Pollination Ecology of Flowering Plants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Globalna Strategija Ohranjanja Rastlinskih
GLOBALNA STRATEGIJA OHRANJANJA RASTLINSKIH VRST (TOČKA 8) UNIVERSITY BOTANIC GARDENS LJUBLJANA AND GSPC TARGET 8 HORTUS BOTANICUS UNIVERSITATIS LABACENSIS, SLOVENIA INDEX SEMINUM ANNO 2017 COLLECTORUM GLOBALNA STRATEGIJA OHRANJANJA RASTLINSKIH VRST (TOČKA 8) UNIVERSITY BOTANIC GARDENS LJUBLJANA AND GSPC TARGET 8 Recenzenti / Reviewers: Dr. sc. Sanja Kovačić, stručna savjetnica Botanički vrt Biološkog odsjeka Prirodoslovno-matematički fakultet, Sveučilište u Zagrebu muz. svet./ museum councilor/ dr. Nada Praprotnik Naslovnica / Front cover: Semeska banka / Seed bank Foto / Photo: J. Bavcon Foto / Photo: Jože Bavcon, Blanka Ravnjak Urednika / Editors: Jože Bavcon, Blanka Ravnjak Tehnični urednik / Tehnical editor: D. Bavcon Prevod / Translation: GRENS-TIM d.o.o. Elektronska izdaja / E-version Leto izdaje / Year of publication: 2018 Kraj izdaje / Place of publication: Ljubljana Izdal / Published by: Botanični vrt, Oddelek za biologijo, Biotehniška fakulteta UL Ižanska cesta 15, SI-1000 Ljubljana, Slovenija tel.: +386(0) 1 427-12-80, www.botanicni-vrt.si, [email protected] Zanj: znan. svet. dr. Jože Bavcon Botanični vrt je del mreže raziskovalnih infrastrukturnih centrov © Botanični vrt Univerze v Ljubljani / University Botanic Gardens Ljubljana ----------------------------------- Kataložni zapis o publikaciji (CIP) pripravili v Narodni in univerzitetni knjižnici v Ljubljani COBISS.SI-ID=297076224 ISBN 978-961-6822-51-0 (pdf) ----------------------------------- 1 Kazalo / Index Globalna strategija ohranjanja rastlinskih vrst (točka 8) -
Identification of Milkweeds (Asclepias, Family Apocynaceae) in Texas
Identification of Milkweeds (Asclepias, Family Apocynaceae) in Texas Texas milkweed (Asclepias texana), courtesy Bill Carr Compiled by Jason Singhurst and Ben Hutchins [email protected] [email protected] Texas Parks and Wildlife Department Austin, Texas and Walter C. Holmes [email protected] Department of Biology Baylor University Waco, Texas Identification of Milkweeds (Asclepias, Family Apocynaceae) in Texas Created in partnership with the Lady Bird Johnson Wildflower Center Design and layout by Elishea Smith Compiled by Jason Singhurst and Ben Hutchins [email protected] [email protected] Texas Parks and Wildlife Department Austin, Texas and Walter C. Holmes [email protected] Department of Biology Baylor University Waco, Texas Introduction This document has been produced to serve as a quick guide to the identification of milkweeds (Asclepias spp.) in Texas. For the species listed in Table 1 below, basic information such as range (in this case county distribution), habitat, and key identification characteristics accompany a photograph of each species. This information comes from a variety of sources that includes the Manual of the Vascular Flora of Texas, Biota of North America Project, knowledge of the authors, and various other publications (cited in the text). All photographs are used with permission and are fully credited to the copyright holder and/or originator. Other items, but in particular scientific publications, traditionally do not require permissions, but only citations to the author(s) if used for scientific and/or nonprofit purposes. Names, both common and scientific, follow those in USDA NRCS (2015). When identifying milkweeds in the field, attention should be focused on the distinguishing characteristics listed for each species. -
166. Ophrys Scolopax × Ophrys Speculum (Orchidaceae), First Record for the Iberian Flora
226 Acta Botanica Malacitana 37. 2012 166. OPHRYS SCOLOPAX × OPHRYS SPECULUM (ORCHIDACEAE), FIRST RECORD FOR THE IBERIAN FLORA. Juan PÉREZ-CONTRERAS1* & Mick RICHARDSON2 Recibido el 12 de abril de 2012, aceptado para su publicación el 13 de abril de 2012 Primera cita de Ophrys scolopax × Ophrys speculum (Orchidaceae) para la Flora Ibérica. Palabras clave. Orchidaceae, Ophrys, híbrido, Málaga, Península Ibérica, España. Key words. Orchidaceae, Ophrys, hybrid, Malaga, Iberian Peninsula, Spain. Natural hybridization is frequent within floral characters (mainly in petals, lateral Orchidaceae family, especially between labellum lobes and speculum) suggesting the members of the Ophrys L. genus (Delforge, interspecific hybridOphrys scolopax × Ophrys 2006). speculum was found in the wild in Malaga On the 19th of March 2011, a single province by the authors. The plant was growing specimen of a plant showing intermediate in the middle of a colony of its parent species, Ophrys scolopax Cav. & Ophrys speculum subsp. Link speculum, in a pine woodland area in the northwest face of Sierra de Mijas (Alhaurín el Grande). Photographs were taken (fig. 1) and the images sent to experts confirmed the correct identification (Delforge & Lowe, com. pers.). According to the literature, there is no mention of this taxon neither in the Flora Ibérica (Aedo & Herrero, 2005) nor in the Vascular Flora of Eastern Andalusia (Blanca et al., 2011). These new data represent the first record of this hybrid in the Iberian Peninsula. Ophrys scolopax × Ophrys speculum MÁLAGA: UTM 30S UF45, 340 m. Sierra de Mijas, Alhaurín el Grande, 19-III-2011. J. Pérez-Contreras & M. Richardson. REFERENCES AEDO, C. & A. HERRERO (eds.) -2005- Flora Figure 1. -
Phylogenetic Relationships of Discyphus Scopulariae
Phytotaxa 173 (2): 127–139 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.173.2.3 Phylogenetic relationships of Discyphus scopulariae (Orchidaceae, Cranichideae) inferred from plastid and nuclear DNA sequences: evidence supporting recognition of a new subtribe, Discyphinae GERARDO A. SALAZAR1, CÁSSIO VAN DEN BERG2 & ALEX POPOVKIN3 1Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-367, 04510 México, Distrito Federal, México; E-mail: [email protected] 2Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s.n., 44036-900, Feira de Santana, Bahia, Brazil 3Fazenda Rio do Negro, Entre Rios, Bahia, Brazil Abstract The monospecific genus Discyphus, previously considered a member of Spiranthinae (Orchidoideae: Cranichideae), displays both vegetative and floral morphological peculiarities that are out of place in that subtribe. These include a single, sessile, cordate leaf that clasps the base of the inflorescence and lies flat on the substrate, petals that are long-decurrent on the column, labellum margins free from sides of the column and a column provided with two separate, cup-shaped stigmatic areas. Because of its morphological uniqueness, the phylogenetic relationships of Discyphus have been considered obscure. In this study, we analyse nucleotide sequences of plastid and nuclear DNA under maximum parsimony -
Araceae), with P
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326850; this version posted October 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Taxonomic revision of the threatened African genus Pseudohydrosme Engl. (Araceae), with P. ebo, a new, Critically Endangered species from Ebo, Cameroon. Martin Cheek¹, Barthelemy Tchiengue2, Xander van der Burgt¹ ¹Science, Royal Botanic Gardens, Kew, Richmond, Surrey, U.K. 2 IRAD-Herbier National Camerounais, Yaoundé, BP 1601, Cameroon Corresponding author: Martin Cheek¹ Email address: [email protected] ABSTRACT This is the first revision in nearly 130 years of the African genus Pseudohydrosme, formerly considered endemic to Gabon. Sister to Anchomanes, Pseudohydrosme is distinct from Anchomanes because of its 2–3-locular ovary (not unilocular), peduncle concealed by cataphylls at anthesis and far shorter than the spathe (not exposed, far exceeding the spathe), stipitate fruits and viviparous (vegetatively apomictic) roots (not sessile, roots non-viviparous). Three species, one new to science, are recognised, in two sections. Although doubt has previously been cast on the value of recognising Pseudohydrosme buettneri, of Gabon, it is here accepted and maintained as a distinct species in the monotypic section, Zyganthera. However, it is considered to be probably globally extinct. Pseudohydrosme gabunensis, type species of the genus, also Gabonese, is maintained in Sect. Pseudohydrosme together with Pseudohydrosme ebo sp.nov. of the Ebo Forest, Littoral, Cameroon, the first addition to the genus since the nineteenth century, and which extends the range of the genus 450 km north from Gabon, into the Cross-Sanaga biogeographic area. -
Appendix B Wells Harbor Ecology (Materials from the Wells NERR)
APPENDICES Appendix B Wells Harbor Ecology (materials from the Wells NERR) CHAPTER 8 Vegetation Caitlin Mullan Crain lants are primary producers that use photosynthesis ter). In this chapter, we will describe what these vegeta- to convert light energy into carbon. Plants thus form tive communities look like, special plant adaptations for Pthe base of all food webs and provide essential nutrition living in coastal habitats, and important services these to animals. In coastal “biogenic” habitats, the vegetation vegetative communities perform. We will then review also engineers the environment, and actually creates important research conducted in or affiliated with Wells the habitat on which other organisms depend. This is NERR on the various vegetative community types, giving particularly apparent in coastal marshes where the plants a unique view of what is known about coastal vegetative themselves, by trapping sediments and binding the communities of southern Maine. sediment with their roots, create the peat base and above- ground structure that defines the salt marsh. The plants OASTAL EGETATION thus function as foundation species, dominant C V organisms that modify the physical environ- Macroalgae ment and create habitat for numerous dependent Algae, commonly known as seaweeds, are a group of organisms. Other vegetation types in coastal non-vascular plants that depend on water for nutrient systems function in similar ways, particularly acquisition, physical support, and seagrass beds or dune plants. Vegetation is reproduction. Algae are therefore therefore important for numerous reasons restricted to living in environ- including transforming energy to food ments that are at least occasionally sources, increasing biodiversity, and inundated by water. -
A Morphological Investigation on Non-Apendix Ophrys L
www.biodicon.com Biological Diversity and Conservation ISSN 1308-8084 Online; ISSN 1308-5301 Print 8/1 (2015) 43-61 Research article/Araştırma makalesi A morphological investigation on non-apendix Ophrys L. (Orchidaceae) taxa in Antalya province İsmail Gökhan DENİZ *1 Hüseyin SÜMBÜL2, Ekrem SEZİK 3 1 Akdeniz University, Faculty of Education, Department of Biology Education, Antalya, Turkey 2 Akdeniz University, Faculty of Science, Department of Biology, Antalya, Turkey 3 Yeditepe University, Faculty of Pharmacy, Department of Pharmacognosy, İstanbul, Turkey Abstract In this research, the morphological characteristics of non-appendix 7 Ophrys L. taxa which were collected or examined in situ from different localities in Antalya were examined. Typifications, synonym lists, descriptions, ecology, phytogeography and distribution maps are provided for all non-apendix groups of Ophrys taxa and relationships to similar taxa are discussed. The morphological descriptions are supported by detailed dissectional hand drawings. As a result of this study, new characteristics which had not been previously described in Turkish Flora were observed. These detailed morphological differences and a useful illustrated identification key with flower diagrams were prepared for all non-appendix Ophrys taxa distributed in the Antalya Province. In addition, we added new localities to the known distribution areas of taxa. Key words: Ophrys, Orchidaceae, Antalya, morphology, taxonomy ---------- ---------- Antalya ili’nde yayılış gösteren eksiz Ophrys L. (Orchidaceae) taksonları üzerine morfolojik bir araştırma Özet Bu araştırmada, Antalya İli’ndeki farklı lokalitelerden toplanan veya yerinde gözlemlenen eksiz 7 Ophrys L. taksonuna ait örneklerin morfolojik özellikleri çalışılmıştır. Tüm taksonlar için tipifikasyonları, sinonim listeleri, betimleri, habitat özellikleri, fitocoğrafik bölgeleri ve yayılış haritaları sunulmuş, morfolojik olarak yakınlık gösterdiği taksonlarla morfolojik özellikleri tartışılmıştır. -
Floral Scent Evolution in the Genus Jaborosa (Solanaceae): Influence of Ecological and Environmental Factors
plants Article Floral Scent Evolution in the Genus Jaborosa (Solanaceae): Influence of Ecological and Environmental Factors Marcela Moré 1,* , Florencia Soteras 1, Ana C. Ibañez 1, Stefan Dötterl 2 , Andrea A. Cocucci 1 and Robert A. Raguso 3,* 1 Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; [email protected] (F.S.); [email protected] (A.C.I.); [email protected] (A.A.C.) 2 Department of Biosciences, Paris-Lodron-University of Salzburg, 5020 Salzburg, Austria; [email protected] 3 Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA * Correspondence: [email protected] (M.M.); [email protected] (R.A.R.) Abstract: Floral scent is a key communication channel between plants and pollinators. However, the contributions of environment and phylogeny to floral scent composition remain poorly understood. In this study, we characterized interspecific variation of floral scent composition in the genus Jaborosa Juss. (Solanaceae) and, using an ecological niche modelling approach (ENM), we assessed the environmental variables that exerted the strongest influence on floral scent variation, taking into account pollination mode and phylogenetic relationships. Our results indicate that two major evolutionary themes have emerged: (i) a ‘warm Lowland Subtropical nectar-rewarding clade’ with large white hawkmoth pollinated flowers that emit fragrances dominated by oxygenated aromatic or Citation: Moré, M.; Soteras, F.; sesquiterpenoid volatiles, and (ii) a ‘cool-temperate brood-deceptive clade’ of largely fly-pollinated Ibañez, A.C.; Dötterl, S.; Cocucci, species found at high altitudes (Andes) or latitudes (Patagonian Steppe) that emit foul odors including A.A.; Raguso, R.A. -
Monarch Handout
All About Monarch Butterflies Presented by Rebecca Schoenenberger UCCE Master Gardener Santa Clara County Master Gardener Program Master Gardener program volunteers are trained by the University of California Cooperative Extension. Our mission is to develop, adapt and extend research-based horticultural information and educational programs to the residents of Santa Clara County. Master Gardener Help Desk • E -mail questions using our website: http://mgsantaclara.ucanr.edu/help-desk • Call the Help Desk: 408-282-3105 (9:30 a.m. – 12:30 p.m. Monday through Friday) Bring specimens to the Master Gardener Help Desk Office during Help Desk hours: • 1553 Berger Drive, Building 1, 2nd Floor, San Jose, CA 95112 • Call or bring specimens to the Master Gardeners at the Gamble Garden library in Palo Alto: 650-329-1356 Fridays only, 1-4 p.m. In winter, please call before coming to Gamble. About Monarchs - Life Cycle & Metamorphosis - Migration - Habitat - Threats - Conservation Life Cycle - Egg - Larvae (5 instars) - Pupa - Adult Migration - Eastern: Southeastern Canada, Eastern USA & Central Mexico - Western: Southwestern Canada, Western USA Pacific Wintering Habitat - California Wintering Sites: UCCE Master Gardener Program of Santa Clara County http://mgsantaclara.ucanr.edu ‣ Ardenwood Historic Farm, Fremont, CA ‣ Lighthouse Field State Beach Monarch Grove, Santa Cruz, CA ‣ Natural Bridges State Park, Santa Cruz, CA ‣ Pacific Grove Sanctuary, Pacific Grove, CA ‣ Point Lobos State Park, Carmel, CA ‣ Morro Bay State Park, Morro Bay, CA ‣ Pismo Beach Monarch Butterfly Grove, Oceano, CA ‣ Ellwood Mesa Open Space, Goleta, CA Habitat - Food ‣ Larvae = Milkweed ‣ Adult = Nectar - Shelter ‣ Monterey Pine, Monterey Cypress & Eucalyptus ‣ Moderate Weather Extremes - Space ‣ International Western (California) Shelter Trees • Monterey Pine - Pinus radiata - Fast growing, but short lived. -
The Evolution of Pollinator–Plant Interaction Types in the Araceae
BRIEF COMMUNICATION doi:10.1111/evo.12318 THE EVOLUTION OF POLLINATOR–PLANT INTERACTION TYPES IN THE ARACEAE Marion Chartier,1,2 Marc Gibernau,3 and Susanne S. Renner4 1Department of Structural and Functional Botany, University of Vienna, 1030 Vienna, Austria 2E-mail: [email protected] 3Centre National de Recherche Scientifique, Ecologie des Foretsˆ de Guyane, 97379 Kourou, France 4Department of Biology, University of Munich, 80638 Munich, Germany Received August 6, 2013 Accepted November 17, 2013 Most plant–pollinator interactions are mutualistic, involving rewards provided by flowers or inflorescences to pollinators. An- tagonistic plant–pollinator interactions, in which flowers offer no rewards, are rare and concentrated in a few families including Araceae. In the latter, they involve trapping of pollinators, which are released loaded with pollen but unrewarded. To understand the evolution of such systems, we compiled data on the pollinators and types of interactions, and coded 21 characters, including interaction type, pollinator order, and 19 floral traits. A phylogenetic framework comes from a matrix of plastid and new nuclear DNA sequences for 135 species from 119 genera (5342 nucleotides). The ancestral pollination interaction in Araceae was recon- structed as probably rewarding albeit with low confidence because information is available for only 56 of the 120–130 genera. Bayesian stochastic trait mapping showed that spadix zonation, presence of an appendix, and flower sexuality were correlated with pollination interaction type. In the Araceae, having unisexual flowers appears to have provided the morphological precon- dition for the evolution of traps. Compared with the frequency of shifts between deceptive and rewarding pollination systems in orchids, our results indicate less lability in the Araceae, probably because of morphologically and sexually more specialized inflorescences. -
The Bear in Eurasian Plant Names
Kolosova et al. Journal of Ethnobiology and Ethnomedicine (2017) 13:14 DOI 10.1186/s13002-016-0132-9 REVIEW Open Access The bear in Eurasian plant names: motivations and models Valeria Kolosova1*, Ingvar Svanberg2, Raivo Kalle3, Lisa Strecker4,Ayşe Mine Gençler Özkan5, Andrea Pieroni6, Kevin Cianfaglione7, Zsolt Molnár8, Nora Papp9, Łukasz Łuczaj10, Dessislava Dimitrova11, Daiva Šeškauskaitė12, Jonathan Roper13, Avni Hajdari14 and Renata Sõukand3 Abstract Ethnolinguistic studies are important for understanding an ethnic group’s ideas on the world, expressed in its language. Comparing corresponding aspects of such knowledge might help clarify problems of origin for certain concepts and words, e.g. whether they form common heritage, have an independent origin, are borrowings, or calques. The current study was conducted on the material in Slavonic, Baltic, Germanic, Romance, Finno-Ugrian, Turkic and Albanian languages. The bear was chosen as being a large, dangerous animal, important in traditional culture, whose name is widely reflected in folk plant names. The phytonyms for comparison were mostly obtained from dictionaries and other publications, and supplemented with data from databases, the co-authors’ field data, and archival sources (dialect and folklore materials). More than 1200 phytonym use records (combinations of a local name and a meaning) for 364 plant and fungal taxa were recorded to help find out the reasoning behind bear-nomination in various languages, as well as differences and similarities between the patterns among them. Among the most common taxa with bear-related phytonyms were Arctostaphylos uva-ursi (L.) Spreng., Heracleum sphondylium L., Acanthus mollis L., and Allium ursinum L., with Latin loan translation contributing a high proportion of the phytonyms. -
Orchid Historical Biogeography, Diversification, Antarctica and The
Journal of Biogeography (J. Biogeogr.) (2016) ORIGINAL Orchid historical biogeography, ARTICLE diversification, Antarctica and the paradox of orchid dispersal Thomas J. Givnish1*, Daniel Spalink1, Mercedes Ames1, Stephanie P. Lyon1, Steven J. Hunter1, Alejandro Zuluaga1,2, Alfonso Doucette1, Giovanny Giraldo Caro1, James McDaniel1, Mark A. Clements3, Mary T. K. Arroyo4, Lorena Endara5, Ricardo Kriebel1, Norris H. Williams5 and Kenneth M. Cameron1 1Department of Botany, University of ABSTRACT Wisconsin-Madison, Madison, WI 53706, Aim Orchidaceae is the most species-rich angiosperm family and has one of USA, 2Departamento de Biologıa, the broadest distributions. Until now, the lack of a well-resolved phylogeny has Universidad del Valle, Cali, Colombia, 3Centre for Australian National Biodiversity prevented analyses of orchid historical biogeography. In this study, we use such Research, Canberra, ACT 2601, Australia, a phylogeny to estimate the geographical spread of orchids, evaluate the impor- 4Institute of Ecology and Biodiversity, tance of different regions in their diversification and assess the role of long-dis- Facultad de Ciencias, Universidad de Chile, tance dispersal (LDD) in generating orchid diversity. 5 Santiago, Chile, Department of Biology, Location Global. University of Florida, Gainesville, FL 32611, USA Methods Analyses use a phylogeny including species representing all five orchid subfamilies and almost all tribes and subtribes, calibrated against 17 angiosperm fossils. We estimated historical biogeography and assessed the