtian north- tem on the European margin, in which the area of the directed tilt and erosion. In the Wildhorn Nappe, palaeo- Wildhorn Nappe was transitional to the more distal and fault activity most probably ended in the Early Maas- relatively deeper Ultrahelvetic basin. The Wildhorn Nappe trichtian rather than continuing into the Eocene. Until now, includes an Upper Cretaceous succession bearing clear the regional importance and magnitude of Late Cretaceous evidence for syn-sedimentary normal faulting, such as syn- extension has not been recognized in the Helvetic domain. sedimentary geometries related to well oriented NE-strik- This widespread event may be related to post-breakup ing faults, sedimentary dykes, lateral variations in the extensional tectonics along the European margin or, alter- thickness and facies of formations, anomalous and discor- natively but less likely, to lateral gravitational collapse of dant contacts corresponding to palaeo-escarpments, and the margin. slump folds. Four stages of syn-sedimentary fault activity have been recognized. (1) Post-Cenomanian disruption and Keywords Central Alps Á Helvetic nappes Á exhumation of the Schrattenkalk platform related to dis- Cretaceous extensional faults Á Post-breakup tectonics Á tributed normal faulting, which contributed to the initiation Carbonate depositional systems Á Multiple fault systems of karst erosion on topographic highs and sedimentation in topographic lows.
    [Show full text]
  • EGU Poster ES to Print
    Late-glacial to Holocene sediment dynamics in high Alpine regions Insights from multimethodological approach on aeolian deposits (Sanetsch Pass, Switzerland) Elena Serra1,2, Pierre G. Valla3,1,2, Natacha Gribenski1,2, Luc Braillard4 1Institute of Geological Sciences, University of Bern, Switzerland 3Institute of Earth Sciences, CNRS - University Grenoble Alpes, France 2Oeschger Centre for Climate Change Research, University of Bern, Switzerland 4Department of Geosciences, University of Fribourg, Switzerland Email: [email protected] 5°0'E 10°0'E 15°0'E Fig. 2 Grain size distribution and sorting 7°16'E 7°18'E Clay Silt Sand GravelPebl. Bould. OSL (total counts) 100.00 (ARP and CRE). Both grain size distributions Sedimentology 48°0'N (cm) Layers Introduction and sorting indices suggest an aeolian origin Depth 0 10000 20000 30000 40000 1 1 5 8 1 75.00 of ARP and the fine layers of CRE, confirming ARP01 ARP02 ARP03 2 15 2 Widespread loess deposits accumulated the on-field logging. 3 25 3 2 35 4 Depth (cm) during the last glaciations in low-eleva- 46°0'N Arpelistock 50.00 4 5 46°21'N 40 (3036 m.s.l.) 5 8.8±1.1 ka Fig. 4 Stratigraphy, portable OSL counts and conventional tion regions of Europe and are often 25.00 3.1±0.4 ka 2.7±0.4 ka Weigth percentage (%) percentage Weigth IRSL ages of the high-elevation aeolian deposits (ARP). A com- [1, Sediments used as paleo-environmental archives 44°0'N CRE Weathered pebbles plex picture emerges from the luminescence analyses.
    [Show full text]
  • Abstract the Helvetic Nappe System in Western Switzerland Is a Stack of Fold Nappes and Thrust Sheets Em
    ABSTRACT The Helvetic nappe system in Western Switzerland is a stack of fold nappes and thrust sheets em- placed at low grade metamorphism. Fold nappes and thrust sheets are also some of the most common features in orogens. Fold nappes are kilometer scaled recumbent folds which feature a weakly de- formed normal limb and an intensely deformed overturned limb. Thrust sheets on the other hand are characterized by the absence of overturned limb and can be defined as almost rigid blocks of crust that are displaced sub-horizontally over up to several tens of kilometers. The Morcles and Doldenhorn nappe are classic examples of fold nappes and constitute the so-called infra-Helvetic complex in Western and Central Switzerland, respectively. This complex is overridden by thrust sheets such as the Diablerets and Wildhörn nappes in Western Switzerland. One of the most famous example of thrust sheets worldwide is the Glarüs thrust sheet in Central Switzerland which features over 35 kilometers of thrusting which are accommodated by a ~1 m thick shear zone. Since the works of the early Alpine geologist such as Heim and Lugeon, the knowledge of these nappes has been steadily refined and today the geometry and kinematics of the Helvetic nappe system is generally agreed upon. However, despite the extensive knowledge we have today of the kinematics of fold nappes and thrust sheets, the mechanical process leading to the emplacement of these nappe is still poorly understood. For a long time geologist were facing the so-called ‘mechanical paradox’ which arises from the fact that a block of rock several kilometers high and tens of kilometers long (i.e.
    [Show full text]
  • Karst and Caves of Switzerland
    Jeannin, R-Y., 2016. Main karst and caves of Switzerland. Boletin Geoiôgico y Minera, 127 (1 ): 45-56 ISSN: 0366-0176 Main karst and caves of Switzerland R-Y Jeannin Swiss Instituts for Speleology and Karst-Studies, SISKA, PO Box 818, 2301 La Chaux-de-Fonds, Switzerland. [email protected] ABSTRACT This paper présents an overview of thé main karst areas and cave Systems in Switzerland. The first part encloses descriptions of thé main geological units that hold karst and caves in thé country and summari- zes a brief history of research and protection of thé cave environments. The second part présents three régions enclosing large cave Systems. Two régions in thé Alps enclose some of thé largest limestone caves in Europe: Siebenhengste (Siebenhengste cave System with -160 km and Bàrenschacht with 70 km) and Bodmeren-Silberen (Hblloch cave System with 200 km and Silberen System with 39 km). Thèse Systems are also among thé deepest with depths ranging between 880 and 1 340 m. The third example is from thé Jura Mountains (northern Switzerland). Key-words: caves, Hdlloch, karst, Siebenhengste, Switzerland. El karst y las cuevas mas importantes de Suiza RESUMEN Este îrabajo présenta una vision général de las principales areas kârsticas y sisiemas de cuevas en Suiza. La primera parte incluye descripciones de las principales unidades geologicas donde se desarrollan et karst y las cuevas en el pais, y résume una brève historia de la investigaciôn y protecciôn de los entornos de la cueva. La segunda parte présenta très regiones que incluyen sisîemas de grandes cuevas.
    [Show full text]
  • A “Wild” Thing
    A "Wild" Thing A “Wild” Th ing Post Conference Tour Martin Gurtner 1. February 15 2. February 16 Th e weather forecast says it will be fi ne for the following Fortunately we have melted enough snow last night, break- 4 days! Seven participants and two guests climb from Lenk fast is ready soon. For the fi rst hour, it is quite cold and we to the Iffi ghore, 2378 m, ski down to the lake and reach climb in the shade. On the saddle, we come out into the the Wildhornhütte. Th e warden is not there, so we start sun. We make a break and enjoy the view to the south. Th e cooking dinner (and heating the small winter room at the glacier has a gentle slope, only the last part to the Wildhorn same time). With a few more people coming, it gets rather is steeper. crowded… From the summit, we can see the entire panorama of the Bernese Alps and of the Valais. A cold breeze prevents us from staying longer at the top; down at the saddle it is much warmer. Two of us have to go back, they work on Mon- Fig. 1: Th e last metres to the Wildhorn, 3246.3 m 6th ICA Mountain Cartography Workshop Mountain Mapping and Visualisation • 279 A "Wild" Thing Fig. 2: Skiing down from the Schnidehorn to the Rawilpass Fig. 4: Crossing the creek in the Ammertentäli. day. We stick the skins again to our skis and climb to the bottom of the Chli Schneehore we rest before starting the Schnidehorn, 2937.3 m.
    [Show full text]
  • The Tauern Window (Eastern Alps, Austria): a New Tectonic Map, with Cross-Sections and a Tectonometamorphic Synthesis
    Swiss J Geosci (2013) 106:1–32 DOI 10.1007/s00015-013-0123-y The Tauern Window (Eastern Alps, Austria): a new tectonic map, with cross-sections and a tectonometamorphic synthesis Stefan M. Schmid • Andreas Scharf • Mark R. Handy • Claudio L. Rosenberg Received: 31 August 2012 / Accepted: 11 March 2013 Ó Swiss Geological Society 2013 Abstract We present a tectonic map of the Tauern Window pressure overprint of some of the units of the Tauern Window, and surrounding units (Eastern Alps, Austria), combined with has a long history, starting in Turonian time (around 90 Ma) a series of crustal-scale cross-sections parallel and perpen- and culminating in Lutetian to Bartonian time (45–37 Ma). dicular to the Alpine orogen. This compilation, largely based on literature data and completed by own investigations, Keywords Alpine tectonics Á Metamorphism Á reveals that the present-day structure of the Tauern Window Age dating Á Orogenesis Á Lithosphere dynamics is primarily characterized by a crustal-scale duplex, the Venediger Duplex (Venediger Nappe system), formed during the Oligocene, and overprinted by doming and lateral extru- 1 Introduction sion during the Miocene. This severe Miocene overprint was most probably triggered by the indentation of the Southalpine The Tauern Window of the Eastern Alps exposes exhumed Units east of the Giudicarie Belt, initiating at 23–21 Ma and parts of Europe-derived crust that were accreted to the base of linked to a lithosphere-scale reorganization of the geometry an Adria-derived upper plate, represented today by the of mantle slabs. A kinematic reconstruction shows that Austroalpine nappes (e.g., Schmid et al.
    [Show full text]