Developing a Vaccine Against Multiple Psychoactive Targets: a Case Study of Heroin

Total Page:16

File Type:pdf, Size:1020Kb

Developing a Vaccine Against Multiple Psychoactive Targets: a Case Study of Heroin CNS & Neurological Disorders - Drug Targets, 2011, 10, 865-875 865 Developing a Vaccine Against Multiple Psychoactive Targets: A Case Study of Heroin G. Neil Stowe1, Joel E. Schlosburg2, Leandro F. Vendruscolo2, Scott Edwards2, Kaushik K. Misra2, Gery Schulteis3, Joseph S. Zakhari1, George F. Koob2 and Kim D. Janda*,1 1Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology and Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA 2Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037, USA 3Research Service, VA San Diego Healthcare System and Department of Anesthesiology, UC San Diego School of Medicine, USA Abstract: Heroin addiction is a wide-reaching problem with a spectrum of damaging social consequences. Currently approved heroin addiction medications include drugs that bind at the same receptors (e.g. opioid receptors) occupied by heroin and/or its metabolites in the brain, but undesired side effects of these treatments, maintenance dependence and relapse to drug taking remains problematic. A vaccine capable of blocking heroin’s effects could provide an economical, long-lasting and sustainable adjunct to heroin addiction therapy without the side effects associated with available treatment options. Heroin, however, presents a particularly challenging vaccine target as it is metabolized to multiple psychoactive molecules of differing lipophilicity, with differing abilities to cross the blood brain barrier. In this review, we discuss the opiate scaffolding and hapten design considerations to confer immunogenicity as well as the specificity of the immune response towards structurally similar opiates. In addition, we detail different strategies employed in the design of immunoconjugates for a vaccine-based therapy for heroin addiction treatment. Keywords: Heroin, 6-acetyl-morphine, morphine, addiction, drug dependence, immunoconjugate, treatment, therapy. 1. INTRODUCTION as the most harmful abused drug based on physical damage to the Heroin, (3,6-diacetylmorphine/diamorphine/morphine diacetate) user, the tendency to induce dependence and deleterious effects on was originally synthesized from morphine by the chemist Charles families, communities and society [11]. It is the illegal drug with Alder Wright in 1874 [1]. The pharmacological potency of heroin the highest mortality and emergency room visits according to the in frogs and rabbits was later examined by Dott and Stockman [2], United Nations [12], with medical care, loss of productivity, crime followed by a study in 1890 by the British Medical Association that and social welfare costs estimated at roughly $22 billion per year in found heroin was more effective in depressing the spinal cord and 1996 [10]. Heroin is frequently administered by injection, with respiratory center in frogs and rabbits with a weaker narcotic action heroin and other opiates accounting for 83% of hospital admissions [3]. The pharmacology of heroin was studied by the physician von for injection drug abuse in the United States in 1999 [13]. As such, Mering [4] (who discovered hypnotic barbiturates [5]), the chemists intravenous heroin use can be viewed as a driving force in the Hoffman and Eichengrun (who were instrumental in the discovery spread of HIV/AIDS, with an estimated ten percent of new cases of aspirin [6]), and Dreser [7] before being marketed as a cough worldwide attributed to injection drug abuse [14]. This situation is suppressant by the German chemical company Bayer. Although not further exacerbated in developing and transitional countries: in initially regarded as an addictive substance, the abuse properties of 1999, injection drug abusers accounted for 69% of HIV infections heroin quickly became apparent with intravenous use, particularly in China, 66% of AIDS cases in Vietnam and 82% of HIV/AIDS in the United States, where its use was restricted to prescriptions by cases in Central and Eastern Europe [15]. the Harrison Act in 1914 and banned outright in the United States in 1924 [7]. Heroin is currently regarded as a drug of abuse 2. HEROIN AND ITS METABOLISM included in the United Nations list of narcotic drugs under After intravenous injection of heroin, users describe an intense international control, but has not been completely outlawed for ‘rush’ followed by a prolonged feeling of tranquility, reduced medicinal use in some countries [8]. apprehension and euphoria lasting for several hours [16-18]. These Despite its potential usefulness in providing pain relief, heroin pharmacological effects are generally attributed to heroin’s action is a highly addictive substance with high negative costs and impact at opioid receptors in the brain, with the -opioid receptor on society. Heroin is abused in most countries worldwide, with an considered as the major target. In comparison with other drugs of estimated 8 million people (0.14% of the world’s population) using abuse such as nicotine [19], cocaine [20, 21] and methamphetamine heroin each year [9]. Even though heroin use makes up a small [22-24], heroin is generally regarded as a prodrug that acts through portion of total illegal drug use (less than 5%) [10], it was assessed its host of psychoactive metabolites that are more potent -opioid receptor agonists than heroin itself [25-27]. After injection, the half- life of heroin in humans is approximately 4 minutes before *Address correspondence to this author at the Departments of Chemistry and conversion to 6-acetylmorphine (6AM), a result of rapid enzymatic Immunology, The Skaggs Institute for Chemical Biology and Worm hydrolysis of heroin’s 3’ phenolic ester, predominately in the blood Institute of Research and Medicine (WIRM), The Scripps Research by erythrocyte acetylcholinesterase (AChE) [28]. The enzymes Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA; serum butyrylcholinesterase (BuChE) [29] and human Tel: (858) 784-2515; Fax: (858) 784-2595; E-mail: [email protected] carboxylesterase 1 [30] and 2 [31] (hCE1, hCE2) are also capable of hydrolyzing heroin’s 3’ ester. 6AM has a measured half-life of 1-/11 $58.00+.00 © 2011 Bentham Science Publishers 866 CNS & Neurological Disorders - Drug Targets, 2011, Vol. 10, No. 8 Stowe et al. approximately 22 minutes in humans before it is hydrolyzed to degree of analgesic potency in comparison with heroin. The morphine by hCE1 and hCE2 in addition to erythrocyte AChE [28, literature strongly suggests that heroin is a prodrug acting primarily 31]. In humans, morphine has a half-life of around 176 minutes, through its psychoactive metabolites [26], with 6AM being the and is further metabolized to the non-psychoactive morphine-3- causative agent for heroin’s acute psychoactive effects after glucuronide (M3G) and psychoactive morphine-6-glucuronide injection [27]. (M6G), each of which possess half-lives of approximately 276 and The fate of heroin and 6AM once across the BBB has been the 267 minutes, respectively (Fig. 1) [32]. In comparing area under subject of some debate. Thus, it was hypothesized in 1972 by curve concentrations for heroin and all of its major metabolites, Oldendorf et al. that after injection, heroin rapidly traverses the M3G is the major metabolite, followed by M6G, morphine, 6AM BBB and is hydrolyzed to 6AM and subsequently morphine [36]. and heroin [32]. It should be noted that while M3G is a heroin However, it was found by Soreq et al. in 1999 that the form of metabolite in humans, guinea pigs, mice and rabbits, M6G is only a acetylcholinesterase present in the brain did not significantly metabolite of heroin in humans, guinea pigs and rabbits, not rats or hydrolyze heroin or 6AM in vitro, leading to the hypothesis that mice [33, 34]. once inside the brain heroin and 6AM are protected from the rapid Of particular immunopharmacological interest with respect to enzymatic hydrolysis found in blood [28]. This hypothesis has been heroin and its psychoactive metabolites is that while they are all supported by the work of Andersen et al., who found much higher structurally similar to heroin, they vary in lipophilicity, and thus brain concentrations of 6AM in comparison to morphine after ability to cross the blood brain barrier (BBB). The two acetyl injection of heroin or 6AM in mice [45], and by Karinen et al., who groups present on heroin’s scaffold, in addition to heroin’s pKa of determined that heroin is more stable in brain than blood [46]. 7.6 [35], confer lipophilicity, making heroin readily capable of Thus, despite the original predictions of Oldendorf, recent research crossing the blood brain barrier (BBB) [36]. It has been suggested provides significant evidence that once across the BBB, heroin and that the brain uptake of heroin is controlled by the flow of blood 6AM are more resistant to the rapid enzymatic hydrolysis occurring into the brain [37], helping to create the intense pharmacodynamic in blood. effect felt by heroin users. This intense effect, or ‘rush’, is a major The acute effects of the highly lipophilic heroin/6AM can be contributing factor to the highly addictive nature of heroin, as well compared with the less lipophilic psychoactive heroin metabolites as other drugs of abuse [38-40]. Interestingly, previous research has morphine and M6G. With respect to morphine, the work of shown that decreasing the ‘rush’ felt after administration of cocaine Oldendorf et al. determined that 15 seconds after
Recommended publications
  • SINGLE CATEGORY MEDICATION REPORTS Quick Reference List
    SINGLE CATEGORY MEDICATION REPORTS Quick Reference List PAIN MEDICATION CARDIOVASCULAR REPORT MEDICATION REPORT Opioid Beta NSAIDs Other Statins Other Analgesics Blockers Celecoxib Codeine Amitriptyline Atorvastatin Metoprolol Acenocoumarol Flurbiprofen Hydrocodone Duloxetine Fluvastatin Clopidogrel Ibuprofen Morphine Nortriptyline Simvastatin Flecainide Meloxicam Oxycodone Irbesartan Piroxicam Tramadol Losartan Propafenone Warfarin GASTROINTESTINAL MENTAL HEALTH MEDICATION REPORT MEDICATION REPORT Proton Pump Anti-Emetics Antidepressants Antipsychotics Other Inhibitors Amitriptyline Fluoxetine Paroxetine Aripiprazole Atomoxetine Dexlansoprazole Metoclopramide Citalopram Fluvoxamine Sertraline Brexpiprazole Clobazam Esomeprazole Ondansetron Clomipramine Imipramine Venlafaxine Chlorpromazine Diazepam Lansoprazole Desipramine Mirtazapine Vortioxetine Clozapine Melatonin Omeprazole Doxepin Moclobemide Haloperidol Pantoprazole Duloxetine Nortriptyline Olanzapine Rabeprazole Escitalopram Pimozide Quetiapine Risperidone Zuclopenthixol For all enquiries contact myDNA clinical support on 1844 472 7896 or email [email protected] HEALTH CARE PROFESSIONAL REPORTS Medication List Below is a list of the main medications covered by the myDNA Medication Test (grouped by the gene which primarily impacts the medication response). Note: CYP450 enzymes generally metabolise pharmacologically active drugs into less active metabolite(s). Conversely, prodrugs are pharmacologically inactive, and are converted into active metabolite(s). CYP2D6 SLCO1B1 Beta Opioid
    [Show full text]
  • ADME and Pharmacokinetic Properties of Remdesivir: Its Drug Interaction Potential
    pharmaceuticals Review ADME and Pharmacokinetic Properties of Remdesivir: Its Drug Interaction Potential Subrata Deb * , Anthony Allen Reeves, Robert Hopefl and Rebecca Bejusca Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA; [email protected] (A.A.R.); [email protected] (R.H.); [email protected] (R.B.) * Correspondence: [email protected]; Tel.: +224-310-7870 Abstract: On 11 March 2020, the World Health Organization (WHO) classified the Coronavirus Disease 2019 (COVID-19) as a global pandemic, which tested healthcare systems, administrations, and treatment ingenuity across the world. COVID-19 is caused by the novel beta coronavirus Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Since the inception of the pandemic, treatment options have been either limited or ineffective. Remdesivir, a drug originally designed to be used for Ebola virus, has antiviral activity against SARS-CoV-2 and has been included in the COVID-19 treatment regimens. Remdesivir is an adenosine nucleotide analog prodrug that is metabolically activated to a nucleoside triphosphate metabolite (GS-443902). The active nucleoside triphosphate metabolite is incorporated into the SARS-CoV-2 RNA viral chains, preventing its replication. The lack of reported drug development and characterization studies with remdesivir in public domain has created a void where information on the absorption, distribution, metabolism, elimination (ADME) properties, pharmacokinetics (PK), or drug-drug interaction (DDI) is limited. By Citation: Deb, S.; Reeves, A.A.; understanding these properties, clinicians can prevent subtherapeutic and supratherapeutic levels of Hopefl, R.; Bejusca, R. ADME and remdesivir and thus avoid further complications in COVID-19 patients. Remdesivir is metabolized Pharmacokinetic Properties of by both cytochrome P450 (CYP) and non-CYP enzymes such as carboxylesterases.
    [Show full text]
  • The Clinical Toxicology of Gamma-Hydroxybutyrate, Gamma-Butyrolactone and 1,4-Butanediol
    Clinical Toxicology (2012), 50: 458–470 Copyright © 2012 Informa Healthcare USA, Inc. ISSN: 1556-3650 print / 1556-9519 online DOI: 10.3109/15563650.2012.702218 REVIEW ARTICLE The clinical toxicology of gamma-hydroxybutyrate, gamma-butyrolactone and 1,4-butanediol LEO J SCHEP 1 , KAI KNUDSEN 2 , ROBIN J SLAUGHTER 1 , J ALLISTER VALE 3 , and BRUNO MÉGARBANE 4 1 National Poisons Centre, Department of Preventive and Social Medicine, University of Otago, Dunedin, New Zealand 2 Department of Anesthesia and Intensive Care Medicine, Surgical Sciences, Blå Stråket 5, Sahlgrenska University Hospital, Gothenburg, Sweden 3 National Poisons Information Service (Birmingham Unit) and West Midlands Poisons Unit, City Hospital, Birmingham, UK; School of Biosciences and College of Medical and Dental Sciences, University of Birmingham, Birmingham,UK 4 Hôpital Lariboisière, Réanimation Médicale et Toxicologique, INSERM U705, Université Paris-Diderot, Paris, France Introduction. Gamma-hydroxybutyrate (GHB) and its precursors, gamma-butyrolactone (GBL) and 1,4-butanediol (1,4-BD), are drugs of abuse which act primarily as central nervous system (CNS) depressants. In recent years, the rising recreational use of these drugs has led to an increasing burden upon health care providers. Understanding their toxicity is therefore essential for the successful management of intoxicated patients. We review the epidemiology, mechanisms of toxicity, toxicokinetics, clinical features, diagnosis, and management of poisoning due to GHB and its analogs and discuss the features and management of GHB withdrawal. Methods. OVID MEDLINE and ISI Web of Science databases were searched using the terms “ GHB, ” “ gamma-hydroxybutyrate, ” “ gamma-hydroxybutyric acid, ” “ 4-hydroxybutanoic acid, ” “ sodium oxybate, ” “ gamma-butyrolactone, ” “ GBL, ” “ 1,4-butanediol, ” and “ 1,4-BD ” alone and in combination with the keywords “ pharmacokinetics, ” “ kinetics, ” “ poisoning, ” “ poison, ” “ toxicity, ” “ ingestion, ” “ adverse effects, ” “ overdose, ” and “ intoxication.
    [Show full text]
  • Clinical Pharmacology and Biopharmaceutics Review(S)
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 200327 CLINICAL PHARMACOLOGY AND BIOPHARMACEUTICS REVIEW(S) CLINICAL PHARMACOLOGY REVIEW NDA: 200-327 Submission Date(s): • 30 Dec 2009 (SDN 1) • 30 Apr 2010 (SDN 14) • 04 Feb 2010 (SDN 7) • 18 Jun 2010 (SDN 19) • 23 Apr 2010 (SDN 10) • 06 Aug 2010 (SDN 31) • 29 Apr 2010 (SDN 13) • 18 Aug 2010 (SDN 34) Drug Ceftaroline Fosamil for Injection Trade Name TEFLARO™ (proposed) OCP Reviewer Aryun Kim, Pharm.D. OCP Team Leader Charles Bonapace, Pharm.D. PM Reviewer Yongheng Zhang, Ph.D. PM Team Leader Pravin Jadhav, Ph.D. OCP Division DCP4 OND division DAIOP (520) Sponsor Cerexa, Inc., Oakland, CA Relevant IND(s) IND 71,371 Submission Type; Code Original New Drug Application (New Molecular Entity), 1S Formulation; Strength(s) Sterile (b) (4) of ceftaroline fosamil and L-arginine supplied as powder in single-use, 20-cc, clear, Type I glass vials containing 600 mg or 400 mg of ceftaroline fosamil Indication For the treatment of complicated skin and skin structure infections (cSSSI) and community-acquired bacterial pneumonia (CABP) caused by designated susceptible isolates of Gram-positive and Gram-negative microorganisms Dosage and 600 mg administered every 12 hours by intravenous infusion over 1 hour Administration in patients ≥18 years of age • for 5-14 days for treatment of cSSSI • for 5-7 days for treatment of CABP 1. EXECUTIVE SUMMARY 5 1.1 Recommendations 5 1.2 Phase 4 Commitments 6 1.3 Summary of Important Clinical Pharmacology and Biopharmaceutics Findings 6 2. QUESTION-BASED REVIEW 11 2.1 General Attributes of the Drug 11 2.2 General Clinical Pharmacology 13 2.3 Intrinsic Factors 37 2.4 Extrinsic Factors 56 2.5 General Biopharmaceutics 58 2.6 Analytical Section 58 3.
    [Show full text]
  • Gabapentin Enacarbil (Horizant) Monograph
    Gabapentin enacarbil (Horizant) Monograph ® Gabapentin Enacarbil (Horizant ) National Drug Monograph March 2012 VA Pharmacy Benefits Management Services, Medical Advisory Panel, and VISN Pharmacist Executives The purpose of VA PBM Services drug monographs is to provide a comprehensive drug review for making formulary decisions. These documents will be updated when new clinical data warrant additional formulary discussion. Documents will be placed in the Archive section when the information is deemed to be no longer current. Executive Summary: Gabapentin enacarbil (Horizant®) is a prodrug of gabapentin which binds with high affinity to the α2δ subunit of voltage-activated calcium channels in vitro studies. It is unknown how the binding of gabapentin enacarbil (GEn) to the α2δ subunit corresponds to the treatment of restless leg syndrome (RLS) symptoms. Indication: GEn is FDA approved for treatment of RLS. Pharmacokinetics: GEn is primarily excreted by the kidneys and neither gabapentin nor GEn is substrate, inhibitor, or inducer of the major CYP450 system. In addition, GEn is not an inhibitor or substrate of p-glycoprotein in vitro. Dose: The recommended dosage is 600 mg once daily taken with food at about 5 PM. Efficacy: Several studies examining GEn have shown efficacy over placebo in patients with RLS; improvement in RLS symptoms was observed within 7 days of starting treatment.6-8, 12-14 Three studies demonstrated 1200 mg/day GEn significantly reduced International Restless Legs Syndrome (IRLS) scale total score and improved Clinical Global Impression– Improvement (CGI-I) scale compared with placebo.6-8 Two studies demonstrated efficacy at lower dose of 600 mg/day GEn; however, another study did not.7,12,13 These results are comparable to those seen with dopamine agonists.8,12 Adverse Drug Events: Commonly reported adverse effects for the approved dose of 600 mg/day GEn are somnolence, sedation and dizziness.
    [Show full text]
  • Cytochrome P450 2D6 (CYP2D6) Pharmacogenetic Competency
    Cytochrome P450 2D6 (CYP2D6) Pharmacogenetic Competency Updated on 6/2015 Pre-test Question # 1 What is the activity score for the pharmacogenetic test result of CYP2D6 (*1/*1)2N? a) 0.5 b) 1.0 c) 1.5 d) 2.0 Pre-test Question # 2 What is the predicted CYP2D6 phenotype for the test result of CYP2D6 (*2/*17)2N? a) Ultra-rapid metabolizer b) Extensive metabolizer c) Intermediate metabolizer d) Poor metabolizer Pre-test Question # 3 ZB is experiencing pain following a minor surgical procedure. A clinician wants to prescribe codeine to treat the pain and asks you for the appropriate dose. The patient has a pharmacogenetic test result of CYP2D6 (*4/*4) duplication. Based on the pharmacogenetic test result, what recommendation would you give to the clinician? a) Use label recommended dosing b) Reduce the initial starting codeine dose by 50% c) Avoid codeine due an increased risk of adverse events d) Avoid codeine due to a lack of analgesic effects Pre-test Question # 4 MJ is about to be prescribed amitriptyline for treatment of depression. The patient has a reported pharmacogenetic test result of CYP2D6 (*1/*4)2N. Based on the pharmacogenetic test result, which of the following statements is correct? a) The patient should not receive amitriptyline due to decreased plasma concentrations of the drug and likely therapeutic failure b) The patient should not receive amitriptyline due to increased plasma concentrations of the drug and likely development of side effects c) There is no reason to adjust the dose of amitriptyline based on the CYP2D6 genotype
    [Show full text]
  • Molecular and Functional Imaging Studies of Psychedelic Drug Action in Animals and Humans
    molecules Review Molecular and Functional Imaging Studies of Psychedelic Drug Action in Animals and Humans Paul Cumming 1,2,* , Milan Scheidegger 3 , Dario Dornbierer 3, Mikael Palner 4,5,6 , Boris B. Quednow 3,7 and Chantal Martin-Soelch 8 1 Department of Nuclear Medicine, Bern University Hospital, CH-3010 Bern, Switzerland 2 School of Psychology and Counselling, Queensland University of Technology, Brisbane 4059, Australia 3 Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, CH-8032 Zurich, Switzerland; [email protected] (M.S.); [email protected] (D.D.); [email protected] (B.B.Q.) 4 Odense Department of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark; [email protected] 5 Department of Nuclear Medicine, Odense University Hospital, DK-5000 Odense, Denmark 6 Neurobiology Research Unit, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark 7 Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, CH-8058 Zurich, Switzerland 8 Department of Psychology, University of Fribourg, CH-1700 Fribourg, Switzerland; [email protected] * Correspondence: [email protected] or [email protected] Abstract: Hallucinogens are a loosely defined group of compounds including LSD, N,N- dimethyltryptamines, mescaline, psilocybin/psilocin, and 2,5-dimethoxy-4-methamphetamine (DOM), Citation: Cumming, P.; Scheidegger, which can evoke intense visual and emotional experiences. We are witnessing a renaissance of re- M.; Dornbierer, D.; Palner, M.; search interest in hallucinogens, driven by increasing awareness of their psychotherapeutic potential. Quednow, B.B.; Martin-Soelch, C. As such, we now present a narrative review of the literature on hallucinogen binding in vitro and Molecular and Functional Imaging ex vivo, and the various molecular imaging studies with positron emission tomography (PET) or Studies of Psychedelic Drug Action in single photon emission computer tomography (SPECT).
    [Show full text]
  • Download Article (PDF)
    CLINICAL PRACTICE Role of Opioid-Involved Drug Interactions in Chronic Pain Management Kevin T. Bain, PharmD, MPH, BCPS, BCGP, CPH; Calvin H. Knowlton, BPharm, MDiv, PhD From Tabula Rasa The use of opioids for chronic pain management is extraordinarily common despite HealthCare. substantial evidence of only modest benefits, when compared with nonopioid Financial Disclosures: None analgesics. Opioid use is also associated with serious risks, including overdose and reported. death. A growing body of evidence suggests that opioids are involved in significant Support: None reported. drug interactions that often go unrecognized in clinical practice. Understanding Address correspondence to opioid-involved drug interactions is of great practical importance for all health care Kevin T. Bain, PharmD, MPH, professionals caring for patients with chronic pain. In this article, we describe the BCPS, BCGP, CPH, Tabula mechanisms of opioid-involved drug interactions and their potential consequences, Rasa HealthCare, 228 Strawbridge Dr, Moorestown, which have major public health implications. Additionally, this article provides prac- NJ 08057-4600. tical strategies to aid health care professionals in avoiding and mitigating opioid- fi Email: [email protected] involved drug interactions in order to obtain a favorable balance in the risk-bene t ratio associated with opioid use. These strategies include using osteopathic princi- ples for chronic pain management, separating the times of administration of the opioid(s) from the nonopioid(s) involved in the interaction,
    [Show full text]
  • Quinolizidine-Derived Lucanthone and Amitriptyline Analogues Endowed with Potent Antileishmanial Activity
    pharmaceuticals Article Quinolizidine-Derived Lucanthone and Amitriptyline Analogues Endowed with Potent Antileishmanial Activity Michele Tonelli 1,* , Anna Sparatore 2,* , Nicoletta Basilico 3,* , Loredana Cavicchini 3, Silvia Parapini 4 , Bruno Tasso 1 , Erik Laurini 5 , Sabrina Pricl 5,6 , Vito Boido 1 and Fabio Sparatore 1 1 Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; [email protected] (B.T.); [email protected] (V.B.); [email protected] (F.S.) 2 Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy 3 Dipartimento di Scienze Biomediche Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy; [email protected] 4 Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy; [email protected] 5 Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, Piazzale Europa 1, 34127 Trieste, Italy; [email protected] (E.L.); [email protected] (S.P.) 6 Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland * Correspondence: [email protected] (M.T.); [email protected] (A.S.); [email protected] (N.B.) Received: 4 October 2020; Accepted: 21 October 2020; Published: 25 October 2020 Abstract: Leishmaniases are neglected diseases that are endemic in many tropical and sub-tropical Countries. Therapy is based on different classes of drugs which are burdened by severe side effects, occurrence of resistance and high costs, thereby creating the need for more efficacious, safer and inexpensive drugs.
    [Show full text]
  • Cytochrome P450 2C19 (CYP2C19) Pharmacogenetic Competency
    Cytochrome P450 2C19 (CYP2C19) Pharmacogenetic Competency Updated on 6/2015 Pre-test Question # 1 A patient has a reported pharmacogenetic test result of CYP2C19 *1/*12. What is the assigned phenotype? a) Ultra-rapid metabolizer (UM) b) Intermediate metabolizer (IM) c) Poor metabolizer (PM) d) Indeterminate Pre-test Question # 2 A patient with a reported pharmacogenetic test result of CYP2C19 *2A/*2A who is receiving clopidogrel is at risk of suffering from an adverse cardiovascular event (e.g. thrombosis) due to treatment failure. a) Increased b) Moderate c) Decreased Pre-test Question # 3 JH has an indication to start clopidogrel therapy. He has a reported pharmacogenetic test result of CYP2C19 *2A/*3. What is your recommendation to the physician regarding the use of clopidogrel? a) Use clopidogrel at an increased dose b) Use clopidogrel at a reduced dose c) Use clopidogrel at a standard dose d) Use an alternative antiplatelet agent Pre-test Question # 4 Which of the following statements is most correct about a CYP2C19 *17/*17 genotype? a) Patients convert clopidogrel to an inactive metabolite to a greater extent than *1/*1 and therefore a decrease in clopidogrel dose is recommended b) Patients convert clopidogrel to an active metabolite to a greater extent than *1/*1 but no change in clopidogrel dose is recommended c) Patients convert clopidogrel to an active metabolite to a lesser extent than *1/*1 and therefore a decrease in clopidogrel dose is recommended d) Patients convert clopidogrel to an active metabolite to a lesser extent
    [Show full text]
  • Antibacterial Prodrugs to Overcome Bacterial Resistance
    molecules Review Antibacterial Prodrugs to Overcome Bacterial Resistance Buthaina Jubeh , Zeinab Breijyeh and Rafik Karaman * Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine; [email protected] (B.J.); [email protected] (Z.B.) * Correspondence: [email protected] or rkaraman@staff.alquds.edu Academic Editor: Helen Osborn Received: 10 March 2020; Accepted: 26 March 2020; Published: 28 March 2020 Abstract: Bacterial resistance to present antibiotics is emerging at a high pace that makes the development of new treatments a must. At the same time, the development of novel antibiotics for resistant bacteria is a slow-paced process. Amid the massive need for new drug treatments to combat resistance, time and effort preserving approaches, like the prodrug approach, are most needed. Prodrugs are pharmacologically inactive entities of active drugs that undergo biotransformation before eliciting their pharmacological effects. A prodrug strategy can be used to revive drugs discarded due to a lack of appropriate pharmacokinetic and drug-like properties, or high host toxicity. A special advantage of the use of the prodrug approach in the era of bacterial resistance is targeting resistant bacteria by developing prodrugs that require bacterium-specific enzymes to release the active drug. In this article, we review the up-to-date implementation of prodrugs to develop medications that are active against drug-resistant bacteria. Keywords: prodrugs; biotransformation; targeting; β-lactam antibiotics; β-lactamases; pathogens; resistance 1. Introduction Nowadays, the issue of pathogens resistant to drugs and the urgent need for new compounds that are capable of eradicating these pathogens are well known and understood.
    [Show full text]
  • Prodrugs Do They Have Advantages in Clinical Practice?
    Review Article Drugs 29: 455-473 (1985) 0012-6667/85/0QO5-O455/$09.50/0 ® ADIS Press Limited All rights reserved. Prodrugs Do They Have Advantages in Clinical Practice? VJ. Stella, W.N A. Charman and V.H. Naringrekar Department of Pharmaceutical Chemistry, University of Kansas, Lawrence Summary Prodrugs are pharmacologically inactive chemical derivatives of a drug molecule that require a transformation within the body in order to release the active drug. They are designed to overcome pharmaceutical and/or pharmacokinetically based problems asso• ciated with the parent drug molecule that would otherwise limit the clinical usefulness of the drug. The scientific rationale, based on clinical pharmaceutical and chemical experience, for the design of various currently used prodrugs is presented in this review. The examples presented are by no means comprehensive, but are representative of the different ways in which the prodrug approach has been used to enhance the clinical efficacy of various drug molecules. The term 'prodrug' is used to describe com• bond will be designed to be cleaved efficiently by pounds which must undergo chemical transform• enzymatic or non-enzymatic means (Kupchan et ation within the body prior to exerting their al.? 1965), followed by the subsequent rapid elim• pharmacological or therapeutic action. The term ination of the released promoiety. 'prodrug' or 'proagenf was first used by Albert The term 'drug latentiation' has also been ap• (1958) who suggested that this approach could be plied to this concept. Harper (1959, 1962) de• used to alter the properties of drugs, in a temporary scribed drug latentiation as the chemical modifi• manner, to increase their usefulness, and/or to de• cation of a biologically active agent to form a new crease associated toxicity.
    [Show full text]