Gas Surface News

Total Page:16

File Type:pdf, Size:1020Kb

Gas Surface News Issue Number 26 GAS SURFACE NEWS December 1999 Editors Note GSDList and Thank you to all those who replied to the survey earlier this year on the Web Page future of Gas-Surface News. We have received enough support to suggest that publishing on the Web would be viable so this is the last issue posted This issue of the out to the entire address list. We will continue with the policy of asking Newsletter is also available Institutes to pay subscriptions so that all in that Institute who are interested on the Web site. To test may have access to GSNews at no extra charge. This policy also allows your ability to read and very small groups and individuals who are not part of a group, to receive the download check Newsletter free. In order to spread the costs fairly, however, it is still http://www.phchem.uni- important to increase our subscriptions base. We hope more Institutes will be able to pay, we will increase the subscription from £50 to £60 (first essen.de/gsd/ You will increase in 4 years) and we will take efforts to reduce our costs. On the need Adobe Acrobat back page you will find a list of all the Institutes already paying annual Reader (you can download subscriptions. If your own institute is not amongst them, you are asked to this free from the Adobe consider whether they could be added. If the list is not extended, we will be Web site – Version 4 is unable to cover our costs. preferable)). As part of this increased efficiency I propose to completely re-draw the Gas-Surface Dynamics address list and GSDList (Email Server). After 9 years there are many Email Server - available to addresses that are no longer correct. EVERYONE is asked to complete the all those on the Gas- REPLY SLIP ON THE BACK PAGE and return it (via post or email) to myself. If you do not have access to the Web, please remember to tick the Surface News Mailing list. box to receive a copy by post. Just send your message to [email protected] I look forward to hearing from you all and meanwhile – enjoy this issue and essen.de. please invite any new members of your group to join the mailing list. The next issue is planned for early April. (Continued on back page....) I N S I D E T H I S I S S U E 2 Research Reports- Leiden Inst of Chemistry, University of Leiden (Mischa Bonn, Prof. Dr Aart Kleyn) 4 Current Research - L.I.S.E. Facultés Universitaires Notre-Dame de la Paix in Namur (Petra Rudolf) 9 Meeting Reports 15 Papers for Publication 17 Job Vacancies and Announcements 23 Diary Page 24 Continuation from Page 1 and Reply Slip – EVERYONE MUST REPLY TO CONTINUE SUBSCRIPTION Editor–Sue Free. Cambridge University Chemistry Dept, Lensfield Road, Cambridge, CB2 1EW, UK. Tel/Fax +44 1223 336536. [email protected]. Web Page containing contact list and other announcements – http://www.phchem.uni-essen.de/gsd/ Gas-Surface News Research Report Very Small and Very Fast: Studies of Surface Structure and Dynamics Leiden Institute of Chemistry, Leiden University P.O. Box 9502, 2300 RA LEIDEN The Netherlands With the move of Aart Kleyn from the FOM- the reaction is taking place. In these so-called Institute in Amsterdam to head the “Surface and pump-probe experiments, one femtosecond laser Catalysis” Group at the Leiden Institute of pulse (pump pulse) is used to switch the reaction Chemistry in Leiden, the scope of the research on, and a second (the probe pulse) is used to there has broadened considerably. It was, of investigate changes in the electronic absorption course, quite broad to begin with: Ben spectrum: The products exhibit different absorption Nieuwenhuys has supervised, for many years, a lines from the reactants, and the transition from one group doing research focused on both supported to the other can be observed. Interestingly, one catalysts, -real catalysts in reactors -and on surface makes use of the finite speed of light in such science investigations on model catalytic systems. experiments: the probe pulse is guided over a mirror Present topics include "non-linear processes on that can be moved back and forth. Increasing the surfaces, STM investigations of multicomponent path length of the probe pulse by 1 µm causes a surfaces and catalytic oxidation reactions on delay of 3.33 fs (speed of light: c = 3x108 m/s), so multicomponent catalysts. A recent overview was that spectroscopic images of the system can be presented in GSN 18 {April 1997}. Aart is now taken at pre-selected times, simply by moving that further introducing molecular beams into the mirror back and forth. The beautiful experiments by Leiden Group. Zewail and co-workers not only identified transition states and reaction intermediates for model What is more, with Aart’s arrival in Leiden, an reactions, but also clarified the mechanism for some amplified femtosecond (1 fs = 10-15 s) laser important chemical reactions. These experiments system, which was being used in Leiden for the were all carried out in the gas phase, in pulsed study of ultrafast processes in liquids, became molecular beams. available for experiments on surfaces due to the retirement of a senior staff member of a When one wants to transfer the same techniques to neighboring group. Aart then asked the investigate the dynamics of reactions at surfaces, undersigned, at that time working as a post-doc in there are a few complicating factors. First of all, one the group of Martin Wolf with Prof. Ertl at the has to get a UHV system leak-tight and Fritz-Haber-Institute in Berlin, to join his group in characterization equipment operative and Leiden to set up a new experiment to investigate simultaneously get the femtosecond laser system to the dynamics of surface reactions directly by work. Anyone who has worked in either surface means of time-resolved surface spectroscopy. I science or optics knows that to get one going is hard have already been working on that type of enough. Recent years, however, have seen a steady experiment in Berlin. increase in the reliability of commercial laser systems, and indeed, there have recently been Ahmed Zewail, at the California Institute of several studies successfully combining the two. Technology recently won the Nobel in Chemistry for his ground-breaking work using femtosecond A second complication is that the electronic levels lasers to investigate chemical reaction dynamics. are strongly smeared, shifted and broadened, when Zewail and co-workers were the first to a molecule or atom is close to a metal surface. This demonstrate the possibility of real-time is caused by the strong electronic coupling between monitoring the reactants turning into products as the electrons of the molecules on the surface and the Page - 2 - Gas-Surface News metal electron gas. The absence of well-defined (UCLA, Berkeley) for conventional (not time- resonances makes it hard to investigate such a resolved) SFG spectroscopy.[4] Time-resolved SFG system using electronic transitions in the visible or could provide an additional wealth of information UV to probe the reaction dynamics. A third on catalytic systems under reactive conditions. complication arises when one realizes that a monolayer of molecules at the surface is hard to We have a few vacancies for PhD students and detect optically, since it is optically very thin. The post-docs for this project. Those who are interested optical thickness of a system is defined as the should contact us. absorption cross section per sample unit length multiplied by the sample thickness. It is Mischa Bonn impossible to see changes in absorption due to the reaction when one sees no absorption to begin Leiden Institute of Chemistry with because there is only one layer of molecules. Leiden University P.O. Box 9502 The latter two problems can be overcome by the 2300 RA LEIDEN very elegant technique of time-resolved Sum- The Netherland Frequency-Generation (tr-SFG). The technique of [email protected] tr-SFG is essentially femtosecond RAIRS (Reflection Absorption InfraRed Spectroscopy): It allows one to record the vibrational spectrum of [1] J.A. Prybyla, H.W.K. Tom and G.D. Aumiller, adsorbates with very high sensitivity (signals from Phys. Rev. Lett. 68, 503 (1992). coverages below 10-3 monolayers of CO have [2] M. Bonn, S. Funk, Ch. Hess, D. N. Denzler, C. been observed) and very high time resolution Stampfl, M. Scheffler, M. Wolf and G. Ertl, Science (~100 fs). In analogy to the Zewail experiments, 285, 1042 (1999). the surface reaction is switched on by a pump [3] A. Bandara, J. Kubota, K. Onda, A. Wada, S.S. pulse, and the time evolution of the adsorbate is Kano, K. Domen and C. Hirose, J. Phys. Chem. B followed by means of time-resolved SFG. If we 102, 5951 (1998). take the desorption of NO from Ru(0001) as an [4] X. Su, P.S. Cremer, Y.R. Shen and G.A. example of a simple surface reaction, we know Somorjai, Phys. Rev. Lett. 68, 503 (1992). that the frequency of the N-O stretch vibration will change from 1825 cm-1 at the surface to 1876 cm-1 in the gas-phase. The temporal evolution of the vibrational frequency will give us information on how long it takes for molecules to desorb, after excitation of the substrate. It has already been demonstrated that important information on reaction dynamics and energy flow at surfaces can be obtained from such experiments [1, 2], specifically with time-resolved (in that case: picosecond) SFG [3].
Recommended publications
  • Ultrafast Dynamics in the Topological Insulator Bi2te3and Microscopic Domains at the Mott Transition in V2O3 Mahdi Hajlaoui
    Between metal and insulator : ultrafast dynamics in the topological insulator Bi2Te3and microscopic domains at the Mott transition in V2O3 Mahdi Hajlaoui To cite this version: Mahdi Hajlaoui. Between metal and insulator : ultrafast dynamics in the topological insulator Bi2Te3and microscopic domains at the Mott transition in V2O3. Other [cond-mat.other]. Univer- sité Paris Sud - Paris XI, 2013. English. NNT : 2013PA112194. tel-00924392 HAL Id: tel-00924392 https://tel.archives-ouvertes.fr/tel-00924392 Submitted on 6 Jan 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Universite´ Paris XI U.F.R. Scientifique d’Orsay THESE` pr´esent´ee `al’Universit´eParis XI pour obtenir le grade de Docteur en Sciences de l’Universite´ Paris XI, Orsay E.D. 107 – Specialit´ e´ : Physique Entre m´etal et isolant: dynamique ultra-rapide dans l’isolant topologique Bi2Te3 et domaines microscopiques `ala transition de Mott dans V2O3 par Mahdi HAJLAOUI Soutenue le 25 septembre 2013 devant le jury compos´ede : Petra Rudolf Rapporteur Ricardo Lobo Rapporteur Michel Heritier´ Examinateur Yannick Klein Examinateur Marino Marsi Directeur de th`ese Evangelos Papalazarou Co-directeur de th`ese ii Remerciement Je souhaite ici saluer et remercier tous ceux qui m’ont aid´e`a aller au bout de cette th`ese, ainsi qu’`ala r´eussite de ces formidables ann´ees de recherche.
    [Show full text]
  • Layer-By-Layer Assembly of Clay–Carbon Nanotube Hybrid
    University of Groningen Layer-by-Layer Assembly of Clay-Carbon Nanotube Hybrid Superstructures Chalmpes, Nikolaos; Kouloumpis, Antonios; Zygouri, Panagiota; Karouta, Niki; Spyrou, Konstantinos; Stathi, Panagiota; Tsoufis, Theodoros; Georgakilas, Vasilios; Gournis, Dimitrios; Rudolf, Petra Published in: ACS Omega DOI: 10.1021/acsomega.9b01970 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2019 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Chalmpes, N., Kouloumpis, A., Zygouri, P., Karouta, N., Spyrou, K., Stathi, P., ... Rudolf, P. (2019). Layer- by-Layer Assembly of Clay-Carbon Nanotube Hybrid Superstructures. ACS Omega, 4(19), 18100-18107. https://doi.org/10.1021/acsomega.9b01970 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 11-12-2019 This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE Updated: 15.11.2020 Surname : Gournis Forename : Dimitrios Work address Nationality : Greek Department of Materials Science and Engineering Sex: Male University of Ioannina Marital status: married 45110 Ioannina, GREECE Place of birth: Athens (Greece) Tel. (+30) 26510 0-7141 (office), -7366 (lab) Date of Birth: 19/06/1969 (+30) 2121067750 (home) Fax. (+30) 26510 07074 ResearcherID: K-3410-2016 E-mail: [email protected] ID orcid.org/0000-0003-4256-8190 URL:www.materials.uoi.gr/ccl/LNM-About.html Scopus ID: 6602837399 Google Scholar: https://scholar.google.com/citations?user=3tc7tMUAAAAJ&hl=el Education – Professional Experience 05/14-today Full Professor, Department of Materials Science and Engineering, University of Ioannina, Greece 10/09-05/14 Associate Professor, Department of Materials Science and Engineering, University of Ioannina, Greece 09/08-02/09 Visiting Professor, Zernike Institute for Advanced Materials, University of Groningen (RuG), the Netherlands 04/05-10/09 Assistant Professor (tenure), Department of Materials Science and Engineering, University of Ioannina, Greece 11/04-05/05 Research Associate, Materials Science Centre, University of Groningen (RuG), the Netherlands 11/99-05/04 Assistant Professor (fixed term contract), Department of Materials Science and Engineering, University of Ioannina, Greece 03/99-02/00 Postdoctoral research associate, Institute of Materials Science NCSR “Demokritos”, Greece. 1998 Ph.D. in Materials Chemistry, at the Department of Chemical Engineering, Faculty of Materials Science and Technology, National Technical University of Athens. 03/93-09/97 Postgraduate Student, Institute of Physical Chemistry, NCSR “Demokritos”, Greece. 1992 First Degree (B.Sc.) in Chemistry, University of Ioannina, Greece.
    [Show full text]
  • Astrochemistry Programme
    Astrochemistry Programme April 12, 2010 Writing Group Petra Rudolf RUG Groningen Wim Ubachs VU Amsterdam Wybren Jan Buma UvA Amsterdam Ewine van Dishoeck UL Leiden Gerrit Groenenboom RU Nijmegen F. Matthias Bickelhaupt VU Amsterdam Harold Linnartz UL Leiden Xander Tielens UL Leiden Jos Oomens FOM Rijnhuizen, Nieuwegein Pascale Ehrenfreund UL Leiden Ben Feringa RUG Groningen 2 Content 1. General Introduction ________________________________________________ 5 2. Network Goals and Objectives _________________________________________ 7 3. Gas phase astrochemistry ____________________________________________ 9 3.1 Background_________________________________________________________ 9 3.2 Objectives_________________________________________________________ 10 3.3 Projects___________________________________________________________ 12 3.3.1 Photodissociation _______________________________________________ 12 Project 3.1: Photodissociation experiments on small molecules_________________ 13 Project 3.2: Photodissociation and excitation of molecules in protoplanetary disks__ 15 Project 3.3: Photodissociation branching ratios of large molecules ______________ 17 3.3.2. Inelastic collisions ______________________________________________ 19 Project 3.4: Vibration-rotation inelastic collisions____________________________ 20 Project 3.5: Experimental studies of vibration-rotation inelastic collisions_________ 22 Project 3.6: Pure rotational inelastic collisions ______________________________ 23 3.4 Overview of the projects______________________________________________
    [Show full text]
  • Descargar Libro De Resúmenes En .Pdf
    105a Reuni´onde la Asociaci´onF´ısicaArgentina Primera Webinar Septiembre de 2020 ´Indice general Agradecimientos 3 Autoridades 5 Coordinadores de la Divisiones6 Auspiciantes 7 Anales AFA 8 Sedes y Modalidad de la Reuni´on9 Cronograma 9 COVID-19 11 Actividades propuestas por la Comisi´onde G´enerode la AFA 16 Atm´osfera,Tierra y Agua 18 Ense~nanzade la F´ısica 33 F´ısicaAt´omicay Molecular 53 F´ısicaM´edica 71 F´ısicaNuclear 109 Fuidos y Plasma 119 Fot´onicay Optica´ 139 Fundamentos e Informaci´onCu´antica 185 Industria y Tecnolog´ıa 218 Materia Blanda 247 Materia Condensada 285 Mec´anicaEstad´ıstica, F´ısicaNo-Lineal y Sistemas Complejos 365 Part´ıculasy Campos 412 Premio M´asperi 435 2 Agradecimientos El Comit´eOrganizador de la 105o Reuni´onde la Asociaci´onF´ısica Argentina, RAFA, tuvo el placer de darles la bienvenida a la primera Webinar, sin duda un gran desaf´ıoy orgullo por ser la primera reuni´onde nuestra Asociaci´onque se celebr´oen un formato virtual. Como todas las actividades durante el a~no2020, la RAFA no fue inmune a la pandemia, as´ıque estos p´arrafosno son solo de agradecimiento, sino tambi´enun peque~norecorrido por las cosas que logramos concretar y las que quedaron para otra oportunidad. Durante la reuni´onpusimos a disposici´onde los participantes un libro de res´umenesen formato html, una novedad, y dejamos la tarea de proveer el mismo en formato tradicional una vez concluida la reuni´on. Queremos empezar agradeciendo, muy especialmente, a las autoridades de AFA Central por impulsar la realizaci´onde esta reuni´onvirtual, en particular a Gustavo Monti y Sergio Cannas con quienes discutimos c´omopasar de la tradicional reuni´onpresencial a una reuni´onen formato remoto y nos ayudaron durante los primeros y vacilantes pasos de esta aventura.
    [Show full text]
  • Graphene from the University of Idaho Thermolyzed Asphalt Reaction (GUITAR) Is It an Amorphous Carbon, Graphite Or a New Carbon
    Electrochemical Sensing with the Pseudo-Graphite, GUITAR Graphene from the University of Idaho Thermolyzed Asphalt Reaction I. Francis Cheng, University of Idaho [email protected] 01/26/2018 University of Idaho - [email protected] – 49th SWAP 1 An Ideal Electrode Widest Possible Electrochemical Window - + Potential n+ H Gassing: 2H O + 2e- H + 2OH- Corrosion: M M + ne- 2 2 2 + - O2 Gassing: 2H2O O2 + 4H + 4e - e- Ox Fast Heterogeneous + e- Electron Transfer Red 01/26/2018 2 GUITAR Discovery in 2009 • 2008 - Residue from Workup of Oil Shale Analysis • Optical and Scanning Electron Microscopies • Clear Basal and Edge Plane Geometries • X-Ray Photoelectron Spectroscopy • Almost Pure sp2 carbon (2017 reinterpretation) 01/26/2018 University of Idaho - [email protected] – 49th SWAP 3 Basal/Edge Planes SEM -seem identical GUITAR HOPG GUITAR What Is It? • Evidence that is a Nanocrystalline (Disordered) Graphite • Raman Spectroscopy • X-ray Photoelectron Spectroscopy • Solid-State NMR • Thermogravimetric Analysis • Not a Graphite – Not Observed In Scientific Literature – Pseudo Graphite • Atomic Forces Microscopy • Electrochemistry 01/26/2018 University of Idaho - [email protected] – 49th SWAP 5 Raman Studies • 2009 only with 532 nm D and G band indicate nano-crystalline graphite. • 2016 Study Boise State University - 633, 532, 514, 488 and 442 nm D-Band 1300 – 1400 cm-1 G-Band • Defective Graphites 1575 – 1600 cm-1 G’ or 2D Band – 2nd Harmonic of D-Band 2400-2800 cm-1 01/26/2018 University of Idaho - [email protected] – 49th SWAP 6 Raman 633 nm Laser Excitation for GUITAR 532 nm 442 nm 663 nm D G 2D or G’ D-Band = 1347 nm, I = 400 G band = 1583 nm, I = 375 01/26/2018 University of Idaho - [email protected] – 49th SWAP 7 Elaser (eV) Slope Graphite (cm-1/ev) GUITAR Literature D 53 50 G 4 10 2D 117 100 Crystal Grain Size, La From Raman I(D)/I(G) @514 nm • Empirical Relationship – A.C.
    [Show full text]
  • Advanced Materials WINTER 2021
    Advanced Materials WINTER 2021 SPREAD KNOWLEDGE Editorial Spread knowledge A very special year has passed. Covid-19 gave the framework for our professional and private life. This was not always easy, it was not always nice, but it was no stop sign to research. Research has actually gained a lot of visibility. European leaders decided to tackle Covid-19 by listening to scientific advisors, use evidence-based scenario’s, see hypothesis been proven wrong or right and reacting to it. The teams working on Covid-vaccines have made enormous leaps in a short time to provide new, safe vaccines that may help to recover society. This new focus on scientific advice and research solving a problem, may be an enormous opportunity to build on for all scientific disciplines. Science is not a hobby; Colophon it is not just an opinion. Science is ideally balancing existing knowledge, new results, interpretation and Editors critical discussion to a sound consensus. It provides Jan Peter Birkner solutions to complex problems, some of which overseen by the public, some of which at the center of interest. Wherever in this spectrum research on Advanced Photography Materials is, investing in it may be essential already Sylvia Germes in the near future. And spreading the knowledge on what is going on Design in our labs may create ground for the next good to Mónica Espinoza happen. Therefore: stay safe, stay curious, enjoy our stories here, and keep telling your story. Cangahuala Print Ricoh Grafimedia Contact Coordinating Office Nijenborgh 4 Eric Heeres 9747 AG
    [Show full text]
  • University of Groningen Microscopic Characterisation of Suspended
    University of Groningen Microscopic characterisation of suspended graphene grown by chemical vapour deposition Bignardi, L.; Dorp, W.F. van; Gottardi, S.; Ivashenko, O.; Dudin, P.; Barinov, A.; de Hosson, J.T.M.; Stöhr, M.; Rudolf, P. Published in: Nanoscale DOI: 10.1039/c3nr02386a IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Final author's version (accepted by publisher, after peer review) Publication date: 2013 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Bignardi, L., Dorp, W. F. V., Gottardi, S., Ivashenko, O., Dudin, P., Barinov, A., de Hosson, J. T. M., Stöhr, M., & Rudolf, P. (2013). Microscopic characterisation of suspended graphene grown by chemical vapour deposition. Nanoscale, 5(19), 9057-9061. https://doi.org/10.1039/c3nr02386a Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • A Roadmap to High Quality Chemically Prepared Graphene Régis Y N Gengler, Konstantinos Spyrou, Petra Rudolf
    A roadmap to high quality chemically prepared graphene Régis y N Gengler, Konstantinos Spyrou, Petra Rudolf To cite this version: Régis y N Gengler, Konstantinos Spyrou, Petra Rudolf. A roadmap to high quality chemically pre- pared graphene. Journal of Physics D: Applied Physics, IOP Publishing, 2010, 43 (37), pp.374015. 10.1088/0022-3727/43/37/374015. hal-00569706 HAL Id: hal-00569706 https://hal.archives-ouvertes.fr/hal-00569706 Submitted on 25 Feb 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Confidential: not for distribution. Submitted to IOP Publishing for peer review 13 May 2010 A r oadmap to high quality chemically prepared graphene Régis Y.N. Gengler*, Ko nstantinos Spyrou and Petra Rudolf* Zernike Institute for Advanced Materials , University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands. E-mail: [email protected] ; [email protected] Abstract Graphene was discovered half a decade ago and proved the existence of a two -dimensional system which becomes stable as a result of 3D corrugation . I t appeared very quickly that this exceptional material ha d truly outstanding electronic, mechanical, thermal and optical properties .
    [Show full text]
  • 1 C. Caspers, S. Flade, M. Gorgoi, A. Gloskovskii, W. Drube, C. M. Schneider, and M
    1 C. Caspers, S. Flade, M. Gorgoi, A. Gloskovskii, W. Drube, C. M. Schneider, and M. Müller, "Ultrathin magnetic oxide EuO films on Si(001) using SiO[sub x] passivation—Controlled by hard x-ray photoemission spectroscopy," Journal of Applied Physics 113 (17), 17C505 (2013). 2 S. Döring, F. Schönbohm, U. Berges, D. E. Bürgler, C. M. Schneider, M. Gorgoi, F. Schäfers, and C. Westphal, "Hard x-ray photoemission spectroscopy on the trilayer system MgO/Au/Fe using standing-wave excitation," Journal of Physics D: Applied Physics 46 (37), 375001 (2013). 3 E. O. Filatova, I. V. Kozhevnikov, A. A. Sokolov, Y. V. Yegorova, A. S. Konashuk, O. Y. Vilkov, F. Schaefers, M. Gorgoi, and A. S. Shulakov, "X-ray and photoelectron spectroscopic nondestructive methods for thin films and interfaces study. Application to SrTiO3 based heterostuctures," Microelectronic Engineering 109, 13-16 (2013). 4 E. O. Filatova, A. A. Sokolov, Y. V. Egorova, A. S. Konashuk, O. Y. Vilkov, M. Gorgoi, and A. A. Pavlychev, "X-ray spectroscopic study of SrTiOx films with different interlayers," Journal of Applied Physics 113 (22), 224301 (2013). 5 D. Gerlach, R. G. Wilks, D. Wippler, M. Wimmer, M. Lozac'h, R. Felix, A. Muck, M. Meier, S. Ueda, H. Yoshikawa, M. Gorgoi, K. Lips, B. Rech, M. Sumiya, J. Hupkes, K. Kobayashi, and M. Bar, "The silicon/zinc oxide interface in amorphous silicon-based thin-film solar cells: Understanding an empirically optimized contact," Applied Physics Letters 103 (2), 023903 (2013). 6 D. Gerlach, D. Wippler, R. G. Wilks, M. Wimmer, M. Lozac'h, R. Félix, S.
    [Show full text]
  • Graphene/Carbon Dot Hybrid Thin Films Prepared by a Modified
    This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Article http://pubs.acs.org/journal/acsodf Graphene/Carbon Dot Hybrid Thin Films Prepared by a Modified Langmuir−Schaefer Method Antonios Kouloumpis,†,§ Eleni Thomou,† Nikolaos Chalmpes,† Konstantinos Dimos,† Konstantinos Spyrou,† Athanasios B. Bourlinos,‡ Ioannis Koutselas,∥ Dimitrios Gournis,*,† and Petra Rudolf*,§ † ‡ Department of Materials Science and Engineering and Physics Department, University of Ioannina, GR-45110 Ioannina, Greece § Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG Groningen, The Netherlands ∥ Department of Materials Science, University of Patras, GR-26504 Patras, Greece *S Supporting Information ABSTRACT: The special electronic, optical, thermal, and mechanical properties of graphene resulting from its 2D nature, as well as the ease of functionalizing it through a simple acid treatment, make graphene an ideal building block for the development of new hybrid nanostructures with well-defined dimensions and behavior. Such hybrids have great potential as active materials in applications such as gas storage, gas/liquid separation, photocatalysis, bioimaging, optoelectronics, and nanosensing. In this study, luminescent carbon dots (C-dots) were sandwiched between oxidized graphene sheets to form novel hybrid multilayer films. Our thin-film preparation approach combines self-assembly with the Langmuir−Schaefer deposition and uses graphene oxide nanosheets as template for grafting C-dots in a bidimensional array. Repeating the cycle results in a facile and low-cost layer-by-layer procedure for the formation of highly ordered hybrid multilayers, which were characterized by photoluminescence, UV−visible, X-ray photoelectron, and Raman spectroscopies, as well as X-ray diffraction and atomic force microscopy.
    [Show full text]
  • Electrically-Responsive Reversible Polyketone/MWCNT Network Through Diels-Alder Chemistry
    polymers Article Electrically-Responsive Reversible Polyketone/MWCNT Network through Diels-Alder Chemistry Rodrigo Araya-Hermosilla 1,*, Andrea Pucci 2 , Patrizio Raffa 3 , Dian Santosa 3, Paolo P. Pescarmona 3 ,Régis Y. N. Gengler 4, Petra Rudolf 4 , Ignacio Moreno-Villoslada 5 and Francesco Picchioni 3,* 1 Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O. Box 8940577, San Joaquín, Santiago 8940000, Chile 2 Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; [email protected] 3 Department of Chemical Product Engineering, ENTEG, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands; [email protected] (P.R.); [email protected] (D.S.); [email protected] (P.P.P.) 4 Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands; [email protected] (R.Y.N.G.); [email protected] (P.R.) 5 Laboratorio de Polímeros, Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110033, Chile; [email protected] * Correspondence: [email protected] (R.A.-H.); [email protected] (F.P.); Tel.: +56-2-27877911 (R.A.-H.); +31-50-3634333 (F.P.) Received: 7 September 2018; Accepted: 25 September 2018; Published: 28 September 2018 Abstract: This study examines the preparation of electrically conductive polymer networks based on furan-functionalised polyketone (PK-Fu) doped with multi-walled carbon nanotubes (MWCNTs) and reversibly crosslinked with bis-maleimide (B-Ma) via Diels-Alder (DA) cycloaddition. Notably, the incorporation of 5 wt.% of MWCNTs results in an increased modulus of the material, and makes it thermally and electrically conductive.
    [Show full text]