Crustal Seismicity in the Back-Arc Region of the Southern Central Andes from Historic to Modern Times

Total Page:16

File Type:pdf, Size:1020Kb

Crustal Seismicity in the Back-Arc Region of the Southern Central Andes from Historic to Modern Times Crustal Seismicity in the Back-Arc Region of the Southern Central Andes from Historic to Modern Times Item Type text; Electronic Dissertation Authors Alvarado, Patricia Monica Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 04/10/2021 04:27:26 Link to Item http://hdl.handle.net/10150/195537 CRUSTAL SEISMICITY IN THE BACK-ARC REGION OF THE SOUTHERN CENTRAL ANDES FROM HISTORIC TO MODERN TIMES by Patricia Mónica Alvarado ___________________________ Copyright © Patricia Mónica Alvarado 2006 A Dissertation Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2006 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by PATRICIA MONICA ALVARADO entitled CRUSTAL SEISMICITY IN THE BACK-ARC REGION OF THE SOUTHERN CENTRAL ANDES FROM HISTORIC TO MODERN TIMES and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: April 14, 2006 Dr. Susan Beck _______________________________________________________________________ Date: April 14, 2006 Dr. George Zandt _______________________________________________________________________ Date: April 14, 2006 Dr. Clement Chase _______________________________________________________________________ Date: April 14, 2006 Dr. Roy Johnson _______________________________________________________________________ Date: April 14, 2006 Dr. Richard Bennett Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. ________________________________________________ Date: Date: April 14, 2006 Dissertation Director: Dr. Susan Beck 3 STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the copyright holder. SIGNED: Patricia M. Alvarado 4 ACKNOWLEDGEMENTS I would like to thank first and foremost my advisor Susan Beck (head of the Geosciences Department) for her support, critical advice, assistance and encouragement to work in the CHARGE Andean project. I would also like to thank George Zandt for his openness for questions and guidance in my scientific project and other professors in my committee, Clem Chase, Roy Johnson and Rick Bennett, for showing interest in my research. Several people offered me help during my studies not only limited to my scientific work. I express my gratitude to my friend Robert Fromm, who unexpectedly passed away in July 2004, for his generosity, open mind and great moments. I also thank Megan Anderson, Arda Ozacar, Hersh Gilbert, Berk Biryol, Keith Koper, Carlos Cintra, Stephen Sorenson, Facundo Fuentes, Lara Wagner, the GSAT (Susan and George’s) group, Randy Richardson, Anne Chase, Robert Butler and Terry Wallace. I acknowledge several Institutions and Awards that made possible this research and the CHARGE project: National Science Foundation, PASSCAL-IRIS, University of Arizona, P.E.O., ChevronTexaco, Galileo Circle, PERISHIP-2004 (U.S.A.); Universidad Nacional de San Juan, Instituto Nacional de Prevención Sísmica, Fundación Antorchas (Argentina); Universidad de Chile (Chile); O.A.S. My special thanks to my husband and daughter for their unconditional support, companion, and above all, for their love. Several friends have contributed to make our staying in Tucson an unforgettable experience. They will be in our memories forever. I apologize for not mentioning everyone that we were fortunate enough to meet. I will cover some of them: Pamela and Wayne Kappel, for making us feel part of their family during this long time studying abroad. Verónica and Fernando Barra and their kids, for their kindness and support, sometimes during difficult times. Eneida Lima, for her friendship, and the contact to meet the soccer group, which made my whole family to enjoy every Sunday morning at the Mitchell park. Lionel Meza and D’Londa Morrison for giving us the privilege of having their kids playing with our daughter every single week since the first day we came to the U.S.A. Pablo Guerenstein and his family for their help, especially at the beginning. Finally, to my family and friends in Argentina and Chile. The long hours spent in e-mails and phone-calls were a tremendous support in the distance. I express particular thanks to Tony Monfret, Brígida and Eduardo Machuca, Alberto Sáez, Mario Pardo, Sergio Barrientos, Diana Comte, Mariana Aguiar, Marcelo Millán, Adriana Valenzuela, Ricardo Uliarte and Jorge Sisterna. 5 DEDICATION To my husband Mauro Sáez, whose patience, optimism and conviction made possible to leave our home in Argentina for coming to the U.S.A. to know more about earth sciences. To our daughter, Antonella, for showing to her that there is no end to a woman’s growth and ... for her future. To the memory of Robert Fromm, whom I dreamed of sharing a bright future in South America ... 6 TABLE OF CONTENTS ABSTRACT........................................................................................................................9 INTRODUCTION.............................................................................................................11 I. Historic Seismicity.................................................................................................13 II. Modern Crustal Seismicity....................................................................................14 III. Crustal Structure....................................................................................................15 PRESENT STUDY............................................................................................................16 REFERENCES..................................................................................................................18 APPENDIX A: Permission for Reproduction from Elsevier ............................................24 Source Characterization of the San Juan (Argentina) Crustal Earthquakes of 15 January 1944 (Mw 7.0) and 11 June 1952 (Mw 6.8). (Reprint).......................................................26 Abstract........................................................................................................................27 1. Introduction and Regional Tectonics.....................................................................27 2. Data and Methods..................................................................................................31 3. Results and Discussion...........................................................................................33 3.1. The 15 January 1944 Earthquake...................................................................33 3.2. The 11 June 1952 Earthquake........................................................................38 4. Conclusions............................................................................................................40 Acknowledgements......................................................................................................41 References....................................................................................................................41 APPENDIX B: Permission for Reproduction from Blackwell..........................................44 7 TABLE OF CONTENTS - Continued Crustal Deformation in the South-Central Andes Backarc Terranes as Viewed from Regional Broad-Band Seismic Waveform Modelling. (Reprint)......................................47 Summary......................................................................................................................48 1 Introduction............................................................................................................48 2 Regional Tectonic Setting......................................................................................49 3 Data and Regional Waveform Modelling..............................................................51 4 Sensitivity to Crustal Models.................................................................................52 5 Results and Discussion...........................................................................................56 5.1 Western Sierras Pampeanas-Sierra Pie de Palo and Valle Fértil Megashear...58 5.2 Eastern Sierras Pampeanas..............................................................................61 5.3 Mendoza...........................................................................................................62 5.4 High Cordillera................................................................................................62
Recommended publications
  • Mesh-Based Tectonic Reconstruction: Andean Margin Evolution Since the Cretaceous
    Mesh-based tectonic reconstruction: Andean margin evolution since the Cretaceous Tomas P. O'Kane, Gordon S. Lister Journal of the Virtual Explorer, Electronic Edition, ISSN 1441-8142, volume 43, paper 1 In: (Eds.) Stephen Johnston and Gideon Rosenbaum, Oroclines, 2012. Download from: http://virtualexplorer.com.au/article/2011/297/mesh-based-tectonic-reconstruction Click http://virtualexplorer.com.au/subscribe/ to subscribe to the Journal of the Virtual Explorer. Email [email protected] to contact a member of the Virtual Explorer team. Copyright is shared by The Virtual Explorer Pty Ltd with authors of individual contributions. Individual authors may use a single figure and/or a table and/or a brief paragraph or two of text in a subsequent work, provided this work is of a scientific nature, and intended for use in a learned journal, book or other peer reviewed publication. Copies of this article may be made in unlimited numbers for use in a classroom, to further education and science. The Virtual Explorer Pty Ltd is a scientific publisher and intends that appropriate professional standards be met in any of its publications. Journal of the Virtual Explorer, 2012 Volume 43 Paper 1 http://virtualexplorer.com.au/ Mesh-based tectonic reconstruction: Andean margin evolution since the Cretaceous Tomas P. O'Kane Research School of Earth Sciences, The Australian National University, Canberra 0200 Australia. Email: [email protected] Gordon S. Lister Research School of Earth Sciences, The Australian National University, Canberra 0200 Australia. Abstract: In this contribution we demonstrate an example of what can be described as mesh-based tectonic reconstruction.
    [Show full text]
  • 4 Three-Dimensional Density Model of the Nazca Plate and the Andean Continental Margin
    76 4 Three-dimensional density model of the Nazca plate and the Andean continental margin Authors: Andrés Tassara, Hans-Jürgen Götze, Sabine Schmidt and Ron Hackney Paper under review (September 27th, 2005) by the Journal of Geophysical Research Abstract We forward modelled the Bouguer anomaly in a region encompassing the Pacific ocean (east of 85°W) and the Andean margin (west of 60°W) between northern Peru (5°S) and Patagonia (45°S). The three-dimensional density structure used to accurately reproduce the gravity field is simple. The oceanic Nazca plate is formed by one crustal body and one mantle lithosphere body overlying a sub-lithospheric mantle, but fracture zones divide the plate into seven along-strike segments. The subducted slab was modelled to a depth of 410 km, has the same structure as the oceanic plate, but it is subdivided into four segments with depth. The continental margin consists of one upper-crustal and one lower-crustal body without lateral subdivision, whereas the mantle has two bodies for the lithosphere and two bodies for the asthenosphere that are separated across-strike by the downward prolongation of the eastern limit of active volcanism. We predefined the density for each body after studying its dependency on composition of crustal and mantle materials and pressure-temperature conditions appropriate for the Andean setting. A database containing independent geophysical information constrains the geometry of the subducted slab, locally the Moho of the oceanic and continental crusts, and indirectly the lithosphere-asthenosphere boundary (LAB) underneath the continental plate. Other geometries, especially that of the intracrustal density discontinuity (ICD) in the continental margin, were not constrained and are the result of fitting the observed and calculated Bouguer anomaly during the forward modelling.
    [Show full text]
  • Crustal-Seismicity.Pdf
    Tectonophysics 786 (2020) 228450 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Crustal seismicity in the Andean Precordillera of Argentina using seismic broadband data T ⁎ Agostina Venerdinia,b, , Patricia Alvaradoa,b, Jean-Baptiste Ammiratia,1, Marcos Podestaa, Luciana Lópezc, Facundo Fuentesd, Lepolt Linkimere, Susan Beckf a Grupo de Sismotectónica, Centro de Investigaciones de la Geósfera y la Biósfera (Consejo Nacional de Investigaciones Científicas y Técnicas CONICET– Facultad de Ciencias Exactas, Físicas y Naturales, UNSJ), San Juan, Argentina b Departamento de Geofísica y Astronomía, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, San Juan, Argentina c Instituto Nacional de Prevención Sísmica, San Juan, Argentina d YPF S.A., Buenos Aires, Argentina e Escuela Centroamericana de Geología, Universidad de Costa Rica, San José, Costa Rica f Department of Geosciences, University of Arizona, Tucson, AZ, United States ARTICLE INFO ABSTRACT Keywords: In this study, we analyze 100 crustal Precordilleran earthquakes recorded in 2008 and 2009 by 52 broadband Crust seismic stations from the SIEMBRA and ESP, two temporary experiments deployed in the Pampean flat slab Focal mechanism region, between the Andean Cordillera and the Sierras Pampeanas in the Argentine Andean backarc region. Fold-thrust belt In order to determine more accurate hypocenters, focal mechanisms and regional stress orientations, we Andean retroarc relocated 100 earthquakes using the JHD technique and a local velocity model. The focal depths of our relocated Flat slab events vary between 6 and 50 km. We estimated local magnitudes between 0.4 ≤ M ≤ 5.3 and moment South America L magnitudes between 1.3 ≤ Mw ≤ 5.3.
    [Show full text]
  • Geophysical Evidence for Terrane Boundaries in South-Central Argentina Carlos J
    Gondwana Research, G! 7, No. 4, pp. 1105-1 116. 0 2004 International Association for Gondwana Research, Japan. ISSN: 1342-937X Geophysical Evidence for Terrane Boundaries in South-Central Argentina Carlos J. Chernicoff and Eduardo 0. Zappettini2 Council for Scientific and Technical Research (CONICET),Universidad de Buenos Aires, E-mail: [email protected] ' Argentine Geological-Mining Survey (SEGEMAR). Av. Julio A. Roca 651, 8" piso, (1322) Buenos Aires, Argentina, E-mail: [email protected] * Corresponding author (Manuscript received July 24,2003; accepted January 26,2004) Abstract The geological interpretation of high-resolution aeromagnetic data over the La Pampa province, in central Argentina, in addition to lower resolution magnetic information from the region of the Neuquen and Colorado basins, leads to the definition of the precise boundaries of the Chilenia, Cuyania, Pampia and Patagonia terranes, as well as that of the Rio ..... de la Plata Craton, within the study region. The high-resolution aeromagnetic survey data are compared and studied in conjunction with all the available geological information, to produce a map of the solid geology of this region, which is largely covered by Quaternary sediments. A number of structures of different magnitudes, as we11 as their relative chronology, are also recognized, i.e., regional faults, sub-regional faults, fractures and shear zones, as well as the most conspicuous magnetic fabric of the basement that reflects its main planar structures. Three different basements are distinguished on the basis of their contrasting magnetic character, and are interpreted to represent the Cuyania and Pampia terranes and the Rio de la Plata Craton, separated from each other by large-scale discontinuities.
    [Show full text]
  • A History of Proterozoic Terranes in Southern South America: from Rodinia to Gondwana
    + MODEL GEOSCIENCE FRONTIERS -(-) (2011) 1e9 available at www.sciencedirect.com China University of Geosciences (Beijing) GEOSCIENCE FRONTIERS journal homepage: www.elsevier.com/locate/gsf REVIEW A history of Proterozoic terranes in southern South America: From Rodinia to Gondwana C. Casquet a,*, C.W. Rapela b, R.J. Pankhurst c, E.G. Baldo d, C. Galindo a, C.M. Fanning e, J.A. Dahlquist d, J. Saavedra f a Departamento de Petrologıa y Geoquımica, IGEO (Universidad Complutense, CSIC), 28040 Madrid, Spain b Centro de Investigaciones Geologicas (CONICET-UNLP), 1900 La Plata, Argentina c Visiting Research Associate, British Geological Survey, Keyworth, Nottingham NG12 5GG, United Kingdom d CICTERRA (CONICET-UNC), 5000 Cordoba, Argentina e Research School of Earth Sciences, The Australian National University, Canberra, Australia f Instituto de Agrobiologıa y Recursos Naturales CSIC, 37071 Salamanca, Spain Received 3 August 2011; accepted 8 November 2011 KEYWORDS Abstract The role played by Paleoproterozoic cratons in southern South America from the Mesopro- Paleoproterozoic; terozoic to the Early Cambrian is reconsidered here. This period involved protracted continental amal- Cratons; gamation that led to formation of the supercontinent Rodinia, followed by Neoproterozoic continental Grenvillian; break-up, with the consequent opening of Clymene and Iapetus oceans, and finally continental Neoproterozoic rifting; re-assembly as Gondwana through complex oblique collisions in the Late Neoproterozoic to Early SW Gondwana assembly Cambrian. The evidence for this is based mainly on a combination of precise U-Pb SHRMP dating and radiogenic isotope data for igneous and metamorphic rocks from a large area extending from the Rio de la Plata craton in the east to the Argentine Precordillera in the west and as far north as Arequipa in Peru.
    [Show full text]
  • The Gondwana Margin: Proterozoic to Mesozoic
    CORE Metadata, citation and similar papers at core.ac.uk Provided by EPrints Complutense The Gondwana margin: Proterozoic to Mesozoic The longevity and extent of the oceanic southern of '--'H��'.JAJ.J.'u., E. I.M. Gonzalez-Casado and I.A. Dahlquist Gondwana have made it the of intense study for more on "The Maz terrane: a Mesoproterozoic domain in the western than 70 years. It was one of the cradles of terrane and Sierras equivalent to the remains a proving ground for theories of Antofalla block of southern Peru? for West LL.L�""".LE, """'.LJL.LU''-'H and Investigation on this Gondwana evolution" sheds new light on the Middle margin, such as accretionary orogenesis and terrane analysis, is and Late Proterozoic evolution of the western Amazonia margin vital to our understanding of the Proterozoic and Phanerozoic that preceded final amalgamation of West Gondwana in the Late evolution of the continental crust. In this issue of Cambrian. The Maz terrane Gondwana Research, entitled "The West Gondwana Margin: Sierras Pampeanas) is recognised as a new continental terrane Proterozoic to Mesozoic", we have assembled 9 research papers that underwent Grenvillian-age orogeny and was thoroughly various of the evolution of the West the Ordovician Famatinian orogeny. Nd- and Gondwana margin, frrst at the international .L.Ln-''-'�'J.�F. allows correlation of Maz metasedi­ 'Gondwana 12 (Geological and Biological Heritage of Gond- rnp'nt�n"\T rocks with the Mesoproterozoic northern part of the wana)', held in in November 2005. Many -'-'J.�V.L<-"HU craton, of pre-Andean basement in concern southern South which has a continuous southern Peru.
    [Show full text]
  • The Argentine Precordillera: a Foreland Thrust Belt Proximal to the Subducted Plate
    The Argentine Precordillera: A foreland thrust belt proximal to the subducted plate Richard W. Allmendinger and Phoebe A. Judge Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York 14853, USA ABSTRACT of constructing balanced cross sections with- thickening in the lower crust, much as described out worrying about exactly where lower crustal by Bird (1988) for the Laramide Rocky Moun- The Precordillera thrust belt of west- shortening commences, how the transition from tain foreland of the western United States. ern Argentina is anomalously close, both upper crustal to whole crust shortening occurs, horizontally and vertically, to the coeval or even how the thrust plates will restore relative TECTONIC AND GEOLOGIC SETTING subduction zone of the Nazca plate. The to the trench. thin-skinned part of the belt has an unusu- The Precordillera thrust belt of western The Argentine Precordillera overlies a region ally deep décollement that is well defi ned by Argentina, in contrast, is located 350 km from of fl at subduction of the Nazca plate (Cahill industry seismic refl ection and recent broad- the Chile Trench and just 100 km above the and Isacks, 1992; Gans et al., 2011) located at band experiments. New area and line-length subducted Nazca plate. Thus the amount of the southern end of the Central Andes (Fig. 1). balanced cross sections show that the cen- crust to work with when attempting to bal- This region of fl at subduction has been linked tral Precordillera has accrued ~90 ± 21 km ance the shortening in the thrust belt is signifi - to the subduction of the Juan Fernández Ridge, of shortening since 13 Ma; much of that cantly less than elsewhere, raising questions which, because of a dogleg in its now sub- shortening occurred between 12 and 9 Ma.
    [Show full text]
  • U-Pb Geochronology and Paleogeography of the Valanginian– Hauterivian Neuquén Basin: Implications for Gondwana-Scale
    Research Paper GEOSPHERE U-Pb geochronology and paleogeography of the Valanginian– Hauterivian Neuquén Basin: Implications for Gondwana-scale GEOSPHERE, v. 17, no. 1 source areas https://doi.org/10.1130/GES02284.1 E. Schwarz1,*, E.S. Finzel2,*, G.D. Veiga1, C.W. Rapela1, C. Echevarria3,*, and L.A. Spalletti1 1Centro de Investigaciones Geológicas (Universidad Nacional de La Plata–Consejo Nacional de Investigaciones Científicas y Técnicas [CONICET]), Diagonal 113 #256 B1904DPK, La Plata, Argentina 13 figures; 2 tables; 1 set of supplemental files 2Earth and Environmental Science Department, University of Iowa, 115 Trowbridge Hall, Iowa City, Iowa 52242, USA 3Pampa Energía S.A. Gerencia Tight, Dirección de E&P, J.J. Lastra 6000, 8300 Neuquén, Argentina CORRESPONDENCE: [email protected] ABSTRACT starting in the mid-continent region of south- Early Cretaceous was the Neuquén Basin, which CITATION: Schwarz, E., Finzel, E.S., Veiga, G.D., western Gondwana and by effective sorting, was during that time was a backarc basin separated Rapela, C.W., Echevarria, C., and Spalletti, L.A., Sedimentary basins located at the margins bringing fine-grained or finer caliber sand to the from the proto–Pacific Ocean (i.e., to the west) by 2021, U-Pb geochronology and paleogeography of the of continents act as the final base level for con- Neuquén Basin shoreline. This delivery system was a discontinuous volcanic arc (Howell et al., 2005). Valanginian–Hauterivian Neuquén Basin: Implications for Gondwana-scale source areas: Geosphere, v. 17, tinental-scale catchments that are sometimes probably active (though not necessarily continu- This marine basin was bounded by the Sierra no.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Gondwana Research 19 (2011) 275–290 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr Provenance of Ordovician clastic sequences of the San Rafael Block (Central Argentina), with emphasis on the Ponón Trehué Formation P. Abre a,⁎, C. Cingolani b, U. Zimmermann a,d, B. Cairncross a, F. Chemale Jr. c a Department of Geology, University of Johannesburg, PO Box 524, Auckland Park 2006, Johannesburg, South Africa b Centro de Investigaciones Geológicas, CONICET-Universidad Nacional de La Plata, Calle 1 no. 644, B1900TAC La Plata, Argentina c Núcleo de Geociencias, Universidade Federal do Sergipe, Brazil d Present address: Department of Petroleum Engineering, University of Stavanger, 4036 Stavanger, Norway article info abstract Article history: The Ordovician Ponón Trehué Formation is the only early Palaeozoic sedimentary sequence known to record Received 23 May 2009 a primary contact with the Grenvillian-age basement of the Argentinean Cuyania terrane, in its southwards Received in revised form 26 April 2010 extension named the San Rafael block.
    [Show full text]
  • X Congreso Argentino De Paleontología Y Bioestratigrafía VII Congreso Latinoamericano De Paleontología La Plata, Argentina - Septiembre De 2010
    X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 Financian Auspician 1 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 2 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 3 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 X Congreso Argentino de Paleontología y Bioestratigrafía y VII Congreso Latinoamericano de Paleontología Resúmenes/coordinado por Sara Ballent ; Analia Artabe ; Franco Tortello. 1a ed. - La Plata: Museo de la Plata; Museo de la Plata, 2010. 238 p. + CD-ROM; 28x20 cm. ISBN 978-987-95849-7-2 1. Paleontología. 2. Bioestratigrafía. I. Ballent, Sara , coord. II. Artabe, Analia, coord. III. Tortello, Franco, coord. CDD 560 Fecha de catalogación: 27/08/2010 4 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología Declarado de Interés Municipal, La Plata (Decreto N° 1158) 5 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 6 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología Prólogo Una vez más el Congreso Argentino de Paleontología y Bioestratigrafía y el Congreso Latino- americano de Paleontología se realizan de manera conjunta.
    [Show full text]
  • Chapter 5 the Pre-Andean Phases of Construction of the Southern Andes Basement in Neoproterozoic-Paleozoic Times
    133 Chapter 5 The Pre-Andean phases of construction of the Southern Andes basement in Neoproterozoic-Paleozoic times Nemesio Heredia; Joaquín García-Sansegundo; Gloria Gallastegui; Pedro Farias; Raúl E. Giacosa; Fernando D. Hongn; José María Tubía; Juan Luis Alonso; Pere Busquets; Reynaldo Charrier; Pilar Clariana; Ferrán Colombo; Andrés Cuesta; Jorge Gallastegui; Laura B. Giambiagi; Luis González-Menéndez; Carlos O. Limarino; Fidel Martín-González; David Pedreira; Luis Quintana; Luis Roberto Rodríguez- Fernández; Álvaro Rubio-Ordóñez; Raúl E. Seggiaro; Samanta Serra-Varela; Luis A. Spalletti; Raúl Cardó; Victor A. Ramos Abstract During the late Neoproterozoic and Paleozoic times, the Southern Andes of Argentina and Chile (21º-55º S) formed part of the southwestern margin of Gondwana. During this period of time, a set of continental fragments of variable extent and allochtony was successively accreted to that margin, resulting in six Paleozoic orogenies of different temporal and spatial extension: Pampean (Ediacaran-early Cambrian), Famatinian (Middle Ordovician-Silurian), Ocloyic (Middle Ordovician-Devonian), Chanic (Middle Devonian-early Carboniferous), Gondwanan (Middle Devonian-middle Permian) and Tabarin (late Permian-Triassic). All these orogenies culminate with collisional events, with the exception of the Tabarin and a part of the Gondwanan orogenies that are subduction-related. Keywords Paleozoic, Southern Andes, Pampean orogen, Ocloyic orogen, Famatinian orogen, Chanic orogen, Gondwanan orogen, Tabarin orogen. 133 134 1 Introduction In the southern part of the Andean Cordillera (21º-55º S, Fig. 1A) and nearby areas, there are Neoproterozoic (Ediacaran)-Paleozoic basement relicts of variable extension. This basement has been involved in orogenic events prior to the Andean orogeny, which is related to the current configuration of the Andean chain (active since the Cretaceous).
    [Show full text]
  • 5. Ciclos Pampeano Y Famatiniano En Argentina Y Chile 2017
    CICLOS PAMPEANO Y FAMATINIANO Ciclos Pampeano y Famatiniano “X” + Patagonia UP - GONDWANA ASSEMBLY III Chilenia CONTINENTAL BREAK CONTINENTAL I UP - Cuyania + Arequipa-Antofalla UP - II P A L E O Z O I C RODINIA BREAK RODINIA - INITIAL BREAK INITIAL FINAL ASSEMBLY & POST Pampia NEOPROTEROZOICO Ciclos Pampeano y Famatiniano Etapa colisional o acrecionaria Terrenos acrecionados al margen de Gondwana en Argentina y Chile centrales •Pampia •Cuyania (terreno compuesto por Precordillera y Sierra Pié de Palo), en Argentina central. •Arequipa-Antofalla (AAT) o Macizo de Arequipa (2,0 - 1,8 Ga; edad Grenvilliana) en el N de Chile y Argentina y en Bolivia •Chilenia, en Chile y Argentina centrales. Ciclos Pampeano y Famatiniano Contexto geodinámico Con el desmembramiento de Rodinia (y Pannotia, según Dalziel) (<750 Ma), se habría separado Laurentia del Río de la Plata. Fragmentos de Laurentia, con edades grenvillianas, desprendidos con el desmembramiento habrían vuelto a colisionar contra el cratón del Río de la Plata. Uno de ellos es Pampia, que colisionó en el Cámbrico Medio. En la cuenca extensional, oceánica formada entre Laurentia y Pampia El supercontinente Rodinia (~800 Ma). Las bandas se depositó la Formación Puncoviscana. grises corresponden a los cinturones orogénicos de edad Grenvillina (circa 1100-1000 Ma) (tomado de Benedetto, 2010). La línea café marca la ubicación de La colisión final de Pampia determinó la los perfiles que se muestran más adelante. Orogenia Pampeana en el Cámbrico Medio (~530 Ma), que puso fin al Ciclo Pampeano. El Terreno Pampia The Eastern Sierras Pampeanas (Terreno Córdoba, Benedetto, 2010) comprises an orogenic belt characterized by metamorphic rocks of middle-to-high amphibolite facies, low-grade metapelites and granulite facies meta-basic rocks (Gordillo 1984; Kraemer et al.
    [Show full text]