Influences of Diffusion on Metabolic Structure and Function in Skeletal Muscle

Total Page:16

File Type:pdf, Size:1020Kb

Influences of Diffusion on Metabolic Structure and Function in Skeletal Muscle 263 The Journal of Experimental Biology 214, 263-274 © 2011. Published by The Company of Biologists Ltd doi:10.1242/jeb.047985 Molecules in motion: influences of diffusion on metabolic structure and function in skeletal muscle Stephen T. Kinsey1,*, Bruce R. Locke2 and Richard M. Dillaman1 1Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC 28403-5915, USA and 2Department of Chemical and Biomedical Engineering, Florida State University, FAMU-FSU College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA *Author for correspondence ([email protected]) Accepted 25 August 2010 Summary Metabolic processes are often represented as a group of metabolites that interact through enzymatic reactions, thus forming a network of linked biochemical pathways. Implicit in this view is that diffusion of metabolites to and from enzymes is very fast compared with reaction rates, and metabolic fluxes are therefore almost exclusively dictated by catalytic properties. However, diffusion may exert greater control over the rates of reactions through: (1) an increase in reaction rates; (2) an increase in diffusion distances; or (3) a decrease in the relevant diffusion coefficients. It is therefore not surprising that skeletal muscle fibers have long been the focus of reaction–diffusion analyses because they have high and variable rates of ATP turnover, long diffusion distances, and hindered metabolite diffusion due to an abundance of intracellular barriers. Examination of the diversity of skeletal muscle fiber designs found in animals provides insights into the role that diffusion plays in governing both rates of metabolic fluxes and cellular organization. Experimental measurements of metabolic fluxes, diffusion distances and diffusion coefficients, coupled with reaction–diffusion mathematical models in a range of muscle types has started to reveal some general principles guiding muscle structure and metabolic function. Foremost among these is that metabolic processes in muscles do, in fact, appear to be largely reaction controlled and are not greatly limited by diffusion. However, the influence of diffusion is apparent in patterns of fiber growth and metabolic organization that appear to result from selective pressure to maintain reaction control of metabolism in muscle. Key words: calcium, diffusion, metabolism, mitochondria, muscle, nuclei. Introduction in D values, diffusion distances and rates of reaction fluxes. For Physiologists have a long history of evaluating the role of diffusion instance, Ca2+ cycling entails a high D for Ca2+, short diffusion in cellular metabolism, particularly with respect to the necessity for distances and high reaction fluxes, whereas nuclear function entails O2 transport from the blood into cells for aerobic metabolism. low D values for various macromolecular products, long diffusion Indeed, Fick’s diffusion equations and principles of membrane distances and low reaction fluxes. These interactions mean that cell transport have a prominent position in most physiology textbooks, structure is responsive to diffusion constraints in a manner that is and biology students are well versed in the notion that cells are dependent on the type of process and the functional demands placed small in order to maintain short diffusion distances for molecules on that process. Fig.1 also illustrates the principle of facilitated like O2. A corollary of this rule in skeletal muscle is that aerobic diffusion that was first proposed for myoglobin (Mb) by Wittenberg fibers that rely on O2 diffusion to promote sustained exercise are (Wittenberg, 1959) and independently identified for hemoglobin generally smaller than anaerobic fibers that are used for burst (Hb) by Scholander (Scholander, 1960), but also applies to contraction and are less reliant on O2 diffusion (for review, see van phosphagen kinases such as creatine kinase (CK) and arginine Wessel et al., 2010). The implication of this observation is that kinase (AK), and to a lesser extent to parvalbumin (PA). In higher rates of aerobic metabolism require smaller fibers, and facilitated diffusion, protein binding or enzymatic conversion of the variation in fiber size may represent responses to avoid diffusion diffusing species provides a parallel pathway for diffusive flux that limitation. In a more general sense, we can conclude that in any enhances the overall rate of diffusive transport. The present paper reaction–diffusion system, the role of diffusion becomes greater as will attempt to summarize some of the ways in which diffusion the diffusion coefficient (D) decreases, diffusion distance increases governs metabolic structure and function in skeletal muscle. or the rate of reaction flux increases (Weisz, 1973). In principle, nearly every biochemical reaction is a Concentration gradients are a prerequisite for diffusion reaction–diffusion process involving the diffusive flux of substrates control of reaction flux to enzyme active sites. A number of processes have been the When examining a single tissue type, D is comparatively invariant subject of reaction–diffusion analyses in muscle, such as the over physiological time scales, so the extent to which diffusion aforementioned oxygen flux from capillaries to mitochondria influences cell structure and function is largely governed by the (Fig.1A), the diffusion of ATP to sites of cellular ATPases interaction between diffusion distance and reaction flux rate. In (Fig.1B), Ca2+ cycling during contraction–relaxation cycles skeletal muscle fibers rates of reaction fluxes and diffusion (Fig.1C), and the transport of nuclear products to sites of action in distances can vary over several orders of magnitude. For instance, the cell (Fig.1D). These examples illustrate considerable variation aerobic metabolic rate in white muscle from fishes and crustaceans THE JOURNAL OF EXPERIMENTAL BIOLOGY 264 S. T. Kinsey, B. R. Locke and R. M. Dillaman these approaches is that diffusion is rapid relative to the rate of metabolic flux, and it therefore does not limit reactions. A Fig.2 is a diagram of the manner in which diffusion distance and MbO MbO reaction flux interact to affect concentration profiles of a diffusing HbO2 2 2 Net diffusive molecule for cases where diffusion would not be limiting and for flux O O O cases where it may be limiting. In this example, there is a point +2 +2 +2 Hb Mb Mb source for the diffusing molecule and that molecule is consumed (sink) as it diffuses away from the source. For instance, the source 2H2O Capillary Muscle fiber could be a capillary supplying O2 that diffuses across the cell and B is consumed by mitochondria. The schematic diagram in Fig.2 ADP ADP illustrates that in cases where diffusion is fast relative to the +Pi AP/PCr AP/PCr +P reaction rate, there are no concentration gradients for the diffusing ½ O2 i AK/CK Net diffusive flux AK/CK ATPase species (red lines). This represents a situation where diffusion would have no effect on reaction rate, and an analysis of the H2O Arg/Cr Arg/Cr ATP ATP catalytic properties alone is sufficient to explain the metabolic Mitochondria process. Thus, an increase in the reaction rate or the diffusion distance (manifested here as increased activity or size, respectively, of the sink) would lead to a uniform reduction in the concentration C CsCa2+ PACa2+ PACa2+ TnCCa2+ ATP of the diffusing species over the diffusion distance. The blue lines Net diffusive flux illustrate what would be expected when diffusion is not much faster Ca2+ Ca2+ Ca2+ Ca2+ + + + + than the rate of reaction flux, leading to concentration gradients that Cs PA PA TnC become steeper as the reaction rate or the diffusion distance Sarcoplasmic increases. In these cases, if the diffusing species is a substrate for reticulum a reaction, then the rate of product formation may be reduced as the distance from the source increases. D Unfortunately, measurements of metabolite concentrations in cells typically cannot distinguish between the rapid diffusion and RNA, Net diffusive flux or Sites of proteins active transport action slow diffusion cases, as they do not give information on spatial variation in concentration. Most studies have therefore analyzed reaction–diffusion processes in muscle using mathematical models Nucleus that include independent measurements of D, diffusion distances and rates of reaction fluxes. This requires a clear understanding of Fig.1. Examples of reaction–diffusion processes in muscle. (A)O2 diffusion the nature of the intracellular environment and the manner in which entails reversible binding with hemoglobin (Hb) or another blood pigment small and large molecules move in this environment. type, and with myoglobin (Mb) in some fiber types. (B)Diffusion of ATP to cellular ATPases involves the reversible transfer of a phosphoryl group from ATP to an acceptor molecule such as creatine (Cr) or arginine (Arg), The intracellular environment of muscle has characteristics of forming the phosphagen phosphocreatine (PCr) or arginine phosphate a porous medium (AP), respectively. Phosphagen kinases, such as creatine kinase (CK) or The cytoplasm is a complex and crowded medium consisting of arginine kinase (AK) catalyze these reactions. (C)Ca2+ is released from the soluble and bound macromolecules, fibrous cytoskeletal elements sarcoplasmic reticulum (SR) upon muscle stimulation and must diffuse to and membrane-bound organelles (reviewed in Luby-Phelps, 2000; and bind myofibrillar troponin C (TnC) to activate
Recommended publications
  • Part Two Physical Processes in Oceanography
    Part Two Physical Processes in Oceanography 8 8.1 Introduction Small-Scale Forty years ago, the detailed physical mechanisms re- Mixing Processes sponsible for the mixing of heat, salt, and other prop- erties in the ocean had hardly been considered. Using profiles obtained from water-bottle measurements, and J. S. Turner their variations in time and space, it was deduced that mixing must be taking place at rates much greater than could be accounted for by molecular diffusion. It was taken for granted that the ocean (because of its large scale) must be everywhere turbulent, and this was sup- ported by the observation that the major constituents are reasonably well mixed. It seemed a natural step to define eddy viscosities and eddy conductivities, or mix- ing coefficients, to relate the deduced fluxes of mo- mentum or heat (or salt) to the mean smoothed gra- dients of corresponding properties. Extensive tables of these mixing coefficients, KM for momentum, KH for heat, and Ks for salinity, and their variation with po- sition and other parameters, were published about that time [see, e.g., Sverdrup, Johnson, and Fleming (1942, p. 482)]. Much mathematical modeling of oceanic flows on various scales was (and still is) based on simple assumptions about the eddy viscosity, which is often taken to have a constant value, chosen to give the best agreement with the observations. This approach to the theory is well summarized in Proudman (1953), and more recent extensions of the method are described in the conference proceedings edited by Nihoul 1975). Though the preoccupation with finding numerical values of these parameters was not in retrospect always helpful, certain features of those results contained the seeds of many later developments in this subject.
    [Show full text]
  • Diffusion at Work
    or collective redistirbution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] ofor Th e The to: [email protected] Oceanography approval Oceanography correspondence POall Box 1931, portionthe Send Society. Rockville, ofwith any permittedUSA. articleonly photocopy by Society, is MD 20849-1931, of machine, this reposting, means or collective or other redistirbution article has This been published in hands - on O ceanography Oceanography Diffusion at Work , Volume 20, Number 3, a quarterly journal of The Oceanography Society. Copyright 2007 by The Oceanography Society. All rights reserved. Permission is granted to copy this article for use in teaching and research. Republication, systemmatic reproduction, reproduction, Republication, systemmatic research. for this and teaching article copy to use in reserved.by The 2007 is rights ofAll granted journal Copyright Oceanography The Permission 20, NumberOceanography 3, a quarterly Society. Society. , Volume An Interactive Simulation B Y L ee K arp-B oss , E mmanuel B oss , and J ames L oftin PURPOSE OF ACTIVITY or small particles due to their random (Brownian) motion and The goal of this activity is to help students better understand the resultant net migration of material from regions of high the nonintuitive concept of diffusion and introduce them to a concentration to regions of low concentration. Stirring (where variety of diffusion-related processes in the ocean. As part of material gets stretched and folded) expands the area available this activity, students also practice data collection and statisti- for diffusion to occur, resulting in enhanced mixing compared cal analysis (e.g., average, variance, and probability distribution to that due to molecular diffusion alone.
    [Show full text]
  • What Is the Difference Between Osmosis and Diffusion?
    What is the difference between osmosis and diffusion? Students are often asked to explain the similarities and differences between osmosis and diffusion or to compare and contrast the two forms of transport. To answer the question, you need to know the definitions of osmosis and diffusion and really understand what they mean. Osmosis And Diffusion Definitions Osmosis: Osmosis is the movement of solvent particles across a semipermeable membrane from a dilute solution into a concentrated solution. The solvent moves to dilute the concentrated solution and equalize the concentration on both sides of the membrane. Diffusion: Diffusion is the movement of particles from an area of higher concentration to lower concentration. The overall effect is to equalize concentration throughout the medium. Osmosis And Diffusion Examples Examples of Osmosis: Examples of osmosis include red blood cells swelling up when exposed to fresh water and plant root hairs taking up water. To see an easy demonstration of osmosis, soak gummy candies in water. The gel of the candies acts as a semipermeable membrane. Examples of Diffusion: Examples of diffusion include perfume filling a whole room and the movement of small molecules across a cell membrane. One of the simplest demonstrations of diffusion is adding a drop of food coloring to water. Although other transport processes do occur, diffusion is the key player. Osmosis And Diffusion Similarities Osmosis and diffusion are related processes that display similarities. Both osmosis and diffusion equalize the concentration of two solutions. Both diffusion and osmosis are passive transport processes, which means they do not require any input of extra energy to occur.
    [Show full text]
  • Gas Exchange and Respiratory Function
    LWBK330-4183G-c21_p484-516.qxd 23/07/2009 02:09 PM Page 484 Aptara Gas Exchange and 5 Respiratory Function Applying Concepts From NANDA, NIC, • Case Study and NOC A Patient With Impaired Cough Reflex Mrs. Lewis, age 77 years, is admitted to the hospital for left lower lobe pneumonia. Her vital signs are: Temp 100.6°F; HR 90 and regular; B/P: 142/74; Resp. 28. She has a weak cough, diminished breath sounds over the lower left lung field, and coarse rhonchi over the midtracheal area. She can expectorate some sputum, which is thick and grayish green. She has a history of stroke. Secondary to the stroke she has impaired gag and cough reflexes and mild weakness of her left side. She is allowed food and fluids because she can swallow safely if she uses the chin-tuck maneuver. Visit thePoint to view a concept map that illustrates the relationships that exist between the nursing diagnoses, interventions, and outcomes for the patient’s clinical problems. LWBK330-4183G-c21_p484-516.qxd 23/07/2009 02:09 PM Page 485 Aptara Nursing Classifications and Languages NANDA NIC NOC NURSING DIAGNOSES NURSING INTERVENTIONS NURSING OUTCOMES INEFFECTIVE AIRWAY CLEARANCE— RESPIRATORY MONITORING— Return to functional baseline sta- Inability to clear secretions or ob- Collection and analysis of patient tus, stabilization of, or structions from the respiratory data to ensure airway patency improvement in: tract to maintain a clear airway and adequate gas exchange RESPIRATORY STATUS: AIRWAY PATENCY—Extent to which the tracheobronchial passages remain open IMPAIRED GAS
    [Show full text]
  • Near-Drowning
    Central Journal of Trauma and Care Bringing Excellence in Open Access Review Article *Corresponding author Bhagya Sannananja, Department of Radiology, University of Washington, 1959, NE Pacific St, Seattle, WA Near-Drowning: Epidemiology, 98195, USA, Tel: 830-499-1446; Email: Submitted: 23 May 2017 Pathophysiology and Imaging Accepted: 19 June 2017 Published: 22 June 2017 Copyright Findings © 2017 Sannananja et al. Carlos S. Restrepo1, Carolina Ortiz2, Achint K. Singh1, and ISSN: 2573-1246 3 Bhagya Sannananja * OPEN ACCESS 1Department of Radiology, University of Texas Health Science Center at San Antonio, USA Keywords 2Department of Internal Medicine, University of Texas Health Science Center at San • Near-drowning Antonio, USA • Immersion 3Department of Radiology, University of Washington, USA\ • Imaging findings • Lung/radiography • Magnetic resonance imaging Abstract • Tomography Although occasionally preventable, drowning is a major cause of accidental death • X-Ray computed worldwide, with the highest rates among children. A new definition by WHO classifies • Nonfatal drowning drowning as the process of experiencing respiratory impairment from submersion/ immersion in liquid, which can lead to fatal or nonfatal drowning. Hypoxemia seems to be the most severe pathophysiologic consequence of nonfatal drowning. Victims may sustain severe organ damage, mainly to the brain. It is difficult to predict an accurate neurological prognosis from the initial clinical presentation, laboratory and radiological examinations. Imaging plays an important role in the diagnosis and management of near-drowning victims. Chest radiograph is commonly obtained as the first imaging modality, which usually shows perihilar bilateral pulmonary opacities; yet 20% to 30% of near-drowning patients may have normal initial chest radiographs. Brain hypoxia manifest on CT by diffuse loss of gray-white matter differentiation, and on MRI diffusion weighted sequence with high signal in the injured regions.
    [Show full text]
  • Gases Boyles Law Amontons Law Charles Law ∴ Combined Gas
    Gas Physics FICK’S LAW Adolf Fick, 1858 Properties of “Ideal” Gases Fick’s law of diffusion of a gas across a fluid membrane: • Gases are composed of molecules whose size is negligible compared to the average distance between them. Rate of diffusion = KA(P2–P1)/D – Gas has a low density because its molecules are spread apart over a large volume. • Molecules move in random lines in all directions and at various speeds. Wherein: – The forces of attraction or repulsion between two molecules in a gas are very weak or negligible, except when they collide. K = a temperature-dependent diffusion constant. – When molecules collide with one another, no kinetic energy is lost. A = the surface area available for diffusion. • The average kinetic energy of a molecule is proportional to the absolute temperature. (P2–P1) = The difference in concentraon (paral • Gases are easily expandable and compressible (unlike solids and liquids). pressure) of the gas across the membrane. • A gas will completely fill whatever container it is in. D = the distance over which diffusion must take place. – i.e., container volume = gas volume • Gases have a measurement of pressure (force exerted per unit area of surface). – Units: 1 atmosphere [atm] (≈ 1 bar) = 760 mmHg (= 760 torr) = 14.7 psi = 0.1 MPa Boyles Law Amontons Law • Gas pressure (P) is inversely proportional to gas volume (V) • Gas pressure (P) is directly proportional to absolute gas • P ∝ 1/V temperature (T in °K) ∴ ↑V→↓P ↑P→↓V ↓V →↑P ↓P →↑V • 0°C = 273°K • P ∝ T • ∴ P V =P V (if no gas is added/lost and temperature
    [Show full text]
  • Respiratory Gas Exchange in the Lungs
    RESPIRATORY GAS EXCHANGE Alveolar PO2 = 105 mmHg; Pulmonary artery PO2 = 40 mmHg PO2 gradient across respiratory membrane 65 mmHg (105 mmHg – 40 mmHg) Results in pulmonary vein PO2 ~100 mmHg Partial Pressures of Respiratory Gases • According to Dalton’s law, in a gas mixture, the pressure exerted by each individual gas is independent of the pressures of other gases in the mixture. • The partial pressure of a particular gas is equal to its fractional concentration times the total pressure of all the gases in the mixture. • Atmospheric air : Oxygen constitutes 20.93% of dry atmospheric air. At a standard barometric pressure of 760 mm Hg, PO2 = 0.2093 × 760 mm Hg = 159 mm Hg Similarly , PCO2= 0.3 mm Hg PN2= 600 mm Hg Inspired Air: PIO2= FIO2 (PB-PH2O)= 0.2093 (760-47)= 149 mm Hg PICO2= 0.3 mm Hg PIN2= 564 mm Hg Alveolar air at standard barometric pressure • 2.5 to 3 L of gas is already in the lungs at the FRC and the approximately 350 mL per breath enters the alveoli with every breath. • About 250 mL of oxygen continuously diffuses from the alveoli into the pulmonary capillary blood per minute at rest and 200 mL of carbon dioxide diffuses from the mixed venous blood in the pulmonary capillaries into the alveoli per minute. • The PO2 and PCO2 of mixed venous blood are about 40 mm Hg and 45 to 46 mm Hg, respectively • The PO2 and PCO2 in the alveolar air are determined by the alveolar ventilation, the pulmonary capillary perfusion, the oxygen consumption, and the carbon dioxide production.
    [Show full text]
  • Differential Fluxes of Heat and Salt: Implications for Circulation and Ecosystem Modeling
    FEATURE DIFFERENTIAL FLUXES OF HEAT AND SALT: IMPLICATIONS FOR CIRCULATION AND ECOSYSTEM MODELING By Barry Ruddick What Are Differential Fluxes, and Conventional turbulent mixing, for eddy diffusivity for salt. Heat is also car- Why Might They Matter? which heat, salt, and density diffusivities ried downward by the fingers, but to a are equal and positive, reduces contrasts lesser extent because it is short-circuited THE SALTS DISSOLVED in the world's in density. In contrast, double diffusion by lateral diffusion. The heat contrast is oceans have profound effects, from the can increase density contrasts, and this is also reduced, but not to zero. Note that large scale, where evaporation-precipita- the key to understanding many of its the potential energy of the salt field is tion patterns have the opposite buoyancy oceanic consequences: the possibility of lowered, and that of the temperature field effect to thermal forcing, to the mi- mixing without an external source of ki- is raised. The surprising thing is discov- croscale, where molecular diffusion of netic energy, formation of regular series ered when we add up the contributions of heat is 70 times faster than that of salt. It of layers, the strange effects on vertical heat and salt to the density profiles--the has often been assumed that this differ- motion and stretching that modulate ther- ence can only matter at the smallest mohaline circulation, and even lateral scales, so that heat and salt are mixed in mixing over thousands of kilometers via exactly the same way by turbulence. thermohaline intrusions. However, the different molecular diffusiv- The best-known example of double- ities are the basis for a variety of phenom- diffusion is that of salt fingers, which ena known as double-diffusion, and these occur spontaneously when warm, salty can lead to important differences between water (green in Fig.
    [Show full text]
  • Lifesaving After Cardiac Arrest Due to Drowning Characteristics and Outcome
    Lifesaving after cardiac arrest due to drowning Characteristics and outcome Andreas Claesson Department of Molecular and Clinical Medicine/Cardiology Institute of Medicine Sahlgrenska Academy at the University of Gothenburg Gothenburg 2013 Cover illustration: In-water resuscitation Copyright Laerdal/Swedish CPR council, published with approval “If I have seen a little further, it is by standing on ye shoulders of giants” Isaac Newton, letter to Robert Hooke, 5 February 1675 Lifesaving after cardiac arrest due to drowning © Andreas Claesson 2013 [email protected] ISBN 978-91-628-8724-7 Printed in Bohus, Sweden, 2013 Ale tryckteam To my family Cover illustration: In-water resuscitation Copyright Laerdal/Swedish CPR council, published with approval “If I have seen a little further, it is by standing on ye shoulders of giants” Isaac Newton, letter to Robert Hooke, 5 February 1675 Lifesaving after cardiac arrest due to drowning © Andreas Claesson 2013 [email protected] ISBN 978-91-628-8724-7 Printed in Bohus, Sweden, 2013 Ale tryckteam To my family Lifesaving after cardiac arrest due to witnessed cases was low. Survival appears to increase with a short EMS response time, i.e. early advanced life support. drowning Surf lifeguards perform CPR with sustained high quality, independent of Characteristics and outcome prior physical strain. Andreas Claesson In half of about 7,000 drowning calls, there was need for a water rescue by the fire and rescue services. Among the OHCA in which CPR was initiated, a Department of Molecular and Clinical Medicine/Cardiology, Institute of majority were found floating on the surface. Rescue diving took place in a Medicine small percentage of all cases.
    [Show full text]
  • Molecular Theory of Ideal Gases March 1, 2021
    1 Statistical Thermodynamics Professor Dmitry Garanin Molecular theory of ideal gases March 1, 2021 I. PREFACE Molecular theory can be considered as a preliminary to statistical physics. While the latter employs a more sophisti- cated formalism encompassing quantum-mechanical systems, the former operates with a classical ideal gas. Molecular theory studies the relation between the temperature of the gas and the kinetic energy of the molecules, pressure on the walls due to the impact of the molecules, distribution of molecules over velocities etc. All these results can be obtained in a more formal way in statistical physics. However, it is convenient to first study molecular theory at a more elementary level. On the other hand, molecular theory includes kinetics of classical gases that studies nonequilibrium phenomena such as heat conduction and diffusion (not a part of this course) II. BASIC ASSUMPTIONS OF THE MOLECULAR THEORY 1. Motion of atoms and molecules is described by classical mechanics 2. The number of particles in a considered macroscopic volume is very large. As there are about 1019 molecules in 1 cm3 at normal conditions, this assumption holds down to high vacuums. Because of the large number of particles, the impacts of individual particles on the walls merge into time-independent pressure. 3. The characteristic distance between the molecules largely exceeds the molecular size and the typical radius of intermolecular forces. This assumption allows to consider the gas as ideal, with the internal energy dominated by the kinetic energy of the molecules. In describing equilibrium properties of the ideal gas collisions between the molecules can be neglected.
    [Show full text]
  • Introduction to Aviation Physiology
    FOREWORD Aviation Physiology deals with the physical and mental effects of flight on air crew personnel and passengers. Study of this booklet will familiarize you with some of the physiological problems of flight, and will instruct you in the use of some of the devices that aviation physiologists and others have developed to assist in human compensation for the numerous environmental changes that are encountered in flight. For most of you, Aviation Physiology is an entirely new field. To others, it is something that you were taught while in military service or elsewhere. This booklet should be used as a reference during your flying career. Remember, every human is physiologically different and can react differently in any given situation. It is our sincere hope that we can enlighten, stimulate, and assist you during your brief stay with us. After you have returned to your regular routine, remember that we at the Civil Aeromedical Institute will be able to assist you with problems concerning Aviation Physiology. Inquiries should be addressed to: Federal Aviation Administration Civil Aerospace Medical Institute Aeromedical Education Division, AAM-400 Mike Monroney Aeronautical Center P.O. Box 25082 Oklahoma City, OK 73125 Phone: (405) 954-4837 Fax: (405) 954-8016 i INTRODUCTION TO AVIATION PHYSIOLOGY Human beings have the remarkable ability to adapt to their environment. The human body makes adjustments for changes in external temperature, acclimates to barometric pressure variations from one habitat to another, compensates for motion in space and postural changes in relation to gravity, and performs all of these adjustments while meeting changing energy requirements for varying amounts of physical and mental activity.
    [Show full text]
  • Differential Diffusion an Oceanographic Primer
    Differential diffusion: an oceanographic primer Ann Gargett Institute of Ocean Sciences, Patricia Bay P.O. Box 6000 Sidney, B.C. V8L 4B2 CANADA accepted, Progress in Oceanography June, 2001 Abstract: Even where mean gradients of temperature T and salinity S are both stabilizing, it is possible for the larger molecular diffusivity of T to result in differential diffusion, the preferential transfer of T relative to S. The present note reviews existing evidence of differential diffusion as provided by laboratory experiments, numerical simulations, and oceanic observations. Given potentially serious implications for proper interpretation of estimates of diapycnal density diffusivity from both ocean microscale measurements and ocean tracer release experiments, as well as the notable sensitivity of predictive global ocean models to this diffusive parameter, it is essential that this process be better understood in the oceanographic context. 1. Introduction: Diapycnal mixing of density occurs at spatial scales which are unresolved in even regional-scale numerical models of the ocean. Moreover, the models of large-scale ocean circulation presently being used to predict evolution of the earth’s climate system have proven to be very sensitive to the magnitude of the parameter normally used to describe the effects of diapycnal mixing at sub-grid scales (Bryan 1987). It is thus essential to have parameterizations of the effects of small-scale mixing which are not only accurate as far as magnitude in the present ocean, but also include an understanding of the underlying causative physical processes, since these may alter under climate-induced changes in mean ocean properties. In the ocean, diapycnal mixing of density is actually a process of mixing two variables, heat (or temperature T) and salt (or salinity S), which both contribute to the density of ocean water.
    [Show full text]