Box Plots and Radar Plots for Pharmaceutical Studies: Some of the Better Ways to Get a Clear Picture of Study Results

Total Page:16

File Type:pdf, Size:1020Kb

Box Plots and Radar Plots for Pharmaceutical Studies: Some of the Better Ways to Get a Clear Picture of Study Results Paper SP09 Box plots and Radar Plots for Pharmaceutical Studies: Some of the Better Ways to get a Clear Picture of Study Results Mary Cowmeadow, BioStat Reports, Plymouth, Michigan Abstract Box plots, bar graphs, histograms and histograms are among the most useful plots in the pharmaceutical industry. It is possible to plot virtually anything in a clinical trial dataset with one or the other. If the data is discrete, use a bar graph or histogram; if it is continuous, use a box plot. The reason these simple plots are so appropriate is that treatment group is almost always a discrete entity. A change variable such as the difference in labs from baseline to final plotted by treatment group is the perfect setup for box plots. For smaller studies, other types of plots such as radar plots can be useful as well. For many years good box plots have not been available to the general pharmaceutical user in SAS, but, with the advent of version 8, really good plots can now be found in SAS/STAT as PROC BOXPLOT. In this paper you will explore box plots styles, uses and options, and how the block variable concept solves the axis problem. Radar plots will be discussed and compared to spaghetti plots. Introduction Several years ago a hallway discussion lead to a long hunt for good box plots. “What would be the ideal plot for labs” was the question. Some people suggested following each patient over time. But for large studies this was impracticable. The best suggestion was to do box plots of the change in each parameter from baseline to final value. It then seemed that, between box plots and bar graphs / histograms, one could plot all the data collected in normal clinical trials. Bar graphs or histograms would work for categorical data; box plots are ideal for continuous data crossed with treatment group. Since box plots are nonparametric and give you medians and quartiles, the normality assumption is not necessary. Several years later we actually did plot virtually everything in a small study with either box plots or bar graphs. This not only helped with study interpretation, it also helped with a more mundane task: checking tables. After that we added the Kaplan-Meier plots to make the list more complete. More recently we have realized that radar plots can be really nice for smaller studies. They are useful for the same type of data as the box plot and spaghetti plot, so they too will be described. We hope you will find them an exciting new addition to our repertoire of pharmaceutical plots. Early box plots As a result of that hallway discussion, the study standardization group incorporated box plots into the then new Parke-Davis standard system called CIDS. This was a nice beginning. But they were not immediately popular. This was in part because few people really understood box plots. They needed an “advocate”, and, especially one with a handy explanation of what they mean. Since there are several ways that one can do box plots, even statisticians needed to know “what they mean”. The next place box plots were found was in version 6.12 with SAS Insight. These were attractive plots with drill down capability, but they had to be generated interactively each time one wanted to use one. They were nice, but in the final crunch of a study, there was too little time to do them. At that time we were using Excel to output data, and Excel does have some nice graphing capabilities, but it did not have box plots. The language R was too little known to the programmers, but it does have good box plots and might have worked well. Then came SAS version 8.2. Box plots were found first in SAS solutions and SAS analyst. The SAS analyst rather neatly produced re-useable code, something SAS Insight had not done. One could surround it later with ODS statements and produce beautiful fonts in larger more readable type. ODS graph output could then go into Word or PDF files. For the first time box plots began to look really good. PROC BOXPLOT options seemed endless, better even than the options in SAS/GRAPH. PROC BOXPLOT and styles The first thing you learn, however, is that there are several styles of box plots and one should be careful with the differences. The style “SCHEMATICID” is especially appealing because one can identify outliers with circles and print the patient number right next to each circle. This works really well for small studies with few treatment groups and short patient numbers. The people in study work groups love it. But when any of those conditions are not met, these plots are less appealing. Patient numbers print on top of one another and you cannot read them. Long patient numbers are sometimes truncated at the edge of a page. So the next thing worth to try is SCHEMATICIDFAR, which only prints patient numbers on the farthest outliers. This can help, but again 2 patient numbers can still print on top of one another. So, for larger studies, you may want to abandon the attempt to print the patient number on the graph, and use plain SCHEMATIC or SKELETAL instead. See figures 1-4 Figure 1: Example of block variables and footnotes with a SCHEMATICID boxstyle. Figure 2: Example of the options SCHEMATICID. Clinicians really like to see the patient number printed next to the outlier, but it sometimes leads to overprinting, as seen here. Figure 3: The option skeletal avoids these problems, but also gives one less information: Figure 4. Color is a nice option. Here we use the colors SAS provided in their examples, because it is difficult to find a compatible set of colors from scratch. But these colors are not as clear to many eyes as the black and white versions, and do not print very well. Long Treatment Variable Names If you have long treatment names and many treatments, SAS may not print all of them. You can, however, add a split character to the axis statement, which will be enough in most circumstances. Some SAS procedures will sort the variables used. For PROC BOXPLOT you will need to sort before you invoke it. Block Variables One of the nicer things you can do in PROC BOXPLOT and in other plotting procedures is to use block variables. Block variables are similar to doing a “by”, but much nicer because they solve the whole problem of having axes change from plot to plot for each value of the “by”. For example, if you are plotting a lab parameter by treatment and gender and one uses gender as a “by”, the 2 plots for gender are likely to come out with different axes. This may or may not be noticed by the user. It is much better to insure that those 2 plots, one for male and one for female, have the same axis. You can, of course, after the fact add an axis statement, but a very nice way to do the same thing is with the block method. In this case males and females can often be put on the same plot, and this definitely enhances interpretation. To see an example, look at Figures 1-3. To find how to use block variables in online documentation, look up BLOCKPOS in SAS OnlineDoc, version 8. While it is mentioned under PROC BOXPLOT, it is not well described and there is no example in v8. But the code is quite simple but not that obvious. For example, it is the parenthesis in the example below turns birth weight into a block variable, but you might not guess this. proc boxplot data=lab; plot labvar*Treatment(birthweight) / blockpos=3; run; Figure 1 above illustrates using a block variable, birth weight, within treatment group. Figure 2 illustrates using a block variable for one factor of a factorial study, where treatment factor B is “b1”, “b35” and “b72 Plot labvar * FactorB(FactorA)/blockpos=2; You might wonder where the box went in the first treatment in Figures 2 and 3. It turned out that there were a lot of cases where there was zero change in that group, so the box shrank to 1 line. The box may also disappear if you forget to sort the data, resulting in only one patient per treatment. BLOCKPOS tells SAS whether to put the block variable on the top or bottom or below the graph. Reference lines A zero reference line is especially important for change variables. It helps one spot such things as negative or positive trends across dose. One can also include several reference lines. These are particularly useful if you are forced to use a real “by” for one parameter: the movement of the reference lines from plot to plot helps remind the reader of the change in axes. Interpretation and footnotes: So how does one interpret the various styles of box plots? SAS online documentation has an excellent explanation, and a very nice diagram of SCHEMATIC box plots. Condensing all that information to a footnote, however, is a somewhat daunting task. The most difficult part is to explain is the whisker length for SCHEMATIC plots. If you define the box as “1st-3rd (Q1-Q3) quartiles”, you can then use Q to explain whisker length for SCHEMATIC plots. This whisker length is then the “largest value < 1.5(Q3-Q1)”. The rest of the footnote is now easy: the median is the line inside the box, the mean is the plus, and the circles outliers.
Recommended publications
  • Thebault Dagher Fanny 2020
    Université de Montréal Le stress chez les enfants avec convulsions fébriles : mécanismes et contribution au pronostic par Fanny Thébault-Dagher Département de psychologie Faculté des arts et des sciences Thèse présentée en vue de l’obtention du grade de Philosophae Doctor (Ph.D) en Psychologie – Recherche et Intervention option Neuropsychologie clinique Décembre 2019 © Fanny Thébault-Dagher, 2019 Université de Montréal Département de psychologie, Faculté des arts et des sciences Cette thèse intitulée Le stress chez les enfants avec convulsions fébriles : mécanismes et contribution au pronostic Présentée par Fanny Thébault-Dagher A été évaluée par un jury composé des personnes suivantes Annie Bernier Président-rapporteur Sarah Lippé Directrice de recherche Dave Saint-Amour Membre du jury Linda Booij Examinatrice externe Résumé Le stress est continuellement associé à la genèse, la fréquence et la sévérité des convulsions en épilepsie. De nombreux modèles animaux suggèrent qu’une relation entre le stress et les convulsions soit mise en place en début de vie, voire dès la période prénatale. Or, il existe peu de preuves de cette hypothèse chez l’humain. Ainsi, l’objectif général de cette thèse était d’examiner le lien entre le stress en début de vie, dès la conception, et les convulsions chez les humains. Pour ce faire, cette thèse avait comme intérêt principal les convulsions fébriles (CF). Il s’agit de convulsions pédiatriques communes et somme toute bénignes, bien qu’elles soient associées à de légères particularités neurologiques et cognitives. En ce sens, les CF représentent un syndrome de choix pour notre étude, considérant leur incidence fréquente en très bas âge et l’absence de conséquences majeures à long terme.
    [Show full text]
  • The Lasagna Plot
    PhUSE EU Connect 2018 Paper CT03 The Lasagna Plot Soujanya Konda, GlaxoSmithKline, Bangalore, India ABSTRACT Data interpretation becomes complex when the data contains thousands of digits, pages, and variables. Generally, such data is represented in a graphical format. Graphs can be tedious to interpret because of voluminous data, which may include various parameters and/or subjects. Trend analysis is most sought after, to maximize the benefits from a product and minimize the background research such as selection of subjects and so on. Additionally, dynamic representation and sorting of visual data will be used for exploratory data analysis. The Lasagna plot makes the job easier and represents the data in a pleasant way. This paper explains the basics of the Lasagna plot. INTRODUCTION In longitudinal studies, representation of trends using parameters/variables in the fields like pharma, hospitals, companies, states and countries is a little messy. Usually, the spaghetti plot is used to present such trends as individual lines. Such data is hard to analyze because these lines can get tangled like noodles. The other way to present data is HEATMAP instead of spaghetti plot. Swihart et al. (2010) proposed the name “Lasagna Plot” that helps to plot the longitudinal data in a more clear and meaningful way. This graph plots the data as horizontal layers, one on top of the other. Each layer represents a subject or parameter and each column represents a timepoint. Lasagna Plot is useful when data is recorded for every individual subject or parameter at the same set of uniformly spaced time intervals, such as daily, monthly, or yearly.
    [Show full text]
  • Fundamental Statistical Concepts in Presenting Data Principles For
    Fundamental Statistical Concepts in Presenting Data Principles for Constructing Better Graphics Rafe M. J. Donahue, Ph.D. Director of Statistics Biomimetic Therapeutics, Inc. Franklin, TN Adjunct Associate Professor Vanderbilt University Medical Center Department of Biostatistics Nashville, TN Version 2.11 July 2011 2 FUNDAMENTAL STATI S TIC S CONCEPT S IN PRE S ENTING DATA This text was developed as the course notes for the course Fundamental Statistical Concepts in Presenting Data; Principles for Constructing Better Graphics, as presented by Rafe Donahue at the Joint Statistical Meetings (JSM) in Denver, Colorado in August 2008 and for a follow-up course as part of the American Statistical Association’s LearnStat program in April 2009. It was also used as the course notes for the same course at the JSM in Vancouver, British Columbia in August 2010 and will be used for the JSM course in Miami in July 2011. This document was prepared in color in Portable Document Format (pdf) with page sizes of 8.5in by 11in, in a deliberate spread format. As such, there are “left” pages and “right” pages. Odd pages are on the right; even pages are on the left. Some elements of certain figures span opposing pages of a spread. Therefore, when printing, as printers have difficulty printing to the physical edge of the page, care must be taken to ensure that all the content makes it onto the printed page. The easiest way to do this, outside of taking this to a printing house and having them print on larger sheets and trim down to 8.5-by-11, is to print using the “Fit to Printable Area” option under Page Scaling, when printing from Adobe Acrobat.
    [Show full text]
  • Master Thesis
    Pelvis Runner Vergleichende Visualisierung Anatomischer Änderungen DIPLOMARBEIT zur Erlangung des akademischen Grades Diplom-Ingenieur im Rahmen des Studiums Visual Computing eingereicht von Nicolas Grossmann, BSc Matrikelnummer 01325103 an der Fakultät für Informatik der Technischen Universität Wien Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller Mitwirkung: Univ.Ass. Renata Raidou, MSc PhD Wien, 5. August 2019 Nicolas Grossmann Eduard Gröller Technische Universität Wien A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at Pelvis Runner Comparative Visualization of Anatomical Changes DIPLOMA THESIS submitted in partial fulfillment of the requirements for the degree of Diplom-Ingenieur in Visual Computing by Nicolas Grossmann, BSc Registration Number 01325103 to the Faculty of Informatics at the TU Wien Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller Assistance: Univ.Ass. Renata Raidou, MSc PhD Vienna, 5th August, 2019 Nicolas Grossmann Eduard Gröller Technische Universität Wien A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at Erklärung zur Verfassung der Arbeit Nicolas Grossmann, BSc Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen- deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe. Wien, 5. August 2019 Nicolas Grossmann v Acknowledgements More than anyone else, I want to thank my supervisor Renata Raidou for her constructive feedback and her seemingly endless stream of ideas. It was because of her continuous encouragement that I was able to take my first steps towards a scientific career.
    [Show full text]
  • Standard Indicators for the Social Appropriation of Science Persist Eu
    STANDARD INDICATORS FOR THE SOCIAL APPROPRIATION OF SCIENCE PERSIST_EU ERASMUS+ PROJECT Lessons learned Standard indicators for the social appropriation of science. Lessons learned First published: March 2021 ScienceFlows Research Data Collection © Book: Coordinators, authors and contributors © Images: Coordinators, authors and contributors © Edition: ScienceFlows and FyG consultores The Research Institute on Social Welfare Policy (Polibienestar) Campus de Tarongers C/ Serpis, 29. 46009. Valencia [email protected] How to cite: PERSIST_EU (2021). Standard indicators for the social appropriation of science: Lessons learned. Valencia (Spain): ScienceFlows & Science Culture and Innovation Unit of University of Valencia ISBN: 978-84-09-30199-7 This project has been funded with support from the European Commission under agreements 2018-1-ES01-KA0203-050827. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein. PERSIST_EU PROJECT Project number: 2018-1-ESO1-KA0203-050827 Project coordinator: Carolina Moreno-Castro (University of Valencia) COORDINATING PARTNER ScienceFlows- Universitat de València. Spain Carolina Moreno-Castro Empar Vengut-Climent Isabel Mendoza-Poudereux Ana Serra-Perales Amaia Crespo-Costa PARTICIPATING PARTNERS Instituto de Ciências Sociais da Universidade de Lisboa (ICS) Trnavská univerzita v Trnave Portugal Slovakia Ana Delicado Martin Fero Helena Vicente Lenka Diener João Estevens Peter Guran Jussara Rowland Karlsruher Institut Fuer Technology Danmar Computers (KIT) Poland Germany Margaret Miklosz Annette Leßmöllmann Chris Ciapala André Weiß Łukasz Kłapa Observa Science in Society FyG Consultores Italy Spain Giuseppe Pellegrini Fabián Gómez Andrea Rubin Aleksandra Staszynka Nieves Verdejo INDEX About the project and the book• 6 1.
    [Show full text]
  • Eappendix 1: Lasagna Plots: a Saucy Alternative to Spaghetti Plots
    eAppendix 1: Lasagna plots: A saucy alternative to spaghetti plots Bruce J. Swihart, Brian Caffo, Bryan D. James, Matthew Strand, Brian S. Schwartz, Naresh M. Punjabi Abstract Longitudinal repeated-measures data have often been visualized with spaghetti plots for continuous outcomes. For large datasets, the use of spaghetti plots often leads to the over-plotting and consequential obscuring of trends in the data. This obscuring of trends is primarily due to overlapping of trajectories. Here, we suggest a framework called lasagna plotting that constrains the subject-specific trajectories to prevent overlapping, and utilizes gradients of color to depict the outcome. Dynamic sorting and visualization is demonstrated as an exploratory data analysis tool. The following document serves as an online supplement to “Lasagna plots: A saucy alternative to spaghetti plots.” The ordering is as follows: Additional Examples, Code Snippets, and eFigures. Additional Examples We have used lasagna plots to aid the visualization of a number of unique disparate datasets, each presenting their own challenges to data exploration. Three examples from two epidemiologic studies are featured: the Sleep Heart Health Study (SHHS) and the Former Lead Workers Study (FLWS). The SHHS is a multicenter study on sleep-disordered breathing (SDB) and cardiovascular outcomes.1 Subjects for the SHHS were recruited from ongoing cohort studies on respiratory and cardiovascular disease. Several biosignals for each of 6,414 subjects were collected in-home during sleep. Two biosignals are displayed here-in: the δ-power in the electroencephalogram (EEG) during sleep and the hypnogram. Both the δ-power and the hypnogram are stochastic processes. The former is a discrete- time contiuous-outcome process representing the homeostatic drive for sleep and the latter a discrete-time discrete-outcome process depicting a subject’s trajectory through the rapid eye movement (REM), non-REM, and wake stages of sleep.
    [Show full text]
  • Yonette F. Thomas · Leshawndra N. Price Editors Drug Use Trajectories Among Minority Youth Drug Use Trajectories Among Minority Youth
    Yonette F. Thomas · LeShawndra N. Price Editors Drug Use Trajectories Among Minority Youth Drug Use Trajectories Among Minority Youth Yonette F. Thomas • LeShawndra N. Price Editors Drug Use Trajectories Among Minority Youth Editors Yonette F. Thomas LeShawndra N. Price The New York Academy of Medicine and Health Inequities and Global Health Branch the American Association of Geographers National Heart Lung and Blood Institute, Glenn Dale , MD , USA National Institutes of Health Bethesda , MD , USA ISBN 978-94-017-7489-5 ISBN 978-94-017-7491-8 (eBook) DOI 10.1007/978-94-017-7491-8 Library of Congress Control Number: 2016946341 © Springer Science+Business Media Dordrecht 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • Displaying Your Data
    Basics and Beyond: Displaying Your Data Mario Davidson, PhD Vanderbilt University School of Medicine Department of Biostatistics Instructor Objectives 1.Understand the types of data and levels of measurement 2.Understand how a Table 1 typically looks 3.Be able to interpret all of the basic graphs. 4.Know the type of displays that may be used dependent upon the type of data and level of measurement 5.Be introduced to less familiar displays of the data Types of Data (Obj1) ●Qualitative Data ● Consist of attributes, labels, or non-numerical entries. ● If you can’t perform mathematical operations or order data, it’s qualitative. ● Ex: Colors in a box of crayons; names; county ●Quantitative Data ● Consist of numerical measurements or counts. ● Ordering is a dead give away ● Ex: BMI; age; numerical grade Levels of Measurement (Obj1) ●Nominal ● Qualitative ● Categorized using names, qualities, or labels ● Ex: Top 5 movies, jersey numbers, type of drug ●Ordinal ● Quantitative or Qualitative ● Can order ● Differences between data are not meaningful. ● Ex: Letter grade, Likert scale such as very dissatisfied to very satisfied Levels of Measurement (Obj1) ●Interval Level of Measurement ● Quantitative ● Can order ● Can calculate meaningful differences ● No Value that means “nothing/none.” A zero entry merely represents a position on a scale (i.e. no inherent zero). ● Ex: Time of day, temperature ●Ratio Level of Measurement ● Quantitative ● Can order ● Can calculate meaningful differences ● There’s a value that means “nothing/none.” ● Ex: Age, weight, test score Popular Displays Description of Table 1 (Obj2) Typically summarizes baseline characteristics of the data. Compares statistics between groups May provide means, medians, confidence intervals, percentiles, percentages, p-values, standard deviations, etc.
    [Show full text]
  • Spaghetti Is Good for More Than Just Eating September/October 2009
    Datum Vol. 15, No. 4 September/October 2009 1 Department of Population Health, Medical College of Wisconsin Datum Newsletter of the Biostatistics & Epidemiology Key Function of the CTSI It Figures Aniko Szabo, Ph.D. Division of Biostatistics Volume 15, Number 4 Spaghetti is good for more than just eating September/October 2009 The previous “It Figures” article (Datum, Volume 15, Number 3) discussed how showing the underlying data values using dot plots can enhance a plot. Spaghetti plots, also called profile plots, are an extension of the same idea for longitudinal data. Longitudinal data is commonly plotted by showing the mean and standard error at each time-point. Such plots have several problems: 1) The average of the response trajectories is often not the “average” or typical trajectory. In fact, it might not resemble any of the actual trajectories. 2) The error bars don’t show the nature of the variability around the mean. Is an increase in the mean typical among all subjects, or is it just driven by a few outliers? Perhaps some subjects have consistently high/low values, but the time-trend is very In this issue: similar for everybody, or, conversely, the values keep varying around the average for everybody? 3) If the timing of measurement varies between subjects, rounding or approximation It Figures might be needed to collect enough values at each time-point for averaging. Spaghetti Plots . 1 In a spaghetti plot the trajectory of the measurements for all the individuals On the Map News from the world of are shown. The result often looks GIS .
    [Show full text]
  • A Sassy Substitute to Represent the Longitudinal Data – the Lasagna Plot Soujanya Konda, IQVIA, Germany
    PharmaSUG 2021 – Paper DV-200 A Sassy substitute to represent the longitudinal data – The Lasagna Plot Soujanya Konda, IQVIA, Germany ABSTRACT Data interpretation becomes complex when the data contains thousands of digits, pages, and variables. Generally, such data is represented in a graphical format. Graphs can be tedious to interpret because of voluminous data, which may include various parameters and/or subjects. Trend analysis is most sought after, to maximize the benefits from a product and minimize the background research such as selection of subjects and so on. Additionally, dynamic representation and sorting of visual data will be used for exploratory data analysis. The Lasagna plot makes the job easier and represents the data in a pleasant way. This paper explains the tips and tricks of the Lasagna plot. INTRODUCTION In longitudinal studies, representation of trends using parameters/variables in the fields like pharma, hospitals, companies, states and countries is a little messy. Usually, the spaghetti plot is used to present such trends as individual lines. Such data is hard to analyze because these lines can get tangled like noodles. The other way to present data is HEATMAP instead of spaghetti plot. Swihart et al. (2010) proposed the name “Lasagna Plot” that helps to plot the longitudinal data in a more clear and meaningful way. This graph plots the data as horizontal layers, one on top of the other. Each layer represents a subject or parameter and each column represents a timepoint. Lasagna Plot is useful when data is recorded for every individual subject or parameter at the same set of uniformly spaced time intervals, such as daily, monthly, or yearly.
    [Show full text]
  • Cellular Correlates of Cortical Thinning Throughout the Lifespan Didac Vidal‑Pineiro1, Nadine Parker2,3, Jean Shin4, Leon French5, Håkon Grydeland1, Andrea P
    www.nature.com/scientificreports OPEN Cellular correlates of cortical thinning throughout the lifespan Didac Vidal‑Pineiro1, Nadine Parker2,3, Jean Shin4, Leon French5, Håkon Grydeland1, Andrea P. Jackowski6,7, Athanasia M. Mowinckel1, Yash Patel2,3, Zdenka Pausova4, Giovanni Salum7,8, Øystein Sørensen1, Kristine B. Walhovd1,9, Tomas Paus2,3,10*, Anders M. Fjell1,9* & the Alzheimer’s Disease Neuroimaging Initiative and the Australian Imaging Biomarkers and Lifestyle fagship study of ageing Cortical thinning occurs throughout the entire life and extends to late‑life neurodegeneration, yet the neurobiological substrates are poorly understood. Here, we used a virtual‑histology technique and gene expression data from the Allen Human Brain Atlas to compare the regional profles of longitudinal cortical thinning through life (4004 magnetic resonance images [MRIs]) with those of gene expression for several neuronal and non‑neuronal cell types. The results were replicated in three independent datasets. We found that inter‑regional profles of cortical thinning related to expression profles for marker genes of CA1 pyramidal cells, astrocytes and, microglia during development and in aging. During the two stages of life, the relationships went in opposite directions: greater gene expression related to less thinning in development and vice versa in aging. The association between cortical thinning and cell‑specifc gene expression was also present in mild cognitive impairment and Alzheimer’s Disease. These fndings suggest a role of astrocytes and microglia in promoting and supporting neuronal growth and dendritic structures through life that afects cortical thickness during development, aging, and neurodegeneration. Overall, the fndings contribute to our understanding of the neurobiology underlying variations in MRI‑derived estimates of cortical thinning through life and late‑life disease.
    [Show full text]
  • Arxiv:1604.05895V1 [Physics.Data-An] 20 Apr 2016 Horace .A Ewings, A
    Horace: software for the analysis of data from single crystal spectroscopy experiments at time-of-flight neutron instruments. R. A. Ewings,1 A. Buts,1 M. D. Le,1 J. van Duijn,2 I. Bustinduy,3 and T. G. Perring1,4, ∗ 1ISIS Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, United Kingdom 2Departamento de Mec´anica, Universidad de C´ordoba, C´ordoba, 14071, Spain 3ESS Bilbao, Poligono Ugaldeguren III, Pol. A, 7B. 48170 Zamudio, Bizkaia - Pa´ıs Vasco, Spain 4London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, United Kingdom (Dated: April 21, 2016) The Horace suite of programs has been developed to work with large multiple-measurement data sets collected from time-of-flight neutron spectrometers equipped with arrays of position-sensitive detectors. The software allows exploratory studies of the four dimensions of reciprocal space and ex- citation energy to be undertaken, enabling multi-dimensional subsets to be visualized, algebraically manipulated, and models for the scattering to simulated or fitted to the data. The software is de- signed to be an extensible framework, thus allowing user-customized operations to be performed on the data. Examples of the use of its features are given for measurements exploring the spin waves of the simple antiferromagnet RbMnF3 and ferromagnetic iron, and the phonons in URu2Si2. arXiv:1604.05895v1 [physics.data-an] 20 Apr 2016 2 I. INTRODUCTION Neutron spectrometers at central facilities around the world are routinely used to measure the wave-vector, Q, and energy, ~ω, dependency of the spectrum of lattice dynamics and magnetic excitations, S(Q,ω).
    [Show full text]