Quaternion Algebras Over Fields

Quaternion Algebras Over Fields

Quaternion algebras over ¯elds De¯nitions and ¯rst results Let K be a ¯eld and L j K a quadratic extension. Let θ 2 K. De¯nition: H := L © Lu with u 2 H such that u2 = θ and u¸ = ¸u for all ¸ 2 L, with ¹ : L ¡! L the non-trivial automorphism from L to L. Notation: H := (L; ¹ ; θ) Remark: H is a central simple algebra over K. A quaternion algebra is a central simple algebra of dimension 4 over K. We also introduce a second ¤ a;b De¯nition: Let a; b 2 K and H := ( K ) be the algebra generated by i; j with the relations i2 = a; j2 = b; ij = ¡ji = k. We have k2 = ¡ab. As K-vectorspace H is generated by the elements f1; i; j; kg. 2 » a;b Remark: For L = K(i); θ = b; u = j; i = a we get: L © Lu = ( K ). The ¤ a;b » b;a » elements a; b 2 K as well as L; θ are not unique, because of: ( K ) = ( K ) = a;¡ab » ac2;b ( K ) = ( K ). a;b » a;b For a ¯eld extension M j K we have: M ­K ( K ) = ( M ), respectivly: » M ­K (L; ¹ ; θ) = (M ­K L; ¹ ; θ) De¯nition: Let h = ® + i¯ + jγ + k± 2 H with ®; ¯; γ; ± 2 K. h¹ := ¹ ® ¡ i¯ ¡ jγ ¡ k±, respectivly: for h = ¸1 + ¸2u de¯ne: h = ¸1 ¡ ¸2u. ¹ : H ¡! H is an involution, extending the non-trivial K-automorphism ¹ : L ¡! L, called conjugation. This conjugation is additive and anti- communtative. For h 2 H we de¯ne n(h) := h ¢ h;¹ t(h) := h + h¹. This is the reduced norm and the reduced trace. The reduced norm de¯nes a quadratic form on H Also de¯ne: H £ H ¡! K given by: (h1; h2) 7!< h1; h2 >:= t(h1 ¢ h2). Lemma ² h 2 H is invertible () n(h) 6= 0 ² <; > de¯nes a K-linear, non-degenerate bilinearform. 1 Remark: Let H ¡! EndK (H); h 7! lh : a 7! h ¢ a be the left regular 2 representation. Then it holds: 2t(h) = T r(lh) and n(h) = det(lh). De¯nition: Let F j K be an extension. F is called splitting ¯eld for H () » HF := F ­K H = M2(F ). A F -representation is an inclusion H ¡! M2(F ). Examples: 1. M (K) » ( 1;¡1 ). Let L = K(i) with i2 = ¡1 and j2 = 1. Consider 2 = K à ! à ! à ! 1 0 0 ¡1 0 1 the matrices e1 = ; ei = ; ej = ; eij = 0 1 1 0 1 0 à ! ¡1 0 . This gives an K-algebra-isomorphism: 0 1 e1 7! 1; ei 7! i; ej 7! j; eij 7! ij ¡1;¡1 2. H := ( R ) the real quaternions have a C-representation: à ! z1 z2 H = f 2 M2(C)g ¡z¹2 z¹1 2 2 » H = R(i) © R(i)j with i = ¡1; j = ¡1. We have: H ­R C = M2(C) with H M2(R). 3. Let a; b 2 K¤. Consider: à ! à p ! à ! 0 1 b 0 1 0 I = ;J = p ;E2 = a 0 0 ¡ b 0 1 à p ! 2 2 0 ¡ b Then it holds: I = aE2;J = bE2;IJ = ¡JI = p a b 0 For ®; ¯; γ; ± 2 K¤ one gets: à p p ! ® + γ (b) ¯ ¡ ± b ®E2 + ¯I + γJ + ±IJ = p p a(¯ + ± b) ® ¡ γ (b) p With ¸s 2 L = K( b) for s = 1; 2, we obtain: à ! a; b ¸ ¸ p ( ) » f 1 2 2 M (K( b))g = ¹ ¹ 2 K a¸2 ¸1 p and recover the splitting ¯eld as K( b). 2 Remark: Let H be a quaternion algebra over K. 1 ¹ Then B(h1; h2) := 2 t(h1 ¢ h2) 2 K gives a symmetric, non-degenerate, bilin- earform. We get B(h; h) = n(h). For pure quaternions H0 = fh 2 H j h = ¯i + γj + ±ijg the set fi; j; ijg forms an orthogonal basis. K is orthogonal to the span of this set, so that (H; B) as quadratic space, has f1; i; j; ijg as orthogonal basis. We have the following a;b 0 c;d Proposition: For H = ( K ) and H = ( K ) with a; b; c; d 2 K the following statements are equivalent: 1. H and H0 are isomorphic K-algebras 2. H and H0 are isometric as quadratic spaces 0 3. H0 and H0 are isometric as quadratic spaces Proof: done in the seminar a;a » a;¡1 Corollary:( K ) = ( K ) because of their isometric normforms. a;b Theorem: For H = ( K ) the following statements are equivalent: 1;¡1 » 1. H = ( K ) = M2(K) 2. H is not a division algebra 3. H is isotrop as quadratic space p 4. a 2 NormF jK (F ) with F = K( b) Proof: done in the seminar ¤ a;¡a » 1;a » Corollary: Let a 2 K , then ( K ) = ( K ) = M2(K). If a 6= 0; 1 then a;1¡a » ( K ) = M2(K). a;b » Remark: For a ¯nite ¯eld K, not of characteristic 2, we get: ( K ) = M2(K) for all a; b 2 K 3 The Skolem-Noether-Theorem Lemma: ' : H ­K H ¡! EndK (H); h1 ­K h2 7! (h 7! h1 ¢ h ¢ h2) is a K-algebra isomorphism. Proof: done in the seminar Theorem: Let L j K be a quadratic extension contained in H. ¿ : L ¡! L the non-trivial K-automorphism of L. Then there exists a K-algebra- automorphism σ : H ¡! H which extends ¿, and is of the form: σ(h) = a ¢ h ¢ a¡1 for an a 2 H¤. Every K-automorphism σ : H ¡! H is an inner automorphism. Proof: done in the seminar Corollary: Let L j K be a quadratic extension contained in H. Then there exists θ 2 K¤ such that H »= (L; ¹ ; θ). θ depends on the non-trivial automorphism ¿ : L ¡! L. Proof: done in the seminar Remark: Let Aut(H j K) be the group of K-automorphisms of H. Then Aut(H j K) »= H¤=K¤. » Proposition: Let H = (L; ¹ ; θ). Then it holds: H = M2(K) () θ 2 n(L). Proof: =): If H is not a division algebra then there exists an element h 6= 0 2 H with n(h) = 0. Let h be written in the form h = ¸ + ¹u with u2 = θ 2 K¤. Then it follows: 0 = n(h) = ¸ ¢ ¸¹ ¡ ¹ ¢ ¹ ¢ θ with ¸; ¹ 6= 0. This ¸ gives θ = n( ¹ ) 2 n(L). (=: θ 2 n(L) () θ = ¸ ¢ ¸¹ for a ¸ 2 L. Consider h := ¸ + u 6= 0 2 H. For this element we get: n(h) = 0. So H is not a division algebra. 4 Further results Proposition (Frobenius): Let D be a ¯nite dimensional division algebra with center R. Then D »= H (the real quaternions) Proof: Let d 2 D ¡ R. Then R(d) »= R(i) »= C with i2 = ¡1. So, R(d) is proper contained in D. Let d~2 D be an element such that R(d~) »= R(u) with u2 = ¡1 and u2 = R(i). The elements i; u do not commute, because otherwise R(i; u) would be a ¯eld extension. But then u 2 R(i). Consider now the element j := iui + u. For this we get: ij = ¡ji. Let H := R(i) + R(i)j ½ D, and ¿ : i 7! ¡i be conjugation in R(i). Then 'j : H ¡! H, de¯ned as ¡1 2 x 7! j ¢ x ¢ j extends ¿, because of 'j(i) = ¡i. We now claim that j 2 R: 2 2 2 2 2 2 2 2 j ¢i = i¢j So, j 2 R(i). ¿(j ) = 'j(j ) = j . So, j 2 R and j < 0 because otherwise j 2 R = center(D). But then we would get jij¡1 = ¡i = i, which is absurd. So we conclude that H »= H ½ D. If H is proper contained in D, we can choose an element d^ 2 D ¡ H such that di^ = id^ and d^2 2 R. We proceed as done before. But then we get: dji^ = d^(¡i)j = idj^ , which means that dj 2 R(i). But then d^2 H which contradicts our choise. =) H »= D. We conclude the section with a remarkable property of quaternion algebras: Proposition: Let a; b; c 2 K¤. Then it holds: a; b a; c a; bc ( ) ­ ( ) »= ( ) ­ M (K) K K K K K 2 a;b » 2 2 2 Proof: Let H1 := ( K ) =< 1; i1; j1; k1 >K with i1 = a; j1 = b; k1 = ¡ab a;c » and similar H2 := ( K ) =< 1; i2; j2; k2 >K . Consider H3 :=< 1 ­ 1; i1 ­ 1; j1 ­ j2; k1 ­ j2 >K =:< 1; I; J; IJ >K . This is a 4-dimensional subalgebra 2 2 » a;bc of H1 ­H2. We have: I = a; J = bc; IJ = ¡JI. This gives H3 = ( K ). ~ ~ ~ De¯ne H4 :=< 1 ­ 1; 1 ­ j2; i1 ­ k2; ¡ci1 ­ i2 >K =< 1; I; J; K >K . We then ~2 ~2 2 ~ ~ ~~ c;¡a2c get: I = c; J = ¡a c; IJ = JI. This gives: H4 = ( K ). Using » the classi¯cation by quadratic forms we obtain that H4 = M2(K). Further » » more we get that H1 ­ H2 = H3 ­ H4 = H3 ­ M2(K). This follows from the fact that f1; I; J; Kg commutes with f1; I;~ J;~ K~ g elementwise. Evaluating the two tensorproducts gives the proposition. » Corollary: H ­ H = M4(R). ¡1;¡1 ¡1;¡1 » ¡1;1 » » Proof:( R ) ­R ( R ) = ( R ) ­R M2(R) = M2(R) ­R M2(R) = M4(R). 5.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    5 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us