Quaternion Algebras Over Fields

Total Page:16

File Type:pdf, Size:1020Kb

Quaternion Algebras Over Fields Quaternion algebras over ¯elds De¯nitions and ¯rst results Let K be a ¯eld and L j K a quadratic extension. Let θ 2 K. De¯nition: H := L © Lu with u 2 H such that u2 = θ and u¸ = ¸u for all ¸ 2 L, with ¹ : L ¡! L the non-trivial automorphism from L to L. Notation: H := (L; ¹ ; θ) Remark: H is a central simple algebra over K. A quaternion algebra is a central simple algebra of dimension 4 over K. We also introduce a second ¤ a;b De¯nition: Let a; b 2 K and H := ( K ) be the algebra generated by i; j with the relations i2 = a; j2 = b; ij = ¡ji = k. We have k2 = ¡ab. As K-vectorspace H is generated by the elements f1; i; j; kg. 2 » a;b Remark: For L = K(i); θ = b; u = j; i = a we get: L © Lu = ( K ). The ¤ a;b » b;a » elements a; b 2 K as well as L; θ are not unique, because of: ( K ) = ( K ) = a;¡ab » ac2;b ( K ) = ( K ). a;b » a;b For a ¯eld extension M j K we have: M ­K ( K ) = ( M ), respectivly: » M ­K (L; ¹ ; θ) = (M ­K L; ¹ ; θ) De¯nition: Let h = ® + i¯ + jγ + k± 2 H with ®; ¯; γ; ± 2 K. h¹ := ¹ ® ¡ i¯ ¡ jγ ¡ k±, respectivly: for h = ¸1 + ¸2u de¯ne: h = ¸1 ¡ ¸2u. ¹ : H ¡! H is an involution, extending the non-trivial K-automorphism ¹ : L ¡! L, called conjugation. This conjugation is additive and anti- communtative. For h 2 H we de¯ne n(h) := h ¢ h;¹ t(h) := h + h¹. This is the reduced norm and the reduced trace. The reduced norm de¯nes a quadratic form on H Also de¯ne: H £ H ¡! K given by: (h1; h2) 7!< h1; h2 >:= t(h1 ¢ h2). Lemma ² h 2 H is invertible () n(h) 6= 0 ² <; > de¯nes a K-linear, non-degenerate bilinearform. 1 Remark: Let H ¡! EndK (H); h 7! lh : a 7! h ¢ a be the left regular 2 representation. Then it holds: 2t(h) = T r(lh) and n(h) = det(lh). De¯nition: Let F j K be an extension. F is called splitting ¯eld for H () » HF := F ­K H = M2(F ). A F -representation is an inclusion H ¡! M2(F ). Examples: 1. M (K) » ( 1;¡1 ). Let L = K(i) with i2 = ¡1 and j2 = 1. Consider 2 = K à ! à ! à ! 1 0 0 ¡1 0 1 the matrices e1 = ; ei = ; ej = ; eij = 0 1 1 0 1 0 à ! ¡1 0 . This gives an K-algebra-isomorphism: 0 1 e1 7! 1; ei 7! i; ej 7! j; eij 7! ij ¡1;¡1 2. H := ( R ) the real quaternions have a C-representation: à ! z1 z2 H = f 2 M2(C)g ¡z¹2 z¹1 2 2 » H = R(i) © R(i)j with i = ¡1; j = ¡1. We have: H ­R C = M2(C) with H M2(R). 3. Let a; b 2 K¤. Consider: à ! à p ! à ! 0 1 b 0 1 0 I = ;J = p ;E2 = a 0 0 ¡ b 0 1 à p ! 2 2 0 ¡ b Then it holds: I = aE2;J = bE2;IJ = ¡JI = p a b 0 For ®; ¯; γ; ± 2 K¤ one gets: à p p ! ® + γ (b) ¯ ¡ ± b ®E2 + ¯I + γJ + ±IJ = p p a(¯ + ± b) ® ¡ γ (b) p With ¸s 2 L = K( b) for s = 1; 2, we obtain: à ! a; b ¸ ¸ p ( ) » f 1 2 2 M (K( b))g = ¹ ¹ 2 K a¸2 ¸1 p and recover the splitting ¯eld as K( b). 2 Remark: Let H be a quaternion algebra over K. 1 ¹ Then B(h1; h2) := 2 t(h1 ¢ h2) 2 K gives a symmetric, non-degenerate, bilin- earform. We get B(h; h) = n(h). For pure quaternions H0 = fh 2 H j h = ¯i + γj + ±ijg the set fi; j; ijg forms an orthogonal basis. K is orthogonal to the span of this set, so that (H; B) as quadratic space, has f1; i; j; ijg as orthogonal basis. We have the following a;b 0 c;d Proposition: For H = ( K ) and H = ( K ) with a; b; c; d 2 K the following statements are equivalent: 1. H and H0 are isomorphic K-algebras 2. H and H0 are isometric as quadratic spaces 0 3. H0 and H0 are isometric as quadratic spaces Proof: done in the seminar a;a » a;¡1 Corollary:( K ) = ( K ) because of their isometric normforms. a;b Theorem: For H = ( K ) the following statements are equivalent: 1;¡1 » 1. H = ( K ) = M2(K) 2. H is not a division algebra 3. H is isotrop as quadratic space p 4. a 2 NormF jK (F ) with F = K( b) Proof: done in the seminar ¤ a;¡a » 1;a » Corollary: Let a 2 K , then ( K ) = ( K ) = M2(K). If a 6= 0; 1 then a;1¡a » ( K ) = M2(K). a;b » Remark: For a ¯nite ¯eld K, not of characteristic 2, we get: ( K ) = M2(K) for all a; b 2 K 3 The Skolem-Noether-Theorem Lemma: ' : H ­K H ¡! EndK (H); h1 ­K h2 7! (h 7! h1 ¢ h ¢ h2) is a K-algebra isomorphism. Proof: done in the seminar Theorem: Let L j K be a quadratic extension contained in H. ¿ : L ¡! L the non-trivial K-automorphism of L. Then there exists a K-algebra- automorphism σ : H ¡! H which extends ¿, and is of the form: σ(h) = a ¢ h ¢ a¡1 for an a 2 H¤. Every K-automorphism σ : H ¡! H is an inner automorphism. Proof: done in the seminar Corollary: Let L j K be a quadratic extension contained in H. Then there exists θ 2 K¤ such that H »= (L; ¹ ; θ). θ depends on the non-trivial automorphism ¿ : L ¡! L. Proof: done in the seminar Remark: Let Aut(H j K) be the group of K-automorphisms of H. Then Aut(H j K) »= H¤=K¤. » Proposition: Let H = (L; ¹ ; θ). Then it holds: H = M2(K) () θ 2 n(L). Proof: =): If H is not a division algebra then there exists an element h 6= 0 2 H with n(h) = 0. Let h be written in the form h = ¸ + ¹u with u2 = θ 2 K¤. Then it follows: 0 = n(h) = ¸ ¢ ¸¹ ¡ ¹ ¢ ¹ ¢ θ with ¸; ¹ 6= 0. This ¸ gives θ = n( ¹ ) 2 n(L). (=: θ 2 n(L) () θ = ¸ ¢ ¸¹ for a ¸ 2 L. Consider h := ¸ + u 6= 0 2 H. For this element we get: n(h) = 0. So H is not a division algebra. 4 Further results Proposition (Frobenius): Let D be a ¯nite dimensional division algebra with center R. Then D »= H (the real quaternions) Proof: Let d 2 D ¡ R. Then R(d) »= R(i) »= C with i2 = ¡1. So, R(d) is proper contained in D. Let d~2 D be an element such that R(d~) »= R(u) with u2 = ¡1 and u2 = R(i). The elements i; u do not commute, because otherwise R(i; u) would be a ¯eld extension. But then u 2 R(i). Consider now the element j := iui + u. For this we get: ij = ¡ji. Let H := R(i) + R(i)j ½ D, and ¿ : i 7! ¡i be conjugation in R(i). Then 'j : H ¡! H, de¯ned as ¡1 2 x 7! j ¢ x ¢ j extends ¿, because of 'j(i) = ¡i. We now claim that j 2 R: 2 2 2 2 2 2 2 2 j ¢i = i¢j So, j 2 R(i). ¿(j ) = 'j(j ) = j . So, j 2 R and j < 0 because otherwise j 2 R = center(D). But then we would get jij¡1 = ¡i = i, which is absurd. So we conclude that H »= H ½ D. If H is proper contained in D, we can choose an element d^ 2 D ¡ H such that di^ = id^ and d^2 2 R. We proceed as done before. But then we get: dji^ = d^(¡i)j = idj^ , which means that dj 2 R(i). But then d^2 H which contradicts our choise. =) H »= D. We conclude the section with a remarkable property of quaternion algebras: Proposition: Let a; b; c 2 K¤. Then it holds: a; b a; c a; bc ( ) ­ ( ) »= ( ) ­ M (K) K K K K K 2 a;b » 2 2 2 Proof: Let H1 := ( K ) =< 1; i1; j1; k1 >K with i1 = a; j1 = b; k1 = ¡ab a;c » and similar H2 := ( K ) =< 1; i2; j2; k2 >K . Consider H3 :=< 1 ­ 1; i1 ­ 1; j1 ­ j2; k1 ­ j2 >K =:< 1; I; J; IJ >K . This is a 4-dimensional subalgebra 2 2 » a;bc of H1 ­H2. We have: I = a; J = bc; IJ = ¡JI. This gives H3 = ( K ). ~ ~ ~ De¯ne H4 :=< 1 ­ 1; 1 ­ j2; i1 ­ k2; ¡ci1 ­ i2 >K =< 1; I; J; K >K . We then ~2 ~2 2 ~ ~ ~~ c;¡a2c get: I = c; J = ¡a c; IJ = JI. This gives: H4 = ( K ). Using » the classi¯cation by quadratic forms we obtain that H4 = M2(K). Further » » more we get that H1 ­ H2 = H3 ­ H4 = H3 ­ M2(K). This follows from the fact that f1; I; J; Kg commutes with f1; I;~ J;~ K~ g elementwise. Evaluating the two tensorproducts gives the proposition. » Corollary: H ­ H = M4(R). ¡1;¡1 ¡1;¡1 » ¡1;1 » » Proof:( R ) ­R ( R ) = ( R ) ­R M2(R) = M2(R) ­R M2(R) = M4(R). 5.
Recommended publications
  • FIELD EXTENSION REVIEW SHEET 1. Polynomials and Roots Suppose
    FIELD EXTENSION REVIEW SHEET MATH 435 SPRING 2011 1. Polynomials and roots Suppose that k is a field. Then for any element x (possibly in some field extension, possibly an indeterminate), we use • k[x] to denote the smallest ring containing both k and x. • k(x) to denote the smallest field containing both k and x. Given finitely many elements, x1; : : : ; xn, we can also construct k[x1; : : : ; xn] or k(x1; : : : ; xn) analogously. Likewise, we can perform similar constructions for infinite collections of ele- ments (which we denote similarly). Notice that sometimes Q[x] = Q(x) depending on what x is. For example: Exercise 1.1. Prove that Q[i] = Q(i). Now, suppose K is a field, and p(x) 2 K[x] is an irreducible polynomial. Then p(x) is also prime (since K[x] is a PID) and so K[x]=hp(x)i is automatically an integral domain. Exercise 1.2. Prove that K[x]=hp(x)i is a field by proving that hp(x)i is maximal (use the fact that K[x] is a PID). Definition 1.3. An extension field of k is another field K such that k ⊆ K. Given an irreducible p(x) 2 K[x] we view K[x]=hp(x)i as an extension field of k. In particular, one always has an injection k ! K[x]=hp(x)i which sends a 7! a + hp(x)i. We then identify k with its image in K[x]=hp(x)i. Exercise 1.4. Suppose that k ⊆ E is a field extension and α 2 E is a root of an irreducible polynomial p(x) 2 k[x].
    [Show full text]
  • DISCRIMINANTS in TOWERS Let a Be a Dedekind Domain with Fraction
    DISCRIMINANTS IN TOWERS JOSEPH RABINOFF Let A be a Dedekind domain with fraction field F, let K=F be a finite separable ex- tension field, and let B be the integral closure of A in K. In this note, we will define the discriminant ideal B=A and the relative ideal norm NB=A(b). The goal is to prove the formula D [L:K] C=A = NB=A C=B B=A , D D ·D where C is the integral closure of B in a finite separable extension field L=K. See Theo- rem 6.1. The main tool we will use is localizations, and in some sense the main purpose of this note is to demonstrate the utility of localizations in algebraic number theory via the discriminants in towers formula. Our treatment is self-contained in that it only uses results from Samuel’s Algebraic Theory of Numbers, cited as [Samuel]. Remark. All finite extensions of a perfect field are separable, so one can replace “Let K=F be a separable extension” by “suppose F is perfect” here and throughout. Note that Samuel generally assumes the base has characteristic zero when it suffices to assume that an extension is separable. We will use the more general fact, while quoting [Samuel] for the proof. 1. Notation and review. Here we fix some notations and recall some facts proved in [Samuel]. Let K=F be a finite field extension of degree n, and let x1,..., xn K. We define 2 n D x1,..., xn det TrK=F xi x j .
    [Show full text]
  • On Cubic Galois Field Extensions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Number Theory 130 (2010) 307–317 Contents lists available at ScienceDirect Journal of Number Theory www.elsevier.com/locate/jnt On cubic Galois field extensions Lothar Häberle Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 288, 69121 Heidelberg, Germany article info abstract Article history: We study Morton’s characterization of cubic Galois extensions Received 19 December 2008 F /K by a generic polynomial depending on a single parameter Revised 30 August 2009 s ∈ K .Weshowhowsuchans can be calculated with the Communicated by David Goss coefficients of an arbitrary cubic polynomial over K the roots of which generate F .ForK = Q we classify the parameters s Keywords: Z Cubic Galois and cubic Galois polynomials over , respectively, according to Cyclic cubic the discriminant of the extension field, and we present a simple Number field criterion to decide if two fields given by two s-parameters or Conductor defining polynomials are equal or not. Kummer theory © 2009 Elsevier Inc. All rights reserved. 1. Introduction Morton develops, in [9], a Kummer theory for abelian field extensions of exponent 3 of ground fields K with char K = 2 not necessarily containing the third roots of unity. Thereby he shows that each cubic Galois extension F /K can be defined by a polynomial 3 1 2 1 2 1 3 2 gs(X) := X + (1 − s)X − s + 2s + 9 X + s + s + 7s − 1 ∈ K [X], s ∈ K , (1) 2 4 8 with discriminant (s2 + s + 7)2.
    [Show full text]
  • Galois Theory at Work: Concrete Examples
    GALOIS THEORY AT WORK: CONCRETE EXAMPLES KEITH CONRAD 1. Examples p p Example 1.1. The field extension Q( 2; 3)=Q is Galois of degree 4, so its Galoisp group phas order 4. The elementsp of the Galoisp groupp are determinedp by their values on 2 and 3. The Q-conjugates of 2 and 3 are ± 2 and ± 3, so we get at most four possible automorphisms in the Galois group. Seep Table1.p Since the Galois group has order 4, these 4 possible assignments of values to σ( 2) and σ( 3) all really exist. p p σ(p 2) σ(p 3) p2 p3 p2 −p 3 −p2 p3 − 2 − 3 Table 1. p p Each nonidentity automorphismp p in Table1 has order 2. Since Gal( Qp( 2p; 3)=Q) con- tains 3 elements of order 2, Q( 2; 3) has 3 subfields Ki suchp that [Q( 2p; 3) : Ki] = 2, orp equivalently [Ki : Q] = 4=2 = 2. Two such fields are Q( 2) and Q( 3). A third is Q( 6) and that completes the list. Here is a diagram of all the subfields. p p Q( 2; 3) p p p Q( 2) Q( 3) Q( 6) Q p Inp Table1, the subgroup fixing Q( 2) is the first and secondp row, the subgroup fixing Q( 3) isp the firstp and thirdp p row, and the subgroup fixing Q( 6) is the first and fourth row (since (− 2)(− 3) = p2 3).p p p The effect of Gal(pQ( 2;p 3)=Q) on 2 + 3 is given in Table2.
    [Show full text]
  • QUATERNION ALGEBRAS with the SAME SUBFIELDS 1. Introduction
    QUATERNION ALGEBRAS WITH THE SAME SUBFIELDS SKIP GARIBALDI AND DAVID J. SALTMAN Abstract. G. Prasad and A. Rapinchuk asked if two quaternion divi- sion F -algebras that have the same subfields are necessarily isomorphic. The answer is known to be “no” for some very large fields. We prove that the answer is “yes” if F is an extension of a global field K so that F/K is unirational and has zero unramified Brauer group. We also prove a similar result for Pfister forms and give an application to tractable fields. 1. Introduction Gopal Prasad and Andrei Rapinchuk asked the following question in Re- mark 5.4 of their paper [PR]: If two quaternion division algebras over a field F have the same (1.1) maximal subfields, are the algebras necessarily isomorphic? The answer is “no” for some fields F , see 2 below. The answer is “yes” if F is a global field by the Albert-Brauer-Hasse-Minkowski§ Theorem [NSW, 8.1.17]. Prasad and Rapinchuk note that the answer is unknown even for fields like Q(x). We prove that the answer is “yes” for this field: Theorem 1.2. Let F be a field of characteristic = 2 that is transparent. 6 If D1 and D2 are quaternion division algebras over F that have the same maximal subfields, then D1 and D2 are isomorphic. The term “transparent” is defined in 6 below. Every retract rational extension of a local, global, real-closed, or§ algebraically closed field is trans- parent; in particular K(x1,...,xn) is transparent for every global field K of characteristic = 2 and every n.
    [Show full text]
  • Algebraic Number Theory Lecture Notes
    Algebraic Number Theory Lecture Notes Lecturer: Bianca Viray; written, partially edited by Josh Swanson January 4, 2016 Abstract The following notes were taking during a course on Algebraic Number Theorem at the University of Washington in Fall 2015. Please send any corrections to [email protected]. Thanks! Contents September 30th, 2015: Introduction|Number Fields, Integrality, Discriminants...........2 October 2nd, 2015: Rings of Integers are Dedekind Domains......................4 October 5th, 2015: Dedekind Domains, the Group of Fractional Ideals, and Unique Factorization.6 October 7th, 2015: Dedekind Domains, Localizations, and DVR's...................8 October 9th, 2015: The ef Theorem, Ramification, Relative Discriminants.............. 11 October 12th, 2015: Discriminant Criterion for Ramification...................... 13 October 14th, 2015: Draft......................................... 15 October 16th, 2015: Draft......................................... 17 October 19th, 2015: Draft......................................... 18 October 21st, 2015: Draft......................................... 20 October 23rd, 2015: Draft......................................... 22 October 26th, 2015: Draft......................................... 24 October 29th, 2015: Draft......................................... 26 October 30th, 2015: Draft......................................... 28 November 2nd, 2015: Draft........................................ 30 November 4th, 2015: Draft........................................ 33 November 6th, 2015: Draft.......................................
    [Show full text]
  • The Discriminant MAT4250 — Høst 2013
    The discriminant MAT4250 — Høst 2013 The discriminant First and raw version 0.1 — 23. september 2013 klokken 13:45 One of the most significant invariant of an algebraic number field is the discriminant. One is tempted to say, apart from the degree, the most fundamental invariant. In simplest case of a quadratic equation, the discriminant tells us the behavior of solution, and of course, even its square roots gives us the solutions. To some extent the same is true for cubic equations, and the higher the degree of an equation less the influence of the discriminant is, but it always plays an important role. For a field extension we shall define a discriminant for any basis. Of course this depends on the basis, but in a very perspicuous way. In the case of a number field, the ring of algebraic integers A is a free module over Z,andifthebasisesareconfined to be Z-basis for A,thediscriminantisanintegerindependentofthethebasis,isan invariant of the number field. The discriminant serves several purposes at. Its main main feature is that it tells us in which primes a number fields ramify, or more generally, in which prime ideals an extension ramifies. Additionally the discriminant is a valuable tool to find Z-basis for the ring A of algebraic integers in a number field. To describe A is in general a difficult task, and the discriminant is some times helpful. In relative situation, the situation is somehow more complicated, and the discrimi- nant is well-defined just as an ideal. The discriminant of a basis The scenario is the usual one: A denotes a Dedekind ring with quotient field K,andL afinite,separableextensionofK.
    [Show full text]
  • Field and Galois Theory (Graduate Texts in Mathematics 167)
    Graduate Texts in Mathematics 1 TAKEUTYZARING. Introduction to 33 HIRSCH. Differential Topology. Axiomatic Set Theory. 2nd ed. 34 SPITZER. Principles of Random Walk. 2 OXTOBY. Measure and Category. 2nd ed. 2nd ed. 3 SCHAEFER. Topological Vector Spaces. 35 WERMER. Banach Algebras and Several 4 HILT0N/STAmMnActi. A Course in Complex Variables. 2nd ed. Homological Algebra. 36 KELLEY/NANnoKA et al. Linear 5 MAC LANE. Categories for IIle Working Topological Spaces. Mathematician. 37 MONK. Mathematical Logic. 6 HUGHES/PIPER. Projective Planes. 38 GnAuERT/FRITzsom. Several Complex 7 SERRE. A Course in Arithmetic. Variables. 8 TAKEUTI/ZARING. Axiomatic Set Theory. 39 ARVESON. An Invitation to C*-Algebras. 9 HUMPHREYS. Introduction to Lie Algebras 40 KEMENY/SNELL/KNAPP. Denumerable and Representation Theory. Markov Chains. 2nd ed. 10 COHEN. A Course in Simple Homotopy 41 APOSTOL. Modular Functions and Theory. Dirichlet Series in Number Theory. 11 CONWAY. Functions of One Complex 2nd ed. Variable 1. 2nd ed. 42 SERRE. Linear Representations of Finite 12 BEALS. Advanced Mathematical Analysis. Groups. 13 ANDERSON/FULLER. Rings and Categories 43 G1LLMAN/JERISON. Rings of Continuous of Modules. 2nd ed. Functions. 14 GOLUBITSKY/GUILLEMIN. Stable Mappings 44 KENDIG. Elementary Algebraic Geometry and ,Their Singularities. 45 LoLvE. Probability Theory I. 4th ed. 15 BERBERIAN. Lectures in Functional 46 LOEVE. Probability Theory II. 4th ed. Analysis and Operator Theory. 47 MOISE. Geometric Topology in 16 WINTER. The Structure of Fields, Dimensions 2 and 3. 17 IZOSENBINIT. Random Processes. 2nd ed. 48 SAcims/Wu. General Relativity for 18 HALMOS. Measure Theory. Mathematicians. 19 HALMOS. A Hilbert Space Problem Book. 49 GRUENBERG/WEIR.
    [Show full text]
  • Field and Galois Theory
    Section 6: Field and Galois theory Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Modern Algebra M. Macauley (Clemson) Section 6: Field and Galois theory Math 4120, Modern algebra 1 / 59 Some history and the search for the quintic The quadradic formula is well-known. It gives us the two roots of a degree-2 2 polynomial ax + bx + c = 0: p −b ± b2 − 4ac x = : 1;2 2a There are formulas for cubic and quartic polynomials, but they are very complicated. For years, people wondered if there was a quintic formula. Nobody could find one. In the 1830s, 19-year-old political activist Evariste´ Galois, with no formal mathematical training proved that no such formula existed. He invented the concept of a group to solve this problem. After being challenged to a dual at age 20 that he knew he would lose, Galois spent the last few days of his life frantically writing down what he had discovered. In a final letter Galois wrote, \Later there will be, I hope, some people who will find it to their advantage to decipher all this mess." Hermann Weyl (1885{1955) described Galois' final letter as: \if judged by the novelty and profundity of ideas it contains, is perhaps the most substantial piece of writing in the whole literature of mankind." Thus was born the field of group theory! M. Macauley (Clemson) Section 6: Field and Galois theory Math 4120, Modern algebra 2 / 59 Arithmetic Most people's first exposure to mathematics comes in the form of counting.
    [Show full text]
  • Chapter 3 Algebraic Numbers and Algebraic Number Fields
    Chapter 3 Algebraic numbers and algebraic number fields Literature: S. Lang, Algebra, 2nd ed. Addison-Wesley, 1984. Chaps. III,V,VII,VIII,IX. P. Stevenhagen, Dictaat Algebra 2, Algebra 3 (Dutch). We have collected some facts about algebraic numbers and algebraic number fields that are needed in this course. Many of the results are stated without proof. For proofs and further background, we refer to Lang's book mentioned above, Peter Stevenhagen's Dutch lecture notes on algebra, and any basic text book on algebraic number theory. We do not require any pre-knowledge beyond basic ring theory. In the Appendix (Section 3.4) we have included some general theory on ring extensions for the interested reader. 3.1 Algebraic numbers and algebraic integers A number α 2 C is called algebraic if there is a non-zero polynomial f 2 Q[X] with f(α) = 0. Otherwise, α is called transcendental. We define the algebraic closure of Q by Q := fα 2 C : α algebraicg: Lemma 3.1. (i) Q is a subfield of C, i.e., sums, differences, products and quotients of algebraic numbers are again algebraic; 35 n n−1 (ii) Q is algebraically closed, i.e., if g = X + β1X ··· + βn 2 Q[X] and α 2 C is a zero of g, then α 2 Q. (iii) If g 2 Q[X] is a monic polynomial, then g = (X − α1) ··· (X − αn) with α1; : : : ; αn 2 Q. Proof. This follows from some results in the Appendix (Section 3.4). Proposition 3.24 in Section 3.4 with A = Q, B = C implies that Q is a ring.
    [Show full text]
  • Algebraic Number Theory
    Lecture Notes in Algebraic Number Theory Lectures by Dr. Sheng-Chi Liu Throughout these notes, signifies end proof, and N signifies end of example. Table of Contents Table of Contents i Lecture 1 Review 1 1.1 Field Extensions . 1 Lecture 2 Ring of Integers 4 2.1 Understanding Algebraic Integers . 4 2.2 The Cyclotomic Fields . 6 2.3 Embeddings in C ........................... 7 Lecture 3 Traces, Norms, and Discriminants 8 3.1 Traces and Norms . 8 3.2 Relative Trace and Norm . 10 3.3 Discriminants . 11 Lecture 4 The Additive Structure of the Ring of Integers 12 4.1 More on Discriminants . 12 4.2 The Additive Structure of the Ring of Integers . 14 Lecture 5 Integral Bases 16 5.1 Integral Bases . 16 5.2 Composite Field . 18 Lecture 6 Composition Fields 19 6.1 Cyclotomic Fields again . 19 6.2 Prime Decomposition in Rings of Integers . 21 Lecture 7 Ideal Factorisation 22 7.1 Unique Factorisation of Ideals . 22 Lecture 8 Ramification 26 8.1 Ramification Index . 26 Notes by Jakob Streipel. Last updated June 13, 2021. i TABLE OF CONTENTS ii Lecture 9 Ramification Index continued 30 9.1 Proof, continued . 30 Lecture 10 Ramified Primes 32 10.1 When Do Primes Split . 32 Lecture 11 The Ideal Class Group 35 11.1 When are Primes Ramified in Cyclotomic Fields . 35 11.2 The Ideal Class Group and Unit Group . 36 Lecture 12 Minkowski's Theorem 38 12.1 Using Geometry to Improve λ .................... 38 Lecture 13 Toward Minkowski's Theorem 42 13.1 Proving Minkowski's Theorem .
    [Show full text]
  • FIELD THEORY Contents 1. Algebraic Extensions 1 1.1. Finite And
    FIELD THEORY MATH 552 Contents 1. Algebraic Extensions 1 1.1. Finite and Algebraic Extensions 1 1.2. Algebraic Closure 5 1.3. Splitting Fields 7 1.4. Separable Extensions 8 1.5. Inseparable Extensions 10 1.6. Finite Fields 13 2. Galois Theory 14 2.1. Galois Extensions 14 2.2. Examples and Applications 17 2.3. Roots of Unity 20 2.4. Linear Independence of Characters 23 2.5. Norm and Trace 24 2.6. Cyclic Extensions 25 2.7. Solvable and Radical Extensions 26 Index 28 1. Algebraic Extensions 1.1. Finite and Algebraic Extensions. Definition 1.1.1. Let 1F be the multiplicative unity of the field F . Pn (1) If i=1 1F 6= 0 for any positive integer n, we say that F has characteristic 0. Pp (2) Otherwise, if p is the smallest positive integer such that i=1 1F = 0, then F has characteristic p. (In this case, p is necessarily prime.) (3) We denote the characteristic of the field by char(F ). 1 2 MATH 552 (4) The prime field of F is the smallest subfield of F . (Thus, if char(F ) = p > 0, def then the prime field of F is Fp = Z/pZ (the filed with p elements) and if char(F ) = 0, then the prime field of F is Q.) (5) If F and K are fields with F ⊆ K, we say that K is an extension of F and we write K/F . F is called the base field. def (6) The degree of K/F , denoted by [K : F ] = dimF K, i.e., the dimension of K as a vector space over F .
    [Show full text]