Ibogaine and the Inhibition of Acetylcholinesterase

Total Page:16

File Type:pdf, Size:1020Kb

Ibogaine and the Inhibition of Acetylcholinesterase See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/51894894 Ibogaine and the inhibition of acetylcholinesterase Article in Journal of ethnopharmacology · December 2011 DOI: 10.1016/j.jep.2011.12.006 · Source: PubMed CITATIONS READS 5 40 3 authors, including: Kenneth Alper Henry Sershen NYU Langone Medical Center Nathan Kline Institute 76 PUBLICATIONS 2,547 CITATIONS 202 PUBLICATIONS 5,322 CITATIONS SEE PROFILE SEE PROFILE All content following this page was uploaded by Kenneth Alper on 29 June 2015. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Journal of Ethnopharmacology 139 (2012) 879–882 Contents lists available at SciVerse ScienceDirect Journal of Ethnopharmacology journa l homepage: www.elsevier.com/locate/jethpharm Ethnopharmacological communication Ibogaine and the inhibition of acetylcholinesterase a,∗ b c,d Kenneth Alper , Maarten E.A. Reith , Henry Sershen a Departments of Psychiatry and Neurology, New York University School of Medicine, New York, NY 10016, USA b Departments of Psychiatry and Pharmacology, New York University School of Medicine, New York, NY 10016, USA c Department of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA d Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA a r t i c l e i n f o a b s t r a c t Article history: Ethnopharmacological relevance: Ibogaine is a psychoactive monoterpine indole alkaloid extracted from Received 24 August 2011 the root bark of Tabernanthe iboga Baill. that is used globally in medical and nonmedical settings to Received in revised form treat drug and alcohol addiction, and is of interest as an ethnopharmacological prototype for exper- 29 November 2011 imental investigation and pharmaceutical development. The question of whether ibogaine inhibits Accepted 2 December 2011 acetylcholinesterase (AChE) is of pharmacological and toxicological significance. Available online 19 December 2011 Materials and methods: AChE activity was evaluated utilizing reaction with Ellman’s reagent with physostigmine as a control. Keywords: ± ␮ Ibogaine Results: Ibogaine inhibited AChE with an IC50 of 520 40 M. Conclusions: Ibogaine’s inhibition of AChE is physiologically negligible, and does not appear to account Iboga alkaloid Acetylcholinesterase for observations of functional effects in animals and humans that might otherwise suggest the possible Addiction involvement of pathways linked to muscarinic acetylcholine transmission. Muscarinic cholinergic © 2011 Elsevier Ireland Ltd. All rights reserved. Toxicology 1. Introduction the potentiation of morphine analgesia by ibogaine. Bradycardia, which can result from increased muscarinic cholinergic transmis- The iboga alkaloids are a group of naturally occurring and syn- sion among a variety of other causes, was observed in 6 of a series of thetic monoterpine indole alkaloids, some of which reportedly 39 patients following single oral dose administrations of ibogaine reduce the self-administration of drugs of abuse and opiate with- (Mash et al., 1998), and has been reported anecdotally in medi- drawal symptoms in animal models and humans (Alper, 2001; Glick cal (Kamlet, 2009) and nonmedical (Samorini, 1998) settings and et al., 2001; Alper et al., 2008). Ibogaine (Fig. 1) is the most abundant in some preclinical studies (Schneider and Rinehart, 1957; Dhahir, iboga alkaloid in the root bark of Tabernanthe iboga Baill., which 1971; Glick et al., 1999; Binienda et al., 2002). The apparently sig- grows in West Africa where eboga, the shavings of T. iboga root nificant role of pre-existing cardiovascular medical comorbidities bark, has been used as a psychopharmacological sacrament in the in deaths temporally associated with the use of ibogaine (Alper Bwiti religion for several centuries (Fernandez, 1982). Outside of et al., in press) indicates the medical and toxicological relevance Africa ibogaine has been used with increasing frequency over the of bradycardia, which heightens the risk for fatal cardiac arrhyth- last 25 years, most often for detoxification from opiates (Alper et al., mia (Cubeddu, 2009). Ibogaine produces an atropine-sensitive EEG 1999, 2008). rhythm in animals (Depoortere, 1987; Schneider and Sigg, 1957) The inhibition of acetylcholinesterase (AChE) could explain that has been attributed to muscarinic cholinergic input from the some functional effects of ibogaine that appear consistent with ascending reticular activating system (ARAS) on the basis of abla- increased muscarinic cholinergic transmission. Ciba Pharmaceu- tion experiments and suggested to involve the inhibition of AChE tical patented ibogaine for the indication of reducing tolerance to (Schneider and Sigg, 1957). The enhancement of spatial memory opioid analgesics (Schneider and McArthur, 1956; Schneider, 1957) by ibogaine in preclinical models (Popik, 1996; Helsley et al., 1997) and specifically suggested that AChE inhibition might mediate is another functional effect that could possibly relate to the inhibi- tion of AChE in view of the use of AChE inhibitors to treat memory impairment in dementias (Birks, 2009). Studies performed in the 1940s found that ibogaine obtained by ∗ Corresponding author at: Departments of Psychiatry and Neurology, New York crystallization from extract of T. iboga root bark inhibited AChE from University School of Medicine, Brain Research Laboratories, 8th Floor Old Bellevue horse serum, sheep brain, and dog pancreas with an IC50 of approx- Administration Building, 462 First Avenue, New York, NY 10016, USA. imately 150 ␮M (Vincent and Sero, 1942; Vincent and Lagreu, Tel.: +1 212 263 6287; fax: +1 212 409 8902. E-mail address: [email protected] (K. Alper). 1949). These early studies utilized a manometer for gasometric 0378-8741/$ – see front matter © 2011 Elsevier Ireland Ltd. All rights reserved. doi:10.1016/j.jep.2011.12.006 880 K. Alper et al. / Journal of Ethnopharmacology 139 (2012) 879–882 Fig. 1. Chemical structures of ibogaine (top) and physostigmine (bottom). Fig. 2. Inhibitory effects of physostigmine and ibogaine on cholinesterase activity determination of rates of AChE inhibition, which predated the con- measured in vitro utilizing the acetylcholine pseudo-substrate ACTI and Ellman’s reagent in the presence of enzyme (AChE, 0.19 U). temporary colorimetric approach (Ellman et al., 1961; Järvinen et al., 2010), and raises questions regarding the accuracy of their estimates. In these early studies T. iboga root bark extract produced recordings were taken for 6 min. Ibogaine and physostigmine were a greater degree of AChE inhibition than the crystallisate, suggest- ␮ initially tested at 1, 10, and 100 M concentrations to determine ing an effect due to additional alkaloids other than ibogaine in the inhibition–dose range; subsequent assays were conducted at the root bark. Other studies have evaluated the inhibition of AChE by dose–inhibition range shown in Fig. 2. Two control curves were col- crude extracts that included various iboga alkaloids from Taber- lected in the absence of inhibiting compound, one at the beginning naemontana australis (Müell. Arg) Miers (Andrade et al., 2005) or of the experiment prior to testing varying concentrations of com- Tabernaemontana divaricata R.Br. ex Roem. & Schult (Ingkaninan pound, and a second at the end after compound testing. The two et al., 2006; Chattipakorn et al., 2007; Nakdook et al., 2010; control curves were almost identical and were averaged for subse- Pratchayasakul et al., 2010). In view of the need for a contempo- quent analysis. AChE activity per minute was computed for control rary laboratory investigation focused specifically on ibogaine with and drug concentrations, and IC50 values were estimated by non- its purity established by current chemical analytical techniques, linear computer curve-fitting procedures. Specifically, the ALLFIT this present study utilized ibogaine in the HCl form, and an assay equation for drug inhibition (DeLean et al., 1978) was used, which based on reaction with Ellman’s reagent to evaluate the inhibition equals the logistic model in the Origin software (Origin-Lab Corp., of AChE (Ellman et al., 1961; Järvinen et al., 2010). Northampton, MA, USA). Analysis of the multiple drug concentra- tion inhibition data by computer fitting with the ALLFIT equation 2. Methods provided the standard deviations given in the text. 2.1. Materials 3. Results and discussion Chemicals were purchased from Sigma–Aldrich (St. Louis, The IC for the inhibition of AChE by ibogaine was 520 ± 40 ␮M 50 MO): 5,5 -dithiobis(2-nitrobenzoic acid) (DTNB – D218200), (Fig. 2). The IC50 of physostigmine at a substrate concentration of acetylthiocholine iodide (ACTI – A5751), – acetylcholinesterase 2.7 nM ACTI with AChE from electric eel was 18.4 ± 1.8 nM, which from Electrophorus electricus, (AChE – C3389-2KU, ∼236 U/mg), is comparable to recently reported values for IC50 for inhibition physostigmine (Fig. 1) (E8375). Ibogaine HCl was obtained from of AChE by physostigmine of 40 nM with AChE from electric eel Slater & Frith Ltd, UK (assay analysis 95%) (Slater and Frith LTD., (Järvinen et al., 2010), and 40 nM and 20 nM in rat and human neo- 2008). Most of the remaining 5% was ibogamine with lesser cortex respectively (Jackisch et al., 2009). In this study the activity
Recommended publications
  • Effect of Various Extracts of Tabernaemontana Divaricata on Haloperidol Induced Catalepsy in Rats
    Raj et al., International Current Pharmaceutical Journal, February 2014, 3(3): 240-242 International Current http://www.icpjonline.com/documents/Vol3Issue3/02.pdf Pharmaceutical Journal ORIGINAL RESEARCH ARTICLE OPEN ACCESS Effect of various extracts of Tabernaemontana divaricata on haloperidol induced catalepsy in rats *Chanchal N. Raj1, A. Balasubramaniam2, Sayyed Nadeem2 1Department of Pharmacy, Karpagam University,Coimbatore, Tamilnadu, – 641021, India 2Technocrats Institute of Technology- Pharmacy, Bhopal, M.P.-462021, India ABSTRACT Parkinson’s disease (PD) is one of the neurodegenerative diseases with selective loss of dopamine neurons of the substantia n igra pars compacta. In the present study, anti-cataleptic activity of Tabernaemontana divaricata leaves extracts viz. aqueous and ethanolic at different doses (50, 100 and 150 mg/kg i.p.) were studied using haloperidol (1 mg/kg, i.p.) induced catalepsy in rats which is a useful animal model for screening drugs for Parkinson’s disease. Both the extracts were found to reduce catalepsy significantly (P<0.001) as compared to the haloperidol treated rats showing greater effect at 150 mg/kg i.p. dose. Thus the present study reveals the anti- cataleptic activity of Tabernaemontana divaricata evaluating the traditional folklore medicinal use of the plant. Key Words: Tabernaemontana divaricata, Parkinson’s disease (PD), catalepsy, haloperidol, bar test. INTRODUCTIONINTRODUCTION by the increase of the lipid peroxidation product, Neurological disorders include brain injuries, neuro- malonaldehyde.
    [Show full text]
  • A Review on Tabernaemontana Spp.: Multipotential Medicinal Plant
    Online - 2455-3891 Vol 11, Issue 5, 2018 Print - 0974-2441 Review Article A REVIEW ON TABERNAEMONTANA SPP.: MULTIPOTENTIAL MEDICINAL PLANT ANAN ATHIPORNCHAI* Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Bangsaen, Chonburi 20131 Thailand. Email: [email protected] Received: 01 March 2016, Revised and Accepted: 29 January 2018 ABSTRACT Plants in the genus Tabernaemontana have been using in Thai and Chinese traditional medicine for the treatment several diseases. The great majority constituents of Tabernaemontana species have already been subjected to isolation and identification of monoterpene indole alkaloids present in their several parts. Many of monoterpene indole alkaloids exhibited a wide array of several activities. The biogenesis, classification, and biological activities of these alkaloids which found in Tabernaemontana plants were discussed in this review and its brings the research up-to-date on the bioactive compounds produced by Tabernaemontana species, directly or indirectly related to human health. Keywords: Tabernaemontana plants, Phytochemistry, Biogenesis, Terpene indole alkaloids, Biological activities. © 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ajpcr.2018.v11i5.11478 INTRODUCTION alkaloids are investigated. All monoterpene indole alkaloids are derived from aromatic amino acid tryptophan and the iridoid terpene Several already drugs were discovered from the natural products. secologanin (Scheme 1). Tryptophan converts to tryptamine using Especially, the treatments of infectious diseases and oncology have tryptophan decarboxylase which is a pyridoxal-dependent enzyme. benefited from numerous drugs which were found in natural product The specific iridoid precursor was subsequently identified as sources.
    [Show full text]
  • UPS-QT11443.Pdf
    UNIVERSIDAD POLITÉCNICA SALESIANA SEDE QUITO CARRERA: INGENIERÍA EN BIOTECNOLOGÍA DE LOS RECURSOS NATURALES Trabajo de titulación previo a la obtención del título de: INGENIERA EN BIOTECNOLOGÍA DE LOS RECURSOS NATURALES TEMA: INHIBICIÓN DE LA ACTIVIDAD HEMOLÍTICA DEL VENENO DE Bothrops atrox POR LOS EXTRACTOS DE Tabernaemontana sananho Ruiz & Pav. Y Mucuna cf. elliptica (Ruiz&Pav.) DC. AUTORA: JENNY VERÓNICA CUEVA PUNGACHO TUTOR: WILSON FABIÁN TAPIA HERNÁNDEZ Quito, marzo 2017 Dedicatoria Mi tesis la dedico con todo mi amor a Dios por haberme dado la vida y permitirme haber llegado hasta este momento tan importante de mi formación profesional. A mis padres Cecilia e Iván, a mis hermanos Lorena e Iván Cueva y mi Sobrinita Amelia por ser el pilar más importante en mi vida, demostrándome siempre su cariño, apoyo incondicional y sobre todo su confianza para culminar esta etapa de mi vida. A la compañera de toda la vida Birkha que fue quien en las noches frías de angustia siempre estuvo demostrándome su lealtad y cariño hasta su último suspiro. Agradecimiento Sin duda alguna mi profundo agradecimiento a la UNIVERSIDAD POLITÉCNICA SALESIANA que me dio la oportunidad de realizar mis sueños en la formación profesional con la ayuda de los maestros formadores de jóvenes con inspiraciones para un mañana lleno de sueños y formar un futuro de promesas para una vida mejor. Este proyecto es el resultado del esfuerzo conjunto de todos los que formamos el grupo de trabajo. De manera especial mi agradecimiento a mi tutor Químico Farmacéutico Wilson Tapia quien con su esfuerzo, dedicación y sobretodo con su profesionalismo que nos impartió sus conocimientos e hizo posible la culminación del proyecto.
    [Show full text]
  • The Iboga Alkaloids
    The Iboga Alkaloids Catherine Lavaud and Georges Massiot Contents 1 Introduction ................................................................................. 90 2 Biosynthesis ................................................................................. 92 3 Structural Elucidation and Reactivity ...................................................... 93 4 New Molecules .............................................................................. 97 4.1 Monomers ............................................................................. 99 4.1.1 Ibogamine and Coronaridine Derivatives .................................... 99 4.1.2 3-Alkyl- or 3-Oxo-ibogamine/-coronaridine Derivatives . 102 4.1.3 5- and/or 6-Oxo-ibogamine/-coronaridine Derivatives ...................... 104 4.1.4 Rearranged Ibogamine/Coronaridine Alkaloids .. ........................... 105 4.1.5 Catharanthine and Pseudoeburnamonine Derivatives .. .. .. ... .. ... .. .. ... .. 106 4.1.6 Miscellaneous Representatives and Another Enigma . ..................... 107 4.2 Dimers ................................................................................. 108 4.2.1 Bisindoles with an Ibogamine Moiety ....................................... 110 4.2.2 Bisindoles with a Voacangine (10-Methoxy-coronaridine) Moiety ........ 111 4.2.3 Bisindoles with an Isovoacangine (11-Methoxy-coronaridine) Moiety . 111 4.2.4 Bisindoles with an Iboga-Indolenine or Rearranged Moiety ................ 116 4.2.5 Bisindoles with a Chippiine Moiety ... .....................................
    [Show full text]
  • Brisbane Native Plants by Suburb
    INDEX - BRISBANE SUBURBS SPECIES LIST Acacia Ridge. ...........15 Chelmer ...................14 Hamilton. .................10 Mayne. .................25 Pullenvale............... 22 Toowong ....................46 Albion .......................25 Chermside West .11 Hawthorne................. 7 McDowall. ..............6 Torwood .....................47 Alderley ....................45 Clayfield ..................14 Heathwood.... 34. Meeandah.............. 2 Queensport ............32 Trinder Park ...............32 Algester.................... 15 Coopers Plains........32 Hemmant. .................32 Merthyr .................7 Annerley ...................32 Coorparoo ................3 Hendra. .................10 Middle Park .........19 Rainworth. ..............47 Underwood. ................41 Anstead ....................17 Corinda. ..................14 Herston ....................5 Milton ...................46 Ransome. ................32 Upper Brookfield .......23 Archerfield ...............32 Highgate Hill. ........43 Mitchelton ...........45 Red Hill.................... 43 Upper Mt gravatt. .......15 Ascot. .......................36 Darra .......................33 Hill End ..................45 Moggill. .................20 Richlands ................34 Ashgrove. ................26 Deagon ....................2 Holland Park........... 3 Moorooka. ............32 River Hills................ 19 Virginia ........................31 Aspley ......................31 Doboy ......................2 Morningside. .........3 Robertson ................42 Auchenflower
    [Show full text]
  • NJ Native Plants - USDA
    NJ Native Plants - USDA Scientific Name Common Name N/I Family Category National Wetland Indicator Status Thermopsis villosa Aaron's rod N Fabaceae Dicot Rubus depavitus Aberdeen dewberry N Rosaceae Dicot Artemisia absinthium absinthium I Asteraceae Dicot Aplectrum hyemale Adam and Eve N Orchidaceae Monocot FAC-, FACW Yucca filamentosa Adam's needle N Agavaceae Monocot Gentianella quinquefolia agueweed N Gentianaceae Dicot FAC, FACW- Rhamnus alnifolia alderleaf buckthorn N Rhamnaceae Dicot FACU, OBL Medicago sativa alfalfa I Fabaceae Dicot Ranunculus cymbalaria alkali buttercup N Ranunculaceae Dicot OBL Rubus allegheniensis Allegheny blackberry N Rosaceae Dicot UPL, FACW Hieracium paniculatum Allegheny hawkweed N Asteraceae Dicot Mimulus ringens Allegheny monkeyflower N Scrophulariaceae Dicot OBL Ranunculus allegheniensis Allegheny Mountain buttercup N Ranunculaceae Dicot FACU, FAC Prunus alleghaniensis Allegheny plum N Rosaceae Dicot UPL, NI Amelanchier laevis Allegheny serviceberry N Rosaceae Dicot Hylotelephium telephioides Allegheny stonecrop N Crassulaceae Dicot Adlumia fungosa allegheny vine N Fumariaceae Dicot Centaurea transalpina alpine knapweed N Asteraceae Dicot Potamogeton alpinus alpine pondweed N Potamogetonaceae Monocot OBL Viola labradorica alpine violet N Violaceae Dicot FAC Trifolium hybridum alsike clover I Fabaceae Dicot FACU-, FAC Cornus alternifolia alternateleaf dogwood N Cornaceae Dicot Strophostyles helvola amberique-bean N Fabaceae Dicot Puccinellia americana American alkaligrass N Poaceae Monocot Heuchera americana
    [Show full text]
  • Phylogeny and Systematics of the Rauvolfioideae
    PHYLOGENY AND SYSTEMATICS Andre´ O. Simo˜es,2 Tatyana Livshultz,3 Elena OF THE RAUVOLFIOIDEAE Conti,2 and Mary E. Endress2 (APOCYNACEAE) BASED ON MOLECULAR AND MORPHOLOGICAL EVIDENCE1 ABSTRACT To elucidate deeper relationships within Rauvolfioideae (Apocynaceae), a phylogenetic analysis was conducted using sequences from five DNA regions of the chloroplast genome (matK, rbcL, rpl16 intron, rps16 intron, and 39 trnK intron), as well as morphology. Bayesian and parsimony analyses were performed on sequences from 50 taxa of Rauvolfioideae and 16 taxa from Apocynoideae. Neither subfamily is monophyletic, Rauvolfioideae because it is a grade and Apocynoideae because the subfamilies Periplocoideae, Secamonoideae, and Asclepiadoideae nest within it. In addition, three of the nine currently recognized tribes of Rauvolfioideae (Alstonieae, Melodineae, and Vinceae) are polyphyletic. We discuss morphological characters and identify pervasive homoplasy, particularly among fruit and seed characters previously used to delimit tribes in Rauvolfioideae, as the major source of incongruence between traditional classifications and our phylogenetic results. Based on our phylogeny, simple style-heads, syncarpous ovaries, indehiscent fruits, and winged seeds have evolved in parallel numerous times. A revised classification is offered for the subfamily, its tribes, and inclusive genera. Key words: Apocynaceae, classification, homoplasy, molecular phylogenetics, morphology, Rauvolfioideae, system- atics. During the past decade, phylogenetic studies, (Civeyrel et al., 1998; Civeyrel & Rowe, 2001; Liede especially those employing molecular data, have et al., 2002a, b; Rapini et al., 2003; Meve & Liede, significantly improved our understanding of higher- 2002, 2004; Verhoeven et al., 2003; Liede & Meve, level relationships within Apocynaceae s.l., leading to 2004; Liede-Schumann et al., 2005). the recognition of this family as a strongly supported Despite significant insights gained from studies clade composed of the traditional Apocynaceae s.
    [Show full text]
  • Atlas of Pollen and Plants Used by Bees
    AtlasAtlas ofof pollenpollen andand plantsplants usedused byby beesbees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (organizadores) Atlas of pollen and plants used by bees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (orgs.) Atlas of pollen and plants used by bees 1st Edition Rio Claro-SP 2020 'DGRV,QWHUQDFLRQDLVGH&DWDORJD©¥RQD3XEOLFD©¥R &,3 /XPRV$VVHVVRULD(GLWRULDO %LEOLRWHF£ULD3ULVFLOD3HQD0DFKDGR&5% $$WODVRISROOHQDQGSODQWVXVHGE\EHHV>UHFXUVR HOHWU¶QLFR@RUJV&O£XGLD,Q¬VGD6LOYD>HW DO@——HG——5LR&ODUR&,6(22 'DGRVHOHWU¶QLFRV SGI ,QFOXLELEOLRJUDILD ,6%12 3DOLQRORJLD&DW£ORJRV$EHOKDV3µOHQ– 0RUIRORJLD(FRORJLD,6LOYD&O£XGLD,Q¬VGD,, 5DGDHVNL-HIIHUVRQ1XQHV,,,$UHQD0DULDQD9LFWRULQR 1LFRORVL,9%DXHUPDQQ6RUDLD*LUDUGL9&RQVXOWRULD ,QWHOLJHQWHHP6HUYL©RV(FRVVLVWHPLFRV &,6( 9,7¯WXOR &'' Las comunidades vegetales son componentes principales de los ecosistemas terrestres de las cuales dependen numerosos grupos de organismos para su supervi- vencia. Entre ellos, las abejas constituyen un eslabón esencial en la polinización de angiospermas que durante millones de años desarrollaron estrategias cada vez más específicas para atraerlas. De esta forma se establece una relación muy fuerte entre am- bos, planta-polinizador, y cuanto mayor es la especialización, tal como sucede en un gran número de especies de orquídeas y cactáceas entre otros grupos, ésta se torna más vulnerable ante cambios ambientales naturales o producidos por el hombre. De esta forma, el estudio de este tipo de interacciones resulta cada vez más importante en vista del incremento de áreas perturbadas o modificadas de manera antrópica en las cuales la fauna y flora queda expuesta a adaptarse a las nuevas condiciones o desaparecer.
    [Show full text]
  • The Future of Iboga: Perspectives from Central Africa
    THE FUTURE OF IBOGA: PERSPECTIVES FROM CENTRAL AFRICA Iboga Community Engagement Initiative PHASE II REPORT December 2020 A project by International Center for Ethnobotanical Education, Research and Service (ICEERS) Project leads Ricard Faura, PhD Andrea Langlois Cultural advisors Yann Guignon, Hugues Obiang Poitevin, Süster Strubelt, Dr. Uwe Maas, Lila Vega ICEERS scientific, legal and technical advisors Benjamin De Loenen, Dr. José Carlos Bouso, Genís Ona Editor Eric Swenson Photographers Ricard Faura, Uwe Maas Graphic design Àlex Verdaguer December 2020 For further information or inquiries, please email: [email protected] www.iceers.org In collaboration with…. This project was made possible thanks to an invaluable collaboration with Blessings Of The Forest , who organized a number of field visits, arranged interviews with several key informants, and accompanied the ICEERS team and the film crew. Together with Ebando, they generously contributed their expertise and network, and were indispensable cultural advisors. The project also benefited from the valuable collaboration of documentary filmmaker Lucy Walker and her produc- tion team, with whom we travelled during parts our Gabon field visit. Thank you…. This project came to fruition thanks to the generosity of many people who have lent their voices to build the choir presented below. To all of them we want to show our deepest gratitude. In alphabetical order: Ambroisine Manengo [Spiritual Mother, Mikodi], Aristide Nguema [Executive Manager BOTF Gabon], Babas Denis [Documentary Cameraman],
    [Show full text]
  • Plant Evaluation Notes an Evaluation Study of Hardy Amsonia Richard G
    Issue 18, 2002 Plant Evaluation Notes An Evaluation Study of Hardy Amsonia Richard G. Hawke, Manager of Plant Evaluation Programs orticulturists and landscape with woody crowns that slowly increase flower production and more compact designers often talk about the in size but are not invasive. Sturdy, habits. Plants that become loose or open, Hmerits of shrubs and trees that upright stems form rounded to especially when grown in too much provide multiple seasons of interest in the vase-shaped shrub-like habits. The dark shade, can be cut back to 10 inches after landscape, but it is uncommon to have green leaves, which are linear-lanceolate flowering to encourage shorter, sturdier that description attributed to herbaceous to ovate in outline, are arranged stems. The slow-growing bluestars do not perennial plants. One of these alternately to whorled on stems that require division for at least 10 years. exceptional perennials is Amsonia,or contain a milky latex sap. Blue, Bluestars can be planted as bluestar, with early-season blue flowers, star-shaped flowers are produced in loose specimens or en masse in perennial handsome summer foliage, a sturdy habit terminal cymes or clusters in late spring to borders, mixed shrub borders or and golden-yellow autumn color. The early summer. The fruits are paired naturalistic gardens. Amsonia addition of low maintenance and disease cylindrical pods borne either upright or tabernaemontana and Amsonia illustris and insect resistance make bluestars pendant within the leaves on the upper are well placed near ponds, streams and first-rate garden plants. ends of the stems. Some degree of yellow waterfalls, while Amsonia ciliata and Amsonia, a temperate member of the autumn foliage color is typical of Amsonia hubrichtii are good accents in predominantly tropical dogbane family bluestars in the late season.
    [Show full text]
  • Visions on Iboga/Ine from the International Community
    VISIONS ON IBOGA/INE FROM THE INTERNATIONAL COMMUNITY Iboga Community Engagement Initiative PHASE I REPORT December 2019 A project by: International Center for Ethnobotanical Education, Research and Service (ICEERS) Project leads Ricard Faura, PhD Andrea Langlois Advisory Committee Benjamin De Loenen, Dr. Tom Kingsley Brown, Doug Greene, Patrick Kroupa, Jeremy Weate, Hattie Wells, and Sarita Wilkins Scientific, legal and technical advice Dr. Kenneth Alper, Dr. José Carlos Bouso, Christine Fitzsimmons, Yann Guignon, Dr. Uwe Maas, Dr. Dennis McKenna, Tanea Paterson, Genís Ona, Natalia Rebollo, Dr. Constanza Sánchez, Süster Strubelt, and Clare Wilkins Editing Sarita Wilkins, Eric Swenson, Holly Weese Graphic design Àlex Verdaguer December 2019 For further information or inquiries, please email: [email protected] www.iceers.org Thank you…. As with any intitiative, this project has come to fruition thanks to the generosity of many collaborators, interviewees and survey participants. Hundreds of individuals shared knowledge, opinions, concerns, time, and visions for a future where iboga and ibogaine are valued and integrated into the global society and the rights of people connected to these practices are protected. We extend a heartfelt thank you to each and every one of them, for this report would not have been possible without their contributions. Our hope is that this report be received as the weaving of knowledge that it is, as a collection of perspectives, to be engaged with, challenged, expanded upon, and leveraged to build a brighter future. Dedication… This report is dedicated to Doug Greene. Although he is no longer with us, his gentle, persistent dedication to the healing of humanity will continue to inspire.
    [Show full text]
  • On the Flora of Australia
    L'IBRARY'OF THE GRAY HERBARIUM HARVARD UNIVERSITY. BOUGHT. THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEING AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. r^/f'ORElGN&ENGLISH' <^ . 1859. i^\BOOKSELLERS^.- PR 2G 1.912 Gray Herbarium Harvard University ON THE FLORA OF AUSTRALIA ITS ORIGIN, AFFINITIES, AND DISTRIBUTION. I I / ON THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEIKG AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. Reprinted from the JJotany of the Antarctic Expedition, Part III., Flora of Tasmania, Vol. I. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. 1859. PRINTED BY JOHN EDWARD TAYLOR, LITTLE QUEEN STREET, LINCOLN'S INN FIELDS. CONTENTS OF THE INTRODUCTORY ESSAY. § i. Preliminary Remarks. PAGE Sources of Information, published and unpublished, materials, collections, etc i Object of arranging them to discuss the Origin, Peculiarities, and Distribution of the Vegetation of Australia, and to regard them in relation to the views of Darwin and others, on the Creation of Species .... iii^ § 2. On the General Phenomena of Variation in the Vegetable Kingdom. All plants more or less variable ; rate, extent, and nature of variability ; differences of amount and degree in different natural groups of plants v Parallelism of features of variability in different groups of individuals (varieties, species, genera, etc.), and in wild and cultivated plants vii Variation a centrifugal force ; the tendency in the progeny of varieties being to depart further from their original types, not to revert to them viii Effects of cross-impregnation and hybridization ultimately favourable to permanence of specific character x Darwin's Theory of Natural Selection ; — its effects on variable organisms under varying conditions is to give a temporary stability to races, species, genera, etc xi § 3.
    [Show full text]