Enantioselective Organocatalytic Epoxidation Using Hypervalent Iodine Reagents

Total Page:16

File Type:pdf, Size:1020Kb

Enantioselective Organocatalytic Epoxidation Using Hypervalent Iodine Reagents Tetrahedron 62 (2006) 11413–11424 Enantioselective organocatalytic epoxidation using hypervalent iodine reagents Sandra Lee and David W. C. MacMillan* Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA Received 29 June 2006; accepted 12 July 2006 Available online 23 August 2006 Abstract—A rare example of a hypervalent iodine reagent participating in a 1,4-heteroconjugate addition reaction is reported for the organo- catalytic, asymmetric epoxidation of a,b-unsaturated aldehydes using imidazolidinone catalyst 1. Development of an ‘internal syringe pump’ effect via the slow release of iodosobenzene from an iminoiodinane source provides high levels of reaction efficiency and enantiomeric control in the asymmetric epoxidation of electron-deficient olefins. 15N NMR studies were conducted to elucidate the reaction pathways that lead to catalyst depletion in the presence of prototypical oxidants. These NMR studies also provided the mechanistic foundation for the application of iminoiodinanes as an internal slow release oxidant to circumvent these catalyst depletion pathways. Ó 2006 Elsevier Ltd. All rights reserved. 1. Introduction upon the Weitz–Scheffer reaction,10 wherein a nucleophilic chiral peroxide adds to an enone or enal (Fig. 1). This strat- The enantioselective catalytic oxidation of olefins is argu- egy of hydroperoxide delivery via a homogeneous chiral ably one of the most powerful transformations known to metal complex has been adopted and developed by Enders11 practitioners of chemical synthesis.1 Indeed, since the inven- in a stoichiometric manner and in a catalytic approach by tion of the Sharpless asymmetric epoxidation,2 there has Jackson12 and Shibasaki.13 Alternatively, asymmetric phase been an ever-increasing demand for catalyst-controlled transfer agents have been utilized to transport a reactive processes that allow efficient and predictable access to oxo-species to olefin substrates as epitomized in the work enantioenriched oxiranes. Significant efforts to expand the of Roberts14 using polyamino acids and in the cinchona scope of such catalytic epoxidations have been made via alkaloid-derived salts of Lygo15 and Corey.16 the seminal contributions of Jacobsen3 and Katsuki4 using metal-ligated systems for the electrophilic delivery of oxy- gen. Complementary to these established organometallic strategies, Shi,5 Denmark,6 Yang,7 and Armstrong8 have de- Mg-Catalyzed Jackson Epoxidation O R' veloped an elegant organocatalytic approach that relies upon R' OH catalyst O EtO a ketone-derived dioxirane catalyst for the asymmetric epoxi- MgBu2 R O R O EtO dation of trisubstituted and 1,2-trans-disubstituted alkenes. TBHP, 4Å MS OH O These epoxidation methods are applicable to several olefin R = aryl, alkyl; R' = Me, Et, aryl 81–94% ee classes; however, they do not encompass the enantioselec- tive epoxidation of electron-deficient olefins. Ln-BINOL Catalyzed Shibasaki Epoxidation Enantioselective Catalytic Epoxidation of Olefins R Ln(O-iPr)3 OR' OR' Ln = La,Yb oxidant, catalyst O OH R O asymmetric O CMHP or TBHP R O OH organometallic or 4Å MS R = H, CH2OH organocatalyst R = Ph, Me, i-Pr; R' = alkyl, Ph 83–94% ee epoxide products = stereodefined sp3 electrophile versatile electrophile for chemical synthesis applications Corey Phase-Transfer Epoxidation Me OBn OR' OR' Existing technologies for the enantioselective epoxidation of O N 9 catalyst olefins via LUMO-lowering activation have been founded R O Br KOCl R O N n Keywords: Epoxidation; Organocatalysis; Enantioselective; Iodosobenzene. R = aryl, Cy, -C5H11; R' = aryl 91–99% ee * Corresponding author. Tel.: +1 626 395 6044; fax: +1 626 795 3658; e-mail: [email protected] Figure 1. General methods for catalytic nucleophilic epoxidations. 0040–4020/$ - see front matter Ó 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2006.07.055 11414 S. Lee, D. W. C. MacMillan / Tetrahedron 62 (2006) 11413–11424 Most recently, Jørgensen and co-workers17 have demon- cyclopropanation studies that were ongoing in our labora- strated the asymmetric organocatalytic epoxidation of a,b- tory.19a In that methodology, a pendent thionium moiety unsaturated aldehydes using iminium catalysis. In these functions as a suitable leaving group for intramolecular en- elegant studies, a variety of enals rapidly underwent asym- amine cyclization to yield three-membered carbocycles. metric epoxidation using hydrogen peroxide as the stoichio- With this in mind, we recognized that an analogous epoxi- metric oxidant in the presence of a proline-derived catalyst. dation mechanism would rely on the judicious selection of In this publication, we further demonstrate the use of our chi- an ambiphilic oxygen source that could function as a viable ral imidazolidinone salts as iminium activation catalysts for nucleophile for the conjugate addition step, yet would be the asymmetric epoxidation of a,b-unsaturated aldehydes. suitably electrophilic (via incorporation of an electronega- This transformation provides rapid access to enantio- tive leaving group (LG)) to enable intramolecular enamine enriched 1,2-trans-formyl epoxides, an ambiphilic class of oxidation and oxirane formation. electrophile of known value in chemical synthesis.18 2. Results and discussion In 2002, we initiated studies to develop a novel organocata- lytic strategy for the asymmetric epoxidation of electron- 2.1. Preliminary investigations deficient olefins based upon the activation principle of iminium catalysis. Having demonstrated the capacity of chi- Our studies began with an investigation to define potential ral amines to function as asymmetric catalysts and building oxygen sources that would participate in the requisite 1,4- on previous successes in cycloadditions and 1,4-conjugate 19 heteroconjugate addition/enamine cyclization. Initial exper- additions, it was anticipated that a nucleophilic oxygen iments were performed with crotonaldehyde and a variety of that incorporated a suitable leaving group could add with commercially available oxidants in the presence of catalyst enantiofacial selectivity to an iminium-activated a,b-unsatu- 1$trifluoroacetic acid (TFA) salt. To our delight, the desired rated aldehyde (Fig. 2). Subsequent enamine formation 2,3-epoxyaldehyde product (2) was readily accessed using followed by intramolecular trapping of the pendent electro- a variety of oxygen sources (Table 1). Implementation of philic oxygen with concomitant expulsion of the oxygen- m-CPBA provided the epoxide product 2 with encouraging tethered leaving group should then produce an oxirane selectivity levels (Table 1, entry 3, 73% ee); however, studies (Fig. 3). At the outset of these studies, we felt that the pro- to define the utility of this reagent (solvent, temperature) re- posed cyclization step had good precedent given related sulted in little improvement in overall enantiocontrol. The use of peroxides, such as tert-butyl hydrogen peroxide and hydrogen peroxide20 also provided the desired oxirane with notable enantioselectivities (Table 1, entries 4 and 5). OMe However, attempts to employ such oxidants with less reac- N X tive substrates (such as cinnamaldehyde) resulted mainly Me N in the production of the catalyst N-oxide derivative, a catalyst Me Ph Me depletion pathway that significantly reduces reaction effi- X ciency. Unfortunately, bleach and pyridine N-oxide were Si- R face Re-face not found to be viable reagents for this process (Table 1, blocked exposed catalyst-aldehyde entry 6). iminium complex OLG We next examined the use of hypervalent l3-iodanes as Figure 2. Rationale of catalyst-controlled enantioselectivity utilizing an potential oxidants for this organocatalytic Weitz–Scheffer MM3-2 model of the catalyst. reaction. While iodosobenzene is routinely employed as an oxygen transfer agent in metal-oxo mediated epoxidations,21 Me O O N •HX Me O Me Table 1. Initial survey of oxygen sources for epoxidation O Me N 20 mol% 1•TFA Me H O Me Ph oxidant (1 eq) H2O H O catatyst 1 2 O Me O Me CH2Cl2 (0.2 M) 18 h, –30 °C (3 equiv) 2 Me O Me O N X N X a b Me Me Entry Oxidant % Conversion %ee N N Me Me 1 Pyridine N-oxide NR — Me Ph Me Ph 2 OXONEÒ NR — O iminium 3 m-CPBA 34 73 R Me O R 4 t-BuOOHc 35 69 N d 5H2O2 959 Me e N 6 NaOCl 90 Me 7 PhI]O4372 LG Me Ph OLG LG a enamine O Conversion determined by GC relative to methyl benzyl ether. b R Enantiomeric excess determined by chiral GC analysis (Chiraldex G-TA). c Used as 5 M solution in decane. Figure 3. Proposed organocatalytic cycle for oxirane formation and the d Used as a 50% solution in water. generation of an a,b-epoxy aldehyde. e Used as a 5.25% solution in water. S. Lee, D. W. C. MacMillan / Tetrahedron 62 (2006) 11413–11424 11415 Table 2. Effect of solvent on the epoxidation reaction Table 3. Effect of acid co-catalyst on the epoxidation reaction 20 mol% 1•TFA 20 mol% 1•TFA O O PhI=O (1 eq) PhI=O (1 eq) O Me O Me O Me O Me solvent (0.2 M) CH2Cl2 (0.2 M) 20 h, –30 °C 18 h, –30 °C (3 equiv) 2 (3 equiv) 2 a b c a b Entry Solvent 3 % Conversion %ee Entry HX pKa % Conversion %ee 1 DMF (10% H2O) — 87 25 1 TfOH À14 74 87 2 MeCN 36.6 55 33 2 HClO4 À10 68 88 3 Acetone 21.0 41 42 3 p-TSAc À2.6 50 76 4CH2Cl2 8.9 50 80 4TFAÀ0.3 42 72 5 THF 7.5 14 76 5 DCAd 1.3 27 72 e 6 THF (10% H2O) — 12 75 6CNA2.5 27 69 7 CHCl 4.8 45 82 3 a 8 Ether 4.3 29 63 Conversion determined by GC relative to benzyl ether. b 9 Toluene 2.4 63 64 Enantiomeric excess determined by chiral GC analysis (Chiraldex G-TA). c p-Toluenesulfonic acid. a See Ref. 38. d Dichloroacetic acid. b Conversion determined by GC relative to tridecane.
Recommended publications
  • Cholesteryl Ester Hydroperoxide Formation in Myoglobin-Catalyzed
    Biochemical Pharmacology, Vol. 55, pp. 333–340, 1998. ISSN 0006-2952/98/$19.00 1 0.00 © 1998 Elsevier Science Inc. All rights reserved. PII S0006-2952(97)00470-X Cholesteryl Ester Hydroperoxide Formation in Myoglobin-Catalyzed Low Density Lipoprotein Oxidation CONCERTED ANTIOXIDANT ACTIVITY OF CAFFEIC AND P-COUMARIC ACIDS WITH ASCORBATE Otı´lia Vieira,*† Joa˜o Laranjinha,*† Vı´tor Madeira† and Leonor Almeida*† *LABORATORY OF BIOCHEMISTRY,FACULTY OF PHARMACY; AND †CENTER FOR NEUROSCIENCES, UNIVERSITY OF COIMBRA, 3000 COIMBRA,PORTUGAL ABSTRACT. Two diet-derived phenolic acids, caffeic and p-coumaric acids, interplayed with ascorbate in the protection of low density lipoproteins (LDL) from oxidation promoted by ferrylmyoglobin. Ferrylmyoglobin, a two-electron oxidation product from the reaction of metmyoglobin and H2O2, was able to oxidize LDL, degrading free cholesterol and cholesteryl esters. Upon exposure to ferrylmyoglobin, LDL became rapidly depleted of cholesteryl arachidonate and linoleate, which turn into the corresponding hydroperoxides. Cholesteryl oleate and cholesterol were, comparatively, more resistant to oxidation. Caffeic (2 mM) and p-coumaric (12 mM) acids efficiently delayed oxidations, as reflected by an increase in the lag times required for linoleate hydroperoxide and 7-ketocholesterol formation as well as for cholesteryl linoleate consumption. At the same concentration, ascorbate, a standard water-soluble antioxidant, was less efficient than the phenolic acids. Additionally, phenolic acids afforded a protection to LDL that, conversely to ascorbate, extends along the time, as inferred from the high levels of cholesteryl linoleate and cholesteryl arachidonate left after 22 hr of oxidation challenging. Significantly, the coincubation of LDL with ascorbate and each of the phenolic acids resulted in a synergistic protection from oxidation.
    [Show full text]
  • SYNTHESIS and PROPERTIES of SOME ARALKYL Hymoperoxides
    SYNTHESIS AND PROPERTIES OF SOME ARALKYL HYmOPEROXIDES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By ARLO d / bCGGS, B.S., M.S. The Ohio State University 1954 Approved by: Department of Chemistry ACKNOWLEDGEMENT The author wishes to express sincere appreciation to Professor Cecil E. Boord for his advice and counsel during this investigation* Thanks also are due Dr. Kenneth W*. Greenlee for his continual interest and guidance and his cooperation in ex­ tending the facilities of the American Petroleum Institute Research Project 4-5* The financial support of this work by the Firestone Tire and Rubber Company is gratefully acknowledged* ii TABLE OF CONTENTS Page I. INTRODUCTION................................ 1 II. LITERATURE S URVEY ............... 2 III. STATEMENT OF THE PROBLEM.................... 10 IV. DISCUS5IŒ ........................... 11 A. Methods of Preparing Hydroperoxides .... 12 1. Preparation of hydroperoxides from alcohols ............. 12 a. a-methylbenzyl hydroperoxide ...... 12 b. benzyl hydroperoxide .......... l6 c. cinnamyl and a-phenylallyl hydroperoxides 17 d. 1,2,3,4-tetrahydro-l-naphthyl hydro­ peroxide ............ 22 e. a-indanyl hydroperoxide ........ 23 f. 0-, m- and p-methylbenzyl hydroperoxides 24 g. m- and p-methoxybenzyl hydroperoxides. 28 h. 1,1-diphenylmethyl hydroperoxide .... 31 i. 1,2-diphenylethyl hydroperoxide .... 32 j. 1-a-naphthyl- and l-J3-naphthylethyl hydroperoxides ........ 33 k. 1-styrylethyl hydroperoxide 35 1. 4-a-dimethylbenzyl and 4-methoxy-a- methylbenzyl hydroperoxides ...... 36 m. a-ethylbenzyl and a-ethyl-p-methylbenzyl hydroperoxides ....... ........ 36 n. a-n-propylbenzyl and a-isopropylbenzyl hydroperoxides .................... 37 0. a-2,5“trimethylbenzyl hydroperoxide .
    [Show full text]
  • Epoxidations and Hydroperoxidations of A,ß-Unsaturated Ketones
    Springer Theses Epoxidations and Hydroperoxidations of a,ß-Unsaturated Ketones An Approach through Asymmetric Organocatalysis Bearbeitet von Corinna Reisinger 1. Auflage 2012. Buch. xvi, 260 S. Hardcover ISBN 978 3 642 28117 4 Format (B x L): 15,5 x 23,5 cm Gewicht: 578 g Weitere Fachgebiete > Chemie, Biowissenschaften, Agrarwissenschaften > Analytische Chemie > Organische Chemie Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Chapter 2 Background 2.1 Asymmetric Organocatalysis For a long time, the realm of asymmetric catalysis was dominated by metal and biocatalysis. Yet, at the beginning of this century, List’s discovery of the (S)-proline- catalyzed direct asymmetric intermolecular aldol reaction [1] together with the development of an asymmetric Diels–Alder reaction catalyzed by a chiral imidazo- lidinone salt by MacMillan et al. [2] have raised awareness of the potential of purely organic molecules as efficient catalysts for a variety of asymmetric transformations and brought to life the term ‘‘organocatalysis’’ to address this research field (Scheme 2.1). 2.1.1 Historical Development Organocatalysis has a rich background as it is suggested that extraterrestrial, enantiomerically enriched amino acids such as (S)-alanine and (S)-isovaline played a decisive role in the prebiotic formation of key building blocks such as sugars by promoting the self-aldol reaction of glycolaldehydes in water [3].
    [Show full text]
  • Newly Observed Peroxides and the Water Effect on the Formation And
    EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmos. Chem. Phys., 13, 5671–5683, 2013 Atmospheric Atmospheric www.atmos-chem-phys.net/13/5671/2013/ doi:10.5194/acp-13-5671-2013 Chemistry Chemistry © Author(s) 2013. CC Attribution 3.0 License. and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Newly observed peroxides and the water effect on the formation and Open Access removal of hydroxyalkyl hydroperoxides in the ozonolysis of Biogeosciences Biogeosciences isoprene Discussions D. Huang, Z. M. Chen, Y. Zhao, and H. Liang Open Access Open Access State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Climate Engineering, Peking University, Beijing 100871, China Climate of the Past of the Past Correspondence to: Z. M. Chen ([email protected]) Discussions Received: 5 January 2013 – Published in Atmos. Chem. Phys. Discuss.: 25 February 2013 Open Access Open Access Revised: 4 May 2013 – Accepted: 15 May 2013 – Published: 12 June 2013 Earth System Earth System Dynamics Dynamics Abstract. The ozonolysis of alkenes is considered to be an lows them to become involved in atmospheric chemical pro- Discussions important source of atmospheric peroxides, which serve as cesses, e.g., SOA formation and radical recycling. oxidants, reservoirs of HOx radicals, and components of sec- Open Access ondary organic aerosols (SOAs). Recent laboratory investi- Geoscientific Geoscientific Open Access gations of this reaction identified hydrogen peroxide (H2O2) Instrumentation Instrumentation and hydroxymethyl hydroperoxide (HMHP) in ozonolysis 1 Introduction Methods and Methods and of isoprene.
    [Show full text]
  • T-Hydro Tert-Butyl Hydroperoxide (TBHP) Product Safety Bulletin
    T-Hydro Tert-Butyl Hydroperoxide (TBHP) Product Safety Bulletin lyondellbasell.com Foreword Lyondell Chemical Company (“Lyondell”), a LyondellBasell company, This Product Safety Bulletin should be evaluated to determine applicability is dedicated to continuous improvement in product health, safety and to your specific requirements. Please make sure you review the environmental performance. Included in this effort is a commitment to government regulations, industry standards and guidelines cited in this support our customers by providing guidance and information on the safe bulletin that might have an impact on your operations. use of our products. For Lyondell, environmentally sound operations, like Lyondell is ready to support our customers’ safe use of our products. For environmentally sound products, make good business sense. additional information and assistance, please contact your LyondellBasell Lyondell Product Safety Bulletins are prepared by our Environmental, customer representative. Health and Safety Department with the help of experts from our LyondellBasell is a member of SPI’s Organic Peroxide Producers Safety manufacturing and research facilities. The data reflect the best Division (OPPSD). information available from public and industry sources. This document is provided to support the safe handling, use, storage, transportation and March 2016 ultimate disposal of our chemical products. Telephone numbers for transportation emergencies: CHEMTREC +1-800-424-9300 International (call collect) +1-703-527-3887 or CANUTEC (in Canada)
    [Show full text]
  • Organic & Biomolecular Chemistry
    Organic & Biomolecular Chemistry Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/obc Page 1 of 12 Organic & Biomolecular Chemistry Journal Name RSCPublishing ARTICLE A Powerful Combination: Recent Achievements on Using TBAI and TBHP as Oxidation System Cite this: DOI: 10.1039/x0xx00000x Xiao-Feng Wu,a,b* Jin-Long Gong,a and Xinxin Qia Manuscript Received 00th January 2012, The recent achievements on using TBAI (tetrabutylammonium iodide) and TBHP (tert-butyl Accepted 00th January 2012 hydroperoxide) as oxidation system have been summarized and discussed. DOI: 10.1039/x0xx00000x www.rsc.org/ Introduction Accepted Oxidative transformation is one of the fundamental reactions in TBAI-catalyzed C-C bonds formation modern organic synthesis, which have experienced impressive [1] progress during the last decades.
    [Show full text]
  • Asymmetric Epoxidation of Electron-Deficient Olefins
    186 Current Organic Synthesis, 2008, 5, 186-216 Asymmetric Epoxidation of Electron-Deficient Olefins David Díez*, Marta G. Núñez, Ana B. Antón, P. García, R.F. Moro, N.M. Garrido, Isidro S. Marcos, P. Basabe and Julio G. Urones Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Salamanca, 37006 Salamanca, Spain Abstract: This paper focuses on the latest developments in asymmetric epoxidation of electron-deficient olefins since the review by Por- ter and Skidmore on chiral ligand-metal peroxide systems, polyamino acid catalysed and organocatalysed epoxidations. Particular atten- tion has been paid to the most recent advances using chiral pyrrolidines as organocatalysts. Key Words: Asymmetric epoxidation, electron deficient olefins, organocatalysis, dioxiranes, chiral ligand–metal peroxide systems, Juliá- Colonna epoxidation. Dedicated to Prof. M. Yus on the occasion of his 60th birthday. 1. INTRODUCTION years only two of them appear to have remained interesting among An excellent review on the asymmetric epoxidation of electron- synthetic organic chemists: the use of tartrates and BINOL 1 as deficient olefins was published in 2000 by Porter and Skidmore [1]. ligands (Fig. 1). Since then, there have been several important developments in this area, especially the use of chiral pyrrolidines as organocatalysts. This review is an update of the one by Porter and Skidmore. ROOC OH From the work of Weitz-Scheffer on epoxidation of electron- OH OH deficient carbonyl compounds [2] using alkaline H2O2, much pro- gress has been made towards the development of an asymmetric OH OH OH variant. The resulting enantiomerically enriched epoxy compounds ROOC can be easily transformed into many types of useful chiral com- pounds [3].
    [Show full text]
  • Toxic Aldehyde Generation in and Food Uptake from Culinary Oils
    www.nature.com/scientificreports OPEN Toxic aldehyde generation in and food uptake from culinary oils during frying practices: Received: 30 May 2017 Accepted: 14 December 2018 peroxidative resistance of a Published: xx xx xxxx monounsaturate-rich algae oil Sarah Moumtaz, Benita C. Percival, Devki Parmar, Kerry L. Grootveld, Pim Jansson & Martin Grootveld Human ingestion of cytotoxic and genotoxic aldehydes potentially induces deleterious health efects, and high concentrations of these secondary lipid oxidation products (LOPs) are generated in polyunsaturated fatty acid (PUFA)-rich culinary oils during high temperature frying practices. Here, we explored the peroxidative resistance of a novel monounsaturate-rich algae frying oil (MRAFO) during laboratory-simulated shallow- and domestically-based repetitive deep-frying episodes (LSSFEs and DBRDFEs respectively), the latter featuring potato chip fryings. Culinary frying oils underwent LSSFEs at 180 °C, and DBRDFEs at 170 °C: aldehydes were determined by 1H NMR analysis in samples collected at increasing heating/frying time-points. Fast food restaurant-fried potato chip serving (FFRPCS) aldehyde contents were also monitored. Substantially lower levels of aldehydes were generated in the MRAFO product than those observed in PUFA-richer oils during LSSFEs. Toxicologically-signifcant concentrations of aldehydes were detected in FFRPCSs, and potato chips exposed to DBRDFEs when using a PUFA-laden sunfower oil frying medium: these contents increased with augmented deep-frying episode repetition. FFRPCS aldehyde contents were 10–25 ppm for each class monitored. In conclusion, the MRAFO product generated markedly lower levels of food-penetrative, toxic aldehydes than PUFA- rich ones during LSSFEs. Since FFRPCS and DBRDFE potato chip aldehydes are predominantly frying oil-derived, PUFA-deplete MRAFOs potentially ofer health-friendly advantages.
    [Show full text]
  • Peroxides and Peroxide- Forming Compounds
    FEATURE Peroxides and peroxide- forming compounds By Donald E. Clark Bretherick5 included a discussion of nated. However, concentrated hydro- organic peroxide5 in a chapter on gen peroxide (Ͼ30%), in contact with norganic and organic peroxides, highly reactive and unstable com- ordinary combustible materials (e.g., because of their exceptional reac- pounds and used “oxygen balance” to fabric, oil, wood, or some resins) Itivity and oxidative potential are predict the stability of individual com- poses significant fire or explosion haz- widely used in research laboratories. pounds and to assess the hazard po- ards. Peroxides of alkali metals are not This review is intended to serve as a tential of an oxidative reaction. Jack- particularly shock sensitive, but can 6 guide to the hazards and safety issues son et al. addressed the use of decompose slowly in the presence of associated with the laboratory use, peroxidizable chemicals in the re- moisture and may react violently with handling, and storage of inorganic and search laboratory and published rec- a variety of substances, including wa- organic peroxy-compounds and per- ommendations for maximum storage ter. Thus, the standard iodide test for oxide-forming compounds. time for common peroxide-forming peroxides must not be used with these The relatively weak oxygen-oxygen laboratory solvents. Several solvents, water-reactive compounds.1 linkage (bond-dissociation energy of (e.g., diethyl ether) commonly used in Inorganic peroxides are used as ox- 20 to 50 kcal moleϪ1) is the character- the laboratory can form explosive re- idizing agents for digestion of organic istic structure of organic and inor- action products through a relatively samples and in the synthesis of or- ganic peroxide molecules, and is the slow oxidation process in the pres- ganic peroxides.
    [Show full text]
  • 93-Cysteine Thiol Group in Human Hemoglobin Estimated from in Vitro Oxidant Challenge Experiments
    molecules Article The Redox Potential of the β-93-Cysteine Thiol Group in Human Hemoglobin Estimated from In Vitro Oxidant Challenge Experiments Federico Maria Rubino LaTMA Laboratory for Analytical Toxicology and Metabonomics, Department of Health Sciences, Università degli Studi di Milano at “Ospedale San Paolo” v. A. di Rudinì 8, I-20142 Milano, Italy; [email protected] Abstract: Glutathionyl hemoglobin is a minor form of hemoglobin with intriguing properties. The measurement of the redox potential of its reactive β-93-Cysteine is useful to improve understanding of the response of erythrocytes to transient and chronic conditions of oxidative stress, where the level of glutathionyl hemoglobin is increased. An independent literature experiment describes the recovery of human erythrocytes exposed to an oxidant burst by measuring glutathione, glutathione disulfide and glutathionyl hemoglobin in a two-hour period. This article calculates a value for the 93 redox potential E0 of the β- -Cysteine, considering the erythrocyte as a closed system at equilibrium described by the Nernst equation and using the measurements of the literature experiment. The obtained value of E0 of −121 mV at pH 7.4 places hemoglobin as the most oxidizing thiol of the erythrocyte. By using as synthetic indicators of the concentrations the electrochemical potentials of the two main redox pairs in the erythrocytes, those of glutathione–glutathione disulfide and of glutathionyl–hemoglobin, the mechanism of the recovery phase can be hypothesized. Hemoglobin Citation: Rubino, F.M. The Redox acts as the redox buffer that scavenges oxidized glutathione in the oxidative phase and releases it in Potential of the β-93-Cysteine Thiol the recovery phase, by acting as the substrate of the NAD(P)H-cofactored enzymes.
    [Show full text]
  • Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols Focus Review †,‡ †,‡ ‡,§ ‡,§ ∥ Ari Zeida, Madia Trujillo, Gerardo Ferrer-Sueta, Ana Denicola, Darío A
    Review Cite This: Chem. Rev. 2019, 119, 10829−10855 pubs.acs.org/CR Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols Focus Review †,‡ †,‡ ‡,§ ‡,§ ∥ Ari Zeida, Madia Trujillo, Gerardo Ferrer-Sueta, Ana Denicola, Darío A. Estrin, and Rafael Radi*,†,‡ † ‡ § Departamento de Bioquímica, Centro de Investigaciones Biomedicaś (CEINBIO), Facultad de Medicina, and Laboratorio de Fisicoquímica Biologica,́ Facultad de Ciencias, Universidad de la Republica,́ 11800 Montevideo, Uruguay ∥ Departamento de Química Inorganica,́ Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2160 Buenos Aires, Argentina ABSTRACT: Life on Earth evolved in the presence of hydrogen peroxide, and other peroxides also emerged before and with the rise of aerobic metabolism. They were considered only as toxic byproducts for many years. Nowadays, peroxides are also regarded as metabolic products that play essential physiological cellular roles. Organisms have developed efficient mechanisms to metabolize peroxides, mostly based on two kinds of redox chemistry, catalases/peroxidases that depend on the heme prosthetic group to afford peroxide reduction and thiol-based peroxidases that support their redox activities on specialized fast reacting cysteine/selenocysteine (Cys/Sec) residues. Among the last group, glutathione peroxidases (GPxs) and peroxiredoxins (Prxs) are the most widespread and abundant families, and they are the leitmotif of this review. After presenting the properties and roles of different peroxides in biology, we discuss the chemical mechanisms of peroxide reduction by low molecular weight thiols, Prxs, GPxs, and other thiol-based peroxidases. Special attention is paid to the catalytic properties of Prxs and also to the importance and comparative outlook of the properties of Sec and its role in GPxs.
    [Show full text]
  • Changxia Yuan Baran Group Meeting 4/5/2014 Commercial Available
    Baran Group Meeting Changxia Yuan 4/5/2014 Commercial available peroxides* Inorganic peroxides Na2O2 CaO2 Li2O2 BaO2 Ni2O3 NiO2 xH2O H2O2(30%) ZnO2 NaBO3 4H2O MgO2 TbO2 SrO2 Na2CO3 1.5H2O sodium calcium lithium barium nickel nickel(II) hydrogen zinc sodium magnesium terbium Stronium sodium peroxide peroxide peroxide peroxide peroxide peroxide peroxide peroxide perborate peroxide peroxide peroxide percarbonate $ 109/100g $ 27/100g $ 32 /50g $ 146/500g $ 106/5g hydrate $ 350/4L $ 75/1kg tetrahydrate complex $ 30/1g $ 38/100g $ 91/ 2.5kg $ 40/ 1g $94/1kg $ 40/250g + (NH4)2S2O8 Na2S2O8 K2S2O8 2K2SO5 KHSO4 K2SO4 5[Bu4N ] SO5] HSO4] SO4] ammonium sodium potassium Oxone® OXONE® persulfate persulfate persulfate monopersulfate tetrabutylammonium salt $ 39/ 100g $ 87/ 2.5kg $ 70/ 500g compound $ 156/ 25g $ 60/ 1kg Organic peroxides-1 O CO3H O HOO tBu O O OO O CH2(CH2)9CH3 O H3C(H2C)9H2C O O tBu tBuOOH urea H2O2 BzOOBz OOH O Cl O tert-Butyl Urea Benzoyl mCPBA Cyclobutane 2-Butanone tert-Butyl Lauoyl hydroperoxide hydrogen peroxide $ 81/100g maloyl peroxide peroxide peroxide solution (5-6 M) peroxide $ 92/500g peroxide $ 129/500mL $ 134/1L $ 81/100g $ 47/25mL $ 88/ 250g $ 100/1g Cl O O Cl O Me Me O Me Me Me Me O O O O Ph O O O O OO O Me O Me O Ph O O tBu Cl Ph Me Me Me O Me 2,4-Dichlorobenzoyl Cl tert-Butyl tert-Butyl peracetate solution, Dicumyl tert-Butylperoxy 1,1-Bis(tert-amylperoxy)cyclohexane peroxide, 50% in DBP peroxybenzoate 50% in mineral spirits peroxide 2-ethylhexyl solution, 80% in mineral spirits $ 59/100g $ 86/500mL $ 77/500mL $ 123/500g
    [Show full text]