Download the Book of Abstracts for Posters

Total Page:16

File Type:pdf, Size:1020Kb

Download the Book of Abstracts for Posters Book of poster abstracts 1A Probing the P450 3A4 allosteric site via bioconjugation of ligand analogues Julie Ducharme1, Vanja Polic1, Karine Auclair1 1 Department of Chemistry, McGill University, Montreal, Canada. Introduction. P450 3A4 is the most abundant human P450 and is well- known for its wide substrate promiscuity, making it the most important drug-metabolizing enzyme. This enzyme has the particularity of binding multiple ligands simultaneously, which is associated with heterotropic or homotropic, positive or negative, cooperativity (1). Solving the kinetics of such complex systems remains challenging, and so is identifying the binding pockets involved. Many substrates are also known to be allosteric activators of P450 3A4. For instance, progesterone (PRG) is an activator of P450 3A4-catalyzed 7-benzyloxy-4-trifluoromethylcoumarin (BFC) debenzylation (2). To our knowledge, the location of the allosteric site is still debated and is also likely to depend on the specific effector involved. Aims. The aims are to define the location of the P450 3A4 PRG allosteric site and investigate how sensitive the allosteric activation is to the binding orientation of the effector. Methods. To probe the location of the allosteric site, a progesterone analogue (PGM) was covalently attached, separately at several locations near a peripheral binding pocket (3). The impact of the PGM label was evaluated by monitoring the changes in enzyme kinetics before and after labeling in the presence and absence of PRG effector. Results. A total of six different PGM bioconjugates were successfully generated. The kinetics studies of those bioconjugates, indicate that two PGM-labeled mutants are efficiently mimicking PRG allosteric activation. Interestingly, PGM-bioconjugate which better mimicked the PRG molecule in one of the crystal structure of P450 3A4 gave rise to higher permanent activation than other bioconjugates. This suggests that the orientation of the PRG effector in the allosteric site matters but is not crucial for activation. Discussion. Our method allowed us to narrow down the location of the P450 3A4 allosteric site. PGM labeling at positions that were not mimicking allostery led to different, yet still interesting results. In one case, the PGM labeled showed an antagonistic behavior while in other cases, it activated the BFC metabolism without occupying the allosteric site, suggesting that different mechanisms of activation exist. Conclusion. This work creates further opportunities to study other systems showing heterotropic activation. Our results are of considerable interest not only in the fields of biocatalysis and enzymology, but also in the area of drug metabolism and for the prediction of drug interactions. 1. Guengerich, F. P. (1999) Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu. Rev. Pharmacol. Toxicol., 39, 1-17. 2. Domanski, T. L., He, Y.-A., et al. (2001) Phenylalanine and tryptophan scanning mutagenesis of CYP3A4 substrate recognition site residues and effect on substrate oxidation and cooperativity. Biochem., 40, 10150-10160. 3. Williams, P. A., Cosme, J., et al. (2004). Crystal structure of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science, 305, 683-686 Book of poster abstracts 2B Tryptophan-75 is a potential gating residue of cytochrome P450 2D6 Laura Lowe Furge1, Kevin D. McCarty1 1Department of Chemistry, Kalamazoo College, Kalamazoo, USA. Introduction. The active site of CYP2D6 is buried, and both access to the active site and resulting metabolism are influenced by amino acid side chains, a phenomenon referred to as tunnel gating. This investigation hypothesizes that tunnel gating exists in CYP2D6, and that it is mediated by tryptophan-75 residue. Aims. This investigation aims to determine how tryptophan-75 might serve as a gating residue and impact the kinetics of CYP2D6, to gain a deeper understanding of tunnel gating in CYP2D6, and to understand the role of plasticity in enzyme mechanisms. Methods. To study the influence of tryptophan-75 on ligand metabolism rates, a tryptophan-75 to alanine mutant (CYP2D6*W75A) along with Figure 1. Tryptophan-75 (in yellow, at CYP2D6*1 were expressed and purified in E. coli host cells. All left) visualized in ball-and-stick form in two conformations observed in the P450 experimentation conducted with the 2D6*W75A mutant was replicated crystal structure. with CYP2D6*1 for comparison. Results. The interaction of CYP2D6*W75A and the *1 control with the substrates dextromethorphan and bufuralol was characterized in terms of spectral binding properties and Michaelis Menten kinetics. Discussion. Molecular Dynamics studies have shown that tryptophan-75 has the ability to swing out from the 2b channel to discharge a ligand. Also, visualization of 2D6 crystal structures by molecular imaging software showed the presence of several distinct conformations of the residue, some of which were observed to obstruct the opening of the 2b tunnel and thus inhibit access and egress of substrates from the active site. Based on the mobility of the residue in 3D space, we theorize that a gating mechanism of tryptophan-75 impacts ligand metabolism rates of CYP2D6. Conclusion. This investigation provides greater understanding of gating mechanisms in CYP2D6. Understanding of channel gating in CYPs has clinical importance as many questions remain as to its role in the process of drug metabolism. (Support: NIH 2R15GM086767-03). Book of poster abstracts 3C The effect of ageing and tryptophan hydroxylase 2 (TPH2) deficit on the CYP2D activity in rat brain and liver Anna Haduch1, Natalia Alenina2, Agnieszka Nikiforuk3, Piotr Popik3, Michael Bader2, Władysława A Daniel1 1Department of Pharmacokinetics and Drug Metabolism, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland; 2Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; 3Department of Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland. Introduction. Liver cytochrome P450 2D contributes to the metabolism of drugs, carcinogens and neurotoxins, while brain CYP2D plays an important role in the local metabolism of drugs and endogenous neuroactive substrates. Studies in rodents indicate that brain CYP2D mediates 5-methoxytryptamine O- demethylation to serotonin. This alternative pathway can gain significance in deficit of the main pathway of serotonin synthesis. Recent studies indicate a decreased CYP2D activity in aging rats and an increased CYP2D6 expression in human brain (the frontal cortex, substantia nigra, cerebellum) in elderly. But the activity of brain CYP2D has not been investigated. Aims. The aim of the present study was to ascertain whether the level of CYP2D activity changes with increasing age and in conditions of serotonin deficiency in the rat brain. Methods. The experiment was carried out on male Dark Agouti and Wistar Han rats. Livers and selected brain structures (the frontal cortex, hippocampus, hypothalamus, thalamus, brain stem, cortex, striatum and cerebellum) were isolated. Kinetic parameters of 5-methoxytryptamine O-demethylation (HPLC) were estimated in liver and brain microsomes from both strains. The activity of CYP2D was studied in Dark Agouti wild type (wt) rats (mature 3-month-old and senescent 21-month-old rats) and in tryptophan hydroxylase 2 (TPH2) deficient senescent rats by measuring the rate of bufuralol 1’-hydroxylation in liver or brain microsomes (HPLC). Results. Liver microsomes of Dark Agouti rats catalyzed the O-demethylation of 5-methoxytryptamine to serotonin with lower efficiency than those of Wistar Han. However, brain microsomes of both strains showed a similar efficiency of catalyzing this reaction, though lower than did liver microsomes. The activity of CYP2D in liver microsomes was significantly lower in senescent Dark Agouti wt rats than in the mature animals and further decreased in senescent TPH2-deficient rats. The CYP2D activity in the frontal cortex decreased in senescent wt rats, but increased in senescent TPH2-deficient rats (compared to senescent wt). However, the CYP2D activity in the hippocampus, hypothalamus and striatum increased with ageing in Dark Agouti wt rats and was not changed in senescent TPH2-deficient rats (compared to senescent wt). Discussion. The obtained results indicate that ageing negatively affects the liver CYP2D activity which can lead to the inhibition of drug metabolism. The brain metabolism of CYP2D substrates may be changed in regio-dependent way: elevated in the hippocampus, hypothalamus and striatum and diminished in the frontal cortex. The increased CYP2D activity in the frontal cortex at TPH2 deficit suggest activation of the alternative pathway of serotonin synthesis via CYP2D. Conclusion. Ageing and tryptophan hydroxylase deficit affect liver and brain CYP2D, which may have an impact on the metabolism of endogenous substrates and drugs catalyzed by this enzyme. (This study was financially supported by the Grant ERA-NET Neuron II JTC 2015 Respond and statutory funds from the Institute of Pharmacology, PAS, Kraków, Poland.) Book of poster abstracts 4A Determination of the distal ligand coordination to resting state cytochrome P450 CYP199A4 and its correlation to activity Joshua S. Harbort1, Tom Coleman2, Matthew N. Podgorski2, Rebecca R. Chao2, Jeanette E. Stok3, John B. Brunning4, James J. De Voss3, Jeffrey R. Harmer1, Stephen G. Bell2 1Centre for Advanced Imaging, University of Queensland, St Lucia, Australia; 2Department of Chemistry,
Recommended publications
  • Allelic Variation and Multigenic Metabolic Activity of Cytochrome
    Allelic Variation and Multigenic Metabolic Activity of Cytochrome P450s Confer Insecticide Resistance in Field Populations of Anopheles funestus s.s., a Major Malaria Vector in Africa Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Sulaiman Sadi Ibrahim January 2015 I DECLARATION This work has not previously been accepted in substance for any degree and is not being currently submitted in candidature for any degree. Signed ........................................................................................(Candidate) Date ........................................................................................... Statement 1 This thesis is the result of my own investigation, except where otherwise stated. Other sources are acknowledged and bibliography appended. Signed ........................................................................................(Candidate) Date ........................................................................................... Statement 2 I hereby give my consent for this thesis, if accepted, to be available for photocopying and for inter- library loan, and for the title and summary to be made available to outside organisations. Signed ........................................................................................(Candidate) Date ........................................................................................... I DEDICATION This work is for all the individuals (teachers, parents, loved ones and friends)
    [Show full text]
  • International Journal for Parasitology 45 (2015) 243–251
    International Journal for Parasitology 45 (2015) 243–251 Contents lists available at ScienceDirect International Journal for Parasitology journal homepage: www.elsevier.com/locate/ijpara The cytochrome P450 family in the parasitic nematode Haemonchus contortus ⇑ Roz Laing a, , David J. Bartley b, Alison A. Morrison b, Andrew Rezansoff c, Axel Martinelli d, Steven T. Laing a, John S. Gilleard c a University of Glasgow, Glasgow, UK b Moredun Research Institute, Edinburgh, UK c University of Calgary, Calgary, Canada d Welcome Trust Sanger Institute, Cambridge, UK article info abstract Article history: Haemonchus contortus, a highly pathogenic and economically important parasitic nematode of sheep, is Received 26 September 2014 particularly adept at developing resistance to the anthelmintic drugs used in its treatment and control. Received in revised form 3 December 2014 The basis of anthelmintic resistance is poorly understood for many commonly used drugs with most Accepted 4 December 2014 research being focused on mechanisms involving drug targets or drug efflux. Altered or increased drug Available online 31 December 2014 metabolism is a possible mechanism that has yet to receive much attention despite the clear role of xeno- biotic metabolism in pesticide resistance in insects. The cytochrome P450s (CYPs) are a large family of Keywords: drug-metabolising enzymes present in almost all living organisms, but for many years thought to be Parasite absent from parasitic nematodes. In this paper, we describe the CYP sequences encoded in the H. contor- Nematode Metabolism tus genome and compare their expression in different parasite life-stages, sexes and tissues. We devel- Cytochrome P450 oped a novel real-time PCR approach based on partially assembled CYP sequences ‘‘tags’’ and Gene expression confirmed findings in the subsequent draft genome with RNA-seq.
    [Show full text]
  • The Cytochrome P450 Family in the Parasitic Nematode Haemonchus Contortus
    Laing, Roz (2010) The cytochrome P450 family in the parasitic nematode Haemonchus contortus. PhD thesis. http://theses.gla.ac.uk/2355/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] The cytochrome P450 family in the parasitic nematode Haemonchus contortus Roz Laing BSc (Hons) BVMS Institute of Infection and Immunity Faculty of Veterinary Medicine University of Glasgow Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at the University of Glasgow September 2010 ii Abstract Haemonchus contortus, a parasitic nematode of sheep , is unsurpassed in its ability to develop resistance to the anthelmintic drugs used as the mainstay of its control. A reduction in drug efficacy leads to prophylactic and therapeutic failure, resulting in loss of productivity and poor animal welfare. This situation has reached crisis point in the sheep industry, with farms forced to close their sheep enterprises due to an inability to control resistant nematodes. The mechanisms of anthelmintic resistance are poorly understood for many commonly used drugs.
    [Show full text]
  • Electron Transfer Partners of Cytochrome P450
    4 Electron Transfer Partners of Cytochrome P450 Mark J.l. Paine, Nigel S. Scrutton, Andrew W. Munro, Aldo Gutierrez, Gordon C.K. Roberts, and C. Roland Wolf 1. Introduction Although P450 redox partners are usually expressed independently, "self-sufficient" P450 monooxygenase systems have also evolved through Cytochromes P450 contain a heme center the fusion of P450 and CPR genes. These fusion where the activation of molecular oxygen occurs, molecules are found in bacteria and fungi, the best- resulting in the insertion of a single atom of known example being P450 BM3, a fatty acid oxygen into an organic substrate with the con­ (0-2 hydroxylase from Bacillus megaterium, which comitant reduction of the other atom to water. The comprises a soluble P450 with a fiised carboxyl- monooxygenation reaction requires a coupled and terminal CPR module (recently reviewed by stepwise supply of electrons, which are derived Munro^). BM3 has the highest catalytic activity from NAD(P)H and supplied via a redox partner. known for a P450 monooxygenase^ and was for P450s are generally divided into two major classes many years the only naturally occurring ftised sys­ (Class I and Class II) according to the different tem known until the identification of a eukaryotic types of electron transfer systems they use. P450s membrane-bound equivalent fatty acid hydroxy­ in the Class I family include bacterial and mito­ lase, CYP505A1, from the phytopathogenic fungus chondrial P450s, which use a two-component Fusarium oxysporurrP. A number of novel P450 sys­ shuttle system consisting of an iron-sulfur protein tems are starting to emerge from the large numbers (ferredoxin) and ferredoxin reductase (Figure 4.1).
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Oriented Attachment of Cytochrome P450 2C9 to a Self-Assembled Monolayer on a Gold Electrode as a Biosensor Design Permalink https://escholarship.org/uc/item/1m67k8mm Author Schneider, Elizabeth Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Oriented Attachment of Cytochrome P450 2C9 to a Self-Assembled Monolayer on a Gold Electrode as a Biosensor Design by Elizabeth Ann Schneider A dissertation submitted in partial satisfaction of the requirements for the degree of Joint Doctor of Philosophy with the University of California, San Francisco in Bioengineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Douglas S. Clark, Chair Associate Professor Shuvo Roy Professor Liwei Lin Dr. Robert Kostecki Fall 2011 Abstract Oriented Attachment of Cytochrome P450 2C9 to a Self-Assembled Monolayer on a Gold Electrode as a Biosensor Design by Elizabeth Ann Schneider Doctor of Philosophy in Bioengineering University of California, Berkeley Professor Douglas S. Clark, Chair Cytochrome P450s (CYPs) are a family of enzymes implicated in the metabolism of drugs in the body. Consequently, P450 reactions are of high interest to the pharmaceutical industry, where lead compounds in drug development are screened as potential substrates of CYPs. The P450 reaction involves electron transfer to an iron heme via NADPH and the electron transfer partner enzyme P450 reductase (CPR). By immobilizing CYPs on an electrode however, NADPH and CPR are potentially no longer needed and the immobilized CYP can act as a biosensor by accepting electrons directly from the electrode.
    [Show full text]
  • 1 AMINO ACIDS Commonly, 21 L-Amino Acids Encoded by DNA Represent the Building Blocks of Animal, Plant, and Microbial Proteins
    1 AMINO ACIDS Commonly, 21 L-amino acids encoded by DNA represent the building blocks of animal, plant, and microbial proteins. The basic amino acids encountered in proteins are called proteinogenic amino acids 1.1). Biosynthesis of some of these amino acids proceeds by ribosomal processes only in microorganisms and plants and the ability to synthesize them is lacking in animals, including human beings. These amino acids have to be obtained in the diet (or produced by hydrolysis of body proteins) since they are required for normal good health and are referred to as essential amino acids. The essential amino acids are arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine. The rest of encoded amino acids are referred to as non-essential amino acids (alanine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, proline, serine, and tyrosine). Arginine and histidine are classified as essential, sometimes as semi-essential amino acids, as their amount synthesized in the body is not sufficient for normal growth of children. Although it is itself non-essential, cysteine (classified as conditionally essential amino acid) can partly replace methionine, which is an essential amino acid. Similarly, tyrosine can partly replace phenylalanine. 1.1 The glutamic acid group 1.1.1 Glutamic acid and glutamine Free ammonium ions are toxic to living cells and are rapidly incorporated into organic compounds. One of such transformations is the reaction of ammonia with 2-oxoglutaric acid from the citric acid cycle to produce L-glutamic acid. This reaction is known as reductive amination. Glutamic acid is accordingly the amino acid generated first as both constituent of proteins and a biosynthetic precursor.
    [Show full text]
  • Characterization and Expression of the Cytochrome P450 Gene Family In
    OPEN Characterization and expression of the SUBJECT AREAS: cytochrome P450 gene family in PHYLOGENETICS GENE EXPRESSION diamondback moth, Plutella xylostella (L.) Liying Yu1,2,3, Weiqi Tang1,2, Weiyi He1,3, Xiaoli Ma1,3, Liette Vasseur1,4, Simon W. Baxter1,5, Received Guang Yang1,3, Shiguo Huang1,3, Fengqin Song1,2,3 & Minsheng You1,3 28 November 2014 Accepted 1Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China, 2Faculty of Life Sciences, Fujian 4 February 2015 Agriculture and Forestry University, Fuzhou 350002, China, 3Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China, 4Department of Biological Sciences, Brock University, St. Catharines, Published Ontario, Canada, 5School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia. 10 March 2015 Cytochrome P450 monooxygenases are present in almost all organisms and can play vital roles in hormone Correspondence and regulation, metabolism of xenobiotics and in biosynthesis or inactivation of endogenous compounds. In the present study, a genome-wide approach was used to identify and analyze the P450 gene family of requests for materials diamondback moth, Plutella xylostella, a destructive worldwide pest of cruciferous crops. We identified 85 should be addressed to putative cytochrome P450 genes from the P. xylostella genome, including 84 functional genes and 1 M.Y. ([email protected]. pseudogene. These genes were classified into 26 families and 52 subfamilies. A phylogenetic tree constructed edu.cn) with three additional insect species shows extensive gene expansions of P. xylostella P450 genes from clans 3 and 4. Gene expression of cytochrome P450s was quantified across multiple developmental stages (egg, larva, pupa and adult) and tissues (head and midgut) using P.
    [Show full text]
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]
  • Characterization of a Second Secologanin Synthase Isoform
    Dugé de Bernonville et al. BMC Genomics (2015) 16:619 DOI 10.1186/s12864-015-1678-y RESEARCH ARTICLE Open Access Characterization of a second secologanin synthase isoform producing both secologanin and secoxyloganin allows enhanced de novo assembly of a Catharanthus roseus transcriptome Thomas Dugé de Bernonville1†, Emilien Foureau1†, Claire Parage1†, Arnaud Lanoue1, Marc Clastre1, Monica Arias Londono1,2, Audrey Oudin1, Benjamin Houillé1, Nicolas Papon1, Sébastien Besseau1, Gaëlle Glévarec1, Lucia Atehortùa2, Nathalie Giglioli-Guivarc’h1, Benoit St-Pierre1, Vincenzo De Luca3, Sarah E. O’Connor4 and Vincent Courdavault1* Abstract Background: Transcriptome sequencing offers a great resource for the study of non-model plants such as Catharanthus roseus, which produces valuable monoterpenoid indole alkaloids (MIAs) via a complex biosynthetic pathway whose characterization is still undergoing. Transcriptome databases dedicated to this plant were recently developed by several consortia to uncover new biosynthetic genes. However, the identification of missing steps in MIA biosynthesis based on these large datasets may be limited by the erroneous assembly of close transcripts and isoforms, even with the multiple available transcriptomes. Results: Secologanin synthases (SLS) are P450 enzymes that catalyze an unusual ring-opening reaction of loganin in the biosynthesis of the MIA precursor secologanin. We report here the identification and characterization in C. roseus of a new isoform of SLS, SLS2, sharing 97 % nucleotide sequence identity with the previously characterized SLS1. We also discovered that both isoforms further oxidize secologanin into secoxyloganin. SLS2 had however a different expression profile, being the major isoform in aerial organs that constitute the main site of MIA accumulation. Unfortunately, we were unable to find a current C.
    [Show full text]
  • Engineering of Cytochrome P450s CYP109E1 and CYP109A2 from Bacillus Megaterium DSM319 for The
    Engineering of Cytochrome P450s CYP109E1 and CYP109A2 from Bacillus megaterium DSM319 for the production of vitamin D3 metabolites Kumulative Dissertation zur Erlangen des Grades des Doktors der Naturwissenschaften der Naturwissenschaftlich-Technischen Fakultät der Universität des Saarlandes von Ammar Abdulmughni Saarbrücken 2018 Tag des Kolloquiums : 14.08.2018 Dekan : Prof. Dr. Guido Kickelbick Berichterstatter : Prof. Dr. Rita Bernhardt Prof. Dr. Gert-Wieland Kohring Vorsitz : Prof. Dr. Uli Müller Akad. Mitarbeiter: Dr. Ing. Michael Kohlstedt Abstract Active vitamin D3 metabolites play an essential role in the maintenance of calcium and phosphorus homeostasis. The conventional chemical synthesis of this metabolite is time- consuming, environmentally unfriendly and often results in low yield. Therefore, the biotechnological production of active vitamin D3 metabolites is of great importance to the pharmaceutical industry. Hereby, cytochrome P450 enzymes have the potential to achieve this goal. The present work reports on the optimization of a biotechnological process in Bacillus megaterium MS941 for the production of vitamin D3 metabolites. On that account, two cytochrome P450 enzymes were used as biocataylsts, namely CYP109E1 and CYP109A2 from the Gram-positive bacterium Bacillus megaterium DSM319. Both enzymes were subjected for functional and structural characterization in order to optimize their activity and/or regio-selectivity towards vitamin D3. In terms of hydroxylation activity, it has been shown that the conversion of vitamin D3 with CYP109E1 results in the formation of several derivatives, while CYP109A2 shows clearly a higher regio-selectivity towards 25- hydroxylation. The elucidation of the crystal structure of both enzymes provides detailed insights into the geometry of these enzymes. By means of molecular docking, site-directed mutagenesis was successfully performed, resulting in the creation of mutants with higher regio-selectivity compared to the wild type, in particular when using CYP109E1.
    [Show full text]
  • 7114-English-Tarjomefa.Pdf
    Biotechnology Advances 27 (2009) 474–488 Contents lists available at ScienceDirect Biotechnology Advances journal homepage: www.elsevier.com/locate/biotechadv Research review paper Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics P.C. Abhilash, Sarah Jamil, Nandita Singh ⁎ Eco-Auditing Group, National Botanical Research Institute, Council of Scientific & Industrial Research, Rana Pratap Marg, Lucknow 226 001, Uttar Pradesh, India article info abstract Article history: Phytoremediation — the use of plants to clean up polluted soil and water resources — has received much attention in Received 14 October 2008 the last few years. Although plants have the inherent ability to detoxify xenobiotics, they generally lack the catabolic Received in revised form 26 March 2009 pathway for the complete degradation of these compounds compared to microorganisms. There are also concerns Accepted 3 April 2009 over the potential for the introduction of contaminants into the food chain. The question of how to dispose of plants Available online 14 April 2009 that accumulate xenobiotics is also a serious concern. Hence the feasibility of phytoremediation as an approach to remediate environmental contamination is still somewhat in question. For these reasons, researchers have Keywords: Phytoremediation endeavored to engineer plants with genes that can bestow superior degradation abilities. A direct method for Cytochrome P450s enhancing the efficacy of phytoremediation is to overexpress in plants the genes involved in metabolism, uptake, or Glutathione S-tranferases transport of specific pollutants. Furthermore, the expression of suitable genes in root system enhances the Bacterial enzymes rhizodegradation of highly recalcitrant compounds like PAHs, PCBs etc. Hence, the idea to amplify plant Transgenic plants biodegradation of xenobiotics by genetic manipulation was developed, following a strategy similar to that used to Metabolism develop transgenic crops.
    [Show full text]
  • Conformational Changes in Binding of Substrates with Human Cytochrome P450 Enzymes
    Book of oral abstracts 100 Conformational changes in binding of substrates with human cytochrome P450 enzymes F. Peter Guengerich, Clayton J. Wilkey, Michael J. Reddish, Sarah M. Glass, and Thanh T. N. Phan Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA Introduction. Extensive evidence now exists that P450 enzymes can exist in multiple conformations, at least in the substrate-bound forms (e.g., crystallography). This multiplicity can be the result of either an induced fit mechanism or conformational selection (selective substrate binding to one of two or more equilibrating P450 conformations). Aims. Kinetic approaches can be used to distinguish between induced fit and conformational selection models. The same energy is involved in reaching the final state, regardless of the kinetic path. Methods. Stopped-flow absorbance and fluorescence measurements were made with recombinant human P450 enzymes. Analysis utilized kinetic modeling software (KinTek Explorer®). Results. P450 17A1 binding to its steroid ligands (pregnenolone and progesterone and the 17-hydroxy derivatives) is dominated by a conformational selection process, as judged by (a) decreasing rates of substrate binding as a function of substrate concentration, (b) opposite patterns of the dependence of binding rates as a function of varying concentrations of (i) substrate and (ii) enzyme, and (c) modeling of the data in KinTek Explorer. The inhibitory drugs orteronel and abiraterone bind P450 17A1 in multi-step processes, apparently in different ways. The dye Nile Red is also a substrate for P450 17A1 and its sequential binding to the enzyme can be resolved in fluorescence and absorbance changes. P450s 2C8, 2D6, 2E1, and 4A11 have also been analyzed with regard to substrate binding and utilize primarily conformational selection models, as revealed by analysis of binding rates vs.
    [Show full text]