Pathogenicity of Lecanicillium Longisporum (Ascomycota: Hypocreomycetidae) on the Aphid Cinara Pini (Hemiptera: Lachnidae) in Laboratory Conditions

Total Page:16

File Type:pdf, Size:1020Kb

Pathogenicity of Lecanicillium Longisporum (Ascomycota: Hypocreomycetidae) on the Aphid Cinara Pini (Hemiptera: Lachnidae) in Laboratory Conditions J. Crop Prot. 2014, 3 (2): 159-171______________________________________________________ Research Article Pathogenicity of Lecanicillium longisporum (Ascomycota: Hypocreomycetidae) on the aphid Cinara pini (Hemiptera: Lachnidae) in laboratory conditions Amir Hossein Nazemi1, Gholamhossein Moravvej*1, Javad Karimi1 and Reza Talaei-Hassanlouei2 1. Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran. 2. Department of Plant Protection, Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran. Abstract: The aphid species, Cinara pini (Linnaeus, 1758) reported in our previous work as a new aphid on pinus trees for Iran, was described using the classic method and through analysis of COI gene sequence. In the next step, we addressed the efficiency of the entomopathogenic fungus, Lecanicillium longisporum (Zimm.) Zare and Gams strain LRC 190, on the aphid. The fungus was administered to the second instar nymphs and adults using topical application procedure. The results indicated that the entomopathogen caused 90% mortality in adults over seven days at a concentration of 108 spores/ml, while the same control 7 level was achieved for nymphs by 8 × 10 spores/ml. The LC50 values were obtained as 1.2 × 106 and 6.9 × 105 spores/ml for adults and nymphs, respectively. The present study suggests that the entomopathogenic fungus, L. longisporum could be considered as a potential candidate in biocontrol programs of C. pini. This is the first report on the pathogenicity of L. longisporum on C. pini. Keywords: Biocontrol, Insect pathology, DNA Barcode, Pathogenecity Introduction12 life histories, including potentially long term parthenogenesis. Most-parsimonious Molecular methods have provided additional phylogenetic trees were inferred from partial Downloaded from jcp.modares.ac.ir at 10:16 IRST on Tuesday September 28th 2021 valuable characters for the resolution of (905-coding-bp) sequences of elongation factor taxonomic problems and the discovery of new 1α (EF-1α) and complete (675-bp) sequences of species within the Aphididae (Foottit, 1997). cytochrome oxidase 2 (COII) The Cinara curtis DNA barcoding has been proposed as a genus was studied by Normark (2000), who used standardized approach to species delimitation in DNA sequences of nuclear elongation factor 1α numerous groups of living organisms and COII to reconstruct evolutionary relationship (Hajibabaei et al., 2007) including insects (Floyd among species of Lachnidae. Most authors have et al., 2009). The aphid family Lachnidae (c. 320 included the genera Lachnus, Moculoachnus, species), sister group to the economically Pterochloroides, Tuberolachnus, and devastating family Aphididae (c. 3300 species), Nippolachnus within a tribe Lachnini (Blackman encompasses a diverse array of associations with and Eastop, 1994; Czylok, 1990; Ilharco and host plants and attendant hymenopterans and of Harten, 1987; Lampel and Burgener, 1987). There is no evidence to support monophyly of this group of aphids. Universal primers have Handling Editor: Dr. Mohammad Mehrabadi ________________________________ been developed for conserved mtDNA * Corresponding author, e-mail: [email protected] sequences flanking regions useful for Received: 18 November 2012, Accepted: 2 December 2013 phylogenetic and population studies (Folmer et Published online: 4 December 2013 159 Pathogenicity of Lecanicillium longisporum __________________________________________ J. Crop Prot. al., 1994; Lunt et al., 1996; Simon et al., 1994). production of blastospores within the Taxonomic and phylogenetic studies have used haemocoel; ramification of the mycelia and mitochondrial or nuclear genes as cytochrome invasion of tissues, which finally causes the oxidase I and II (CO-I and CO-II), nuclear death of the host. The last step is the production elongation factor 1α, and leucine tRNA of conidia on the surface of the cadaver (Askary (Normark, 2000). Favert and Voegtlin (2004) et al., 1999). In addition to the nutrient provided an important molecular phylogenetic utilisation and tissue digestion during infection analysis of Cinara species, associated with of insect hosts, many entomopathogenic fungi pinyon pines in the southwestern United States, produce toxic substances which may play a using CO-I and nuclear elongation factor 1α crucial role in the death process (Gindin et al., DNA sequences. In recent years, DNA 1994). Many isolates of Lecanicillium have barcoding has attracted attention of the shown high pathogenicity to several species of researchers for studying different groups of aphids such as Aphis gossypii (Glover), insects. DNA barcoding is able to identify the Macrosiphum euphorbiae (Thomas) and Myzus sample in all stages of life by using short DNA persicae (Sulzer) (Alavo et al., 2002; Askary et sequences (e. g. eggs, larvae, nymphs or pupae) al., 1998; Kim et al., 2001). In addition, recent and it is an approach for identifying many studies have demonstrated that the genus invertebrate taxa which their morphological Lecanicillium, including the isolate of L. identification is problematic due to lack of longisporum (as the active ingredient of availability of taxonomic keys for immature life Vertalec®), have suppressive activity against stages. The standard sequence used for this powdery mildews (Askary et al., 1998; Kim et purpose is a fragment of 5´ end of mitochondrial al., 2007; Kiss, 2003; Miller et al., 2004; COI gene that is amplified by the "universal Romero et al., 2003). This suggests that these primers"(Folmer et al., 1994). Several studies fungi may play a dual role, controlling both showed that it is a reliable tool for the molecular aphids and powdery mildews (Askary et al., identification of Lepidoptera, Hymenoptera, 1998; Kim et al., 2007; Kim et al., 2008). Coleoptera and Diptera species (Hajibabaei et The rising costs of traditional chemical al., 2006). pesticides, increasing resistance of insects to As a new aphid species in the region, these products and their undesirable effects on attempt was made to focus on the the environment (Corey et al., 1993; entomopathogenic fungus, Lecanicillium Mukanganyama et al., 2003; Scott et al., 1998) Downloaded from jcp.modares.ac.ir at 10:16 IRST on Tuesday September 28th 2021 longisporum as a biocontrol agent for aphid have led to renew efforts to search for novel population management.Until recently, the approaches to insect pest management (El- form-genus Verticillium contained a wide Salam and El-Hawary, 2011). In the last variety of species with diverse host ranges, decades, biological control, including the use of including arthropods, nematodes, plants and entomopathogenic fungi, has emerged as a fungi. However, the genus has been redefined strategy to control aphids, especially in high- using rDNA sequencing, placing all insect value crops. These have been viewed as a pathogens into the new genus Lecanicillium substitute or complement to traditional (Zare and Gams, 2001). Lecanicillium spp. use chemical measures. Aphids seem to be both mechanical forces and hydrolytic enzymes susceptible hosts for entomopathogenic fungi to directly penetrate the insect integument and because of their morphological, biological and the cell wall of the fungal plant pathogen ecological characteristics (Steinkraus, 2006). (Goettel et al., 2008). Lecanicillium spp. Due to a global trend toward application of usually use a general pathway of pathogenesis COI gene as DNA barcode, we attempted to for entomopathogenic mitosporic fungi provide information about this gene sequence including adherence to the host cuticle by of C. pini, as a new aphid species for Iranian conidia; germination; penetration of the cuticle; fauna collected in a previous work (Nazemi et 160 Nazemi etal. ______________________________________________________ J. Crop Prot. (2014) Vol. 3 (2) al., 2013). The main purpose of the present ethidium bromide and its image was saved. The research is to study the pathogenicity of L. PCR product was purified and sent to Macrogen longisporum against this new urban pest. Inc. for sequencing. Materials and Methods Sequencing and analysis Chromatograms were checked using the BioEdit Aphid collection software (Hall, 1999). The resulting sense and The aphid Cinara pini (Linnaeus) was collected antisense sequences were edited and used in from Pinus mugo Turra in Mashhad region in alignment. Representative sequences for all the northeast of Iran during spring 2009. The known Cinara groups were retrieved from classic method using the available keys GenBank and included in the alignment file. (Blackman and Eastop, 2006) diagnosed it as Sequences were aligned using the default settings the genus Cinara. Final confirmation of the of Clustal W (Thompson et al., 1994). species was made by Olivera Petrovic- Unweighted parsimony analysis of the alignments Obradovic from Belgrade University, Serbia. was conducted with PAUP*4.0b2 (Swofford, 1999). For the analyses, gaps were treated as Molecular study procedure missing characters, and the reliability of trees was DNA extraction tested with a bootstrap test (Felsenstein, 1985). Genomic DNA from the aphid was extracted Parsimony bootstrap analysis included 100 re- using a Bioneer kit (Bioneer Co. Daejeon, samplings using the branch and bound algorithm. South Korea). Individual aphids were kept at - The most appropriate model of sequence 20 °C for at least 12 h, crushed using a evolution was determined using hierarchical micropestle in 180 µl lysis buffer and
Recommended publications
  • Spatial and Temporal Dynamics of a Fungal Pathogen Promote Pattern Formation in a Tropical Agroecosystem
    62 The Open Ecology Journal, 2009, 2, 62-73 Open Access Spatial and Temporal Dynamics of a Fungal Pathogen Promote Pattern Formation in a Tropical Agroecosystem Doug Jackson*,1, John Vandermeer1,2 and Ivette Perfecto2 1Department of Ecology and Evolutionary Biology, 2School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, USA Abstract: Recent studies have shown that the spatial pattern of nests of an arboreal ant, Azteca instabilis (Hymenoptera: Formicidae), in a tropical coffee agroecosystem may emerge through self-organization. The proposed self-organization process involves both local expansion and density-dependent mortality of the ant colonies. We explored a possible mechanism for the density-dependent mortality involving the entomopathogenic fungus Lecanicillium lecanii. L. lecanii attacks a scale insect, Coccus viridis (Coccidae, Hemiptera), which is tended by A. instabilis in a mutualistic association. By attacking C. viridis, L. lecanii may have an indirect, negative effect on ant colony survival. To explore this hypothesis, we conducted investigations into the spatial and temporal distributions of L. lecanii. We measured incidence and severity at 4 spatial scales: (1) throughout a 45 hectare study plot; (2) in two 40 X 50 meter plots; (3) on coffee bushes within 4 m of two ant nests; and (3) on individual branches in a single coffee bush. The plot-level censuses did not reveal a clear spatial pattern, but the finer scale surveys show distinct patterns in the spread of infection over time. We also developed a simple cellular automata model of the coupled ant nest-L. lecanii system which is able to produce spatial patterns qualitatively and quantitatively similar to that found in the field.
    [Show full text]
  • The Fungi of Slapton Ley National Nature Reserve and Environs
    THE FUNGI OF SLAPTON LEY NATIONAL NATURE RESERVE AND ENVIRONS APRIL 2019 Image © Visit South Devon ASCOMYCOTA Order Family Name Abrothallales Abrothallaceae Abrothallus microspermus CY (IMI 164972 p.p., 296950), DM (IMI 279667, 279668, 362458), N4 (IMI 251260), Wood (IMI 400386), on thalli of Parmelia caperata and P. perlata. Mainly as the anamorph <it Abrothallus parmeliarum C, CY (IMI 164972), DM (IMI 159809, 159865), F1 (IMI 159892), 2, G2, H, I1 (IMI 188770), J2, N4 (IMI 166730), SV, on thalli of Parmelia carporrhizans, P Abrothallus parmotrematis DM, on Parmelia perlata, 1990, D.L. Hawksworth (IMI 400397, as Vouauxiomyces sp.) Abrothallus suecicus DM (IMI 194098); on apothecia of Ramalina fustigiata with st. conid. Phoma ranalinae Nordin; rare. (L2) Abrothallus usneae (as A. parmeliarum p.p.; L2) Acarosporales Acarosporaceae Acarospora fuscata H, on siliceous slabs (L1); CH, 1996, T. Chester. Polysporina simplex CH, 1996, T. Chester. Sarcogyne regularis CH, 1996, T. Chester; N4, on concrete posts; very rare (L1). Trimmatothelopsis B (IMI 152818), on granite memorial (L1) [EXTINCT] smaragdula Acrospermales Acrospermaceae Acrospermum compressum DM (IMI 194111), I1, S (IMI 18286a), on dead Urtica stems (L2); CY, on Urtica dioica stem, 1995, JLT. Acrospermum graminum I1, on Phragmites debris, 1990, M. Marsden (K). Amphisphaeriales Amphisphaeriaceae Beltraniella pirozynskii D1 (IMI 362071a), on Quercus ilex. Ceratosporium fuscescens I1 (IMI 188771c); J1 (IMI 362085), on dead Ulex stems. (L2) Ceriophora palustris F2 (IMI 186857); on dead Carex puniculata leaves. (L2) Lepteutypa cupressi SV (IMI 184280); on dying Thuja leaves. (L2) Monographella cucumerina (IMI 362759), on Myriophyllum spicatum; DM (IMI 192452); isol. ex vole dung. (L2); (IMI 360147, 360148, 361543, 361544, 361546).
    [Show full text]
  • Sub-Lethal Effects of Lecanicillium Lecanii
    agriculture Article Sub-Lethal Effects of Lecanicillium lecanii (Zimmermann)-Derived Partially Purified Protein and Its Potential Implication in Cotton (Gossypium hirsutum L.) Defense against Bemisia tabaci Gennadius (Aleyrodidae: Hemiptera) Yusuf Ali Abdulle 1,†, Talha Nazir 1,2,*,† , Samy Sayed 3 , Samy F. Mahmoud 4 , Muhammad Zeeshan Majeed 5 , Hafiz Muhammad Usman Aslam 6, Zubair Iqbal 7, Muhammad Shahid Nisar 2, Azhar Uddin Keerio 1, Habib Ali 8 and Dewen Qiu 1 1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China; [email protected] (Y.A.A.); [email protected] (A.U.K.); [email protected] (D.Q.) 2 Department of Plant Protection, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan 32200, Pakistan; [email protected] 3 Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; [email protected] Citation: Abdulle, Y.A.; Nazir, T.; 4 Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Sayed, S.; Mahmoud, S.F.; Majeed, [email protected] M.Z.; Aslam, H.M.U.; Iqbal, Z.; Nisar, 5 Department of Entomology, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan; M.S.; Keerio, A.U.; Ali, H.; et al. [email protected] 6 Sub-Lethal Effects of Lecanicillium Department of Plant Pathology, Institute of Plant Protection (IPP), MNS-University of Agriculture, lecanii (Zimmermann)-Derived
    [Show full text]
  • Diversity of Facultatively Anaerobic Microscopic Mycelial Fungi in Soils A
    ISSN 0026-2617, Microbiology, 2008, Vol. 77, No. 1, pp. 90–98. © Pleiades Publishing, Ltd., 2008. Original Russian Text © A.V. Kurakov, R.B. Lavrent’ev, T.Yu. Nechitailo, P.N. Golyshin, D.G. Zvyagintsev, 2008, published in Mikrobiologiya, 2008, Vol. 77, No. 1, pp. 103–112. EXPERIMENTAL ARTICLES Diversity of Facultatively Anaerobic Microscopic Mycelial Fungi in Soils A. V. Kurakova,1, R. B. Lavrent’evb, T. Yu. Nechitailoc, P. N. Golyshinc, and D. G. Zvyagintsevb a International Biotechnology Center, Moscow State University, Moscow, 119992 Russia b Department of Soil Biology, Faculty of Soil Science, Moscow State University, Moscow, 119992 Russia c National Biotechnology Center, Mascheroder Weg 1, 38124 Braunschweig, Germany Received March 26, 2007 Abstract—The numbers of microscopic fungi isolated from soil samples after anaerobic incubation varied from tens to several hundreds of CFU per one gram of soil; a total of 30 species was found. This group is com- posed primarily of mitotic fungi of the ascomycete affinity belonging to the orders Hypocreales (Fusarium solani, F. oxysporum, Fusarium sp., Clonostachys grammicospora, C. rosea, Acremonium sp., Gliocladium penicilloides, Trichoderma aureoviride, T. harzianum, T. polysporum, T. viride, T. koningii, Lecanicillum leca- nii, and Tolypocladium inflatum) and Eurotiales (Aspergillus terreus, A. niger, and Paecilomyces lilacimus), as well as to the phylum Zygomycota, to the order Mucorales (Actinomucor elegans, Absidia glauca, Mucor cir- cinelloides, M. hiemalis, M. racemosus, Mucor sp., Rhizopus oryzae, Zygorrhynchus moelleri, Z. heterogamus, and Umbelopsis isabellina) and the order Mortierellales (Mortierella sp.). As much as 10–30% of the total amount of fungal mycelium remains viable for a long time (one month) under anaerobic conditions.
    [Show full text]
  • APP202247 APP202247 Decision Document Final.Pdf
    DECISION 14 January 2016 1. Summary Substance MYCOTAL WG Application code APP202247 Application type To import or manufacture for release any hazardous substance under Section 28 of the Hazardous Substances and New Organisms Act 1996 (“the Act”) Applicant New Zealand Gourmet Limited Purpose of the application To seek approval to import MYCOTAL WG, a microbial pest control agent containing the spores of the entomopathogenic fungus Lecanicillium muscarium 19-79 strain, for the control of whitefly in greenhouse crops Date application received 13 April 2015 Consideration date 15 December 2015 Further information was requested from the applicant during the evaluation and review of the application in accordance with sections 52 and 58 of the Act and consequently the consideration was postponed in accordance with section 59 of the Act Considered by The Chief Executive1 of the Environmental Protection Authority (“the EPA”) Decision Approved with controls Approval code HSR101089 Hazard classifications 6.5A, 6.5B, 9.1D 1 The Chief Executive of the EPA has made the decision on this application under delegated authority in accordance with section 19 of the Act. www.epa.govt.nz Page 2 of 121 Decision on application for approval to import or manufacture Mycotal WG for release (APP202247) 2. Background 2.1. MYCOTAL WG is intended for use as a microbial pest control agent (MPCA) to control whitefly in greenhouse crops. It is a water dispersible granule (WDG) formulation containing spores of the fungus Lecanicillium muscarium 19-79 strain. 2.2. The applicant intends to import MYCOTAL WG into New Zealand fully formulated, packed and labelled in 500 g and 1 kg polyethylene bags in fibreboard containers.
    [Show full text]
  • What If Esca Disease of Grapevine Were Not a Fungal Disease?
    Fungal Diversity (2012) 54:51–67 DOI 10.1007/s13225-012-0171-z What if esca disease of grapevine were not a fungal disease? Valérie Hofstetter & Bart Buyck & Daniel Croll & Olivier Viret & Arnaud Couloux & Katia Gindro Received: 20 March 2012 /Accepted: 1 April 2012 /Published online: 24 April 2012 # The Author(s) 2012. This article is published with open access at Springerlink.com Abstract Esca disease, which attacks the wood of grape- healthy and diseased adult plants and presumed esca patho- vine, has become increasingly devastating during the past gens were widespread and occurred in similar frequencies in three decades and represents today a major concern in all both plant types. Pioneer esca-associated fungi are not trans- wine-producing countries. This disease is attributed to a mitted from adult to nursery plants through the grafting group of systematically diverse fungi that are considered process. Consequently the presumed esca-associated fungal to be latent pathogens, however, this has not been conclu- pathogens are most likely saprobes decaying already senes- sively established. This study presents the first in-depth cent or dead wood resulting from intensive pruning, frost or comparison between the mycota of healthy and diseased other mecanical injuries as grafting. The cause of esca plants taken from the same vineyard to determine which disease therefore remains elusive and requires well execu- fungi become invasive when foliar symptoms of esca ap- tive scientific study. These results question the assumed pear. An unprecedented high fungal diversity, 158 species, pathogenicity of fungi in other diseases of plants or animals is here reported exclusively from grapevine wood in a single where identical mycota are retrieved from both diseased and Swiss vineyard plot.
    [Show full text]
  • Entomopathogenic Fungal Identification
    Entomopathogenic Fungal Identification updated November 2005 RICHARD A. HUMBER USDA-ARS Plant Protection Research Unit US Plant, Soil & Nutrition Laboratory Tower Road Ithaca, NY 14853-2901 Phone: 607-255-1276 / Fax: 607-255-1132 Email: Richard [email protected] or [email protected] http://arsef.fpsnl.cornell.edu Originally prepared for a workshop jointly sponsored by the American Phytopathological Society and Entomological Society of America Las Vegas, Nevada – 7 November 1998 - 2 - CONTENTS Foreword ......................................................................................................... 4 Important Techniques for Working with Entomopathogenic Fungi Compound micrscopes and Köhler illumination ................................... 5 Slide mounts ........................................................................................ 5 Key to Major Genera of Fungal Entomopathogens ........................................... 7 Brief Glossary of Mycological Terms ................................................................. 12 Fungal Genera Zygomycota: Entomophthorales Batkoa (Entomophthoraceae) ............................................................... 13 Conidiobolus (Ancylistaceae) .............................................................. 14 Entomophaga (Entomophthoraceae) .................................................. 15 Entomophthora (Entomophthoraceae) ............................................... 16 Neozygites (Neozygitaceae) ................................................................. 17 Pandora
    [Show full text]
  • Laboratory Evaluation of Entomopathogenic Fungi As
    Folia Forestalia Polonica, Series A – Forestry, 2018, Vol. 60 (2), 83–90 ORIGINAL ARTICLE DOI: 10.2478/ffp-2018-0008 Laboratory evaluation of entomopathogenic fungi as biological control agents against the bark beetle Pityogenes scitus Blandford (Coleoptera: Curculionidae) in Kashmir Abdul L. Khanday1 , Abdul A. Buhroo1, Avunjikkattu P. Ranjith2, Sławomir Mazur3 1 University of Kashmir, Post Graduate Department of Zoology, Section of Entomology, Srinagar-190006, Jammu and Kashmir, India, e-mail: [email protected] 2 University of Calicut, Department of Zoology, Insect Ecology and Ethology Laboratory, Kerala-673635, India 3 University of Łódź Branch in Tomaszów Mazowiecki, Institute of Forest Sciences, Konstytucji 3 Maja 65/67, 97-200 Tomaszów Mazowiecki, Poland AbstrAct The bark beetles (Coleoptera: Curculionidae) are widely recognised as one of the most damaging group of forest pests. Entomopathogenic fungi have shown great potential for the management of some bark beetle species. The ef- ficacy of three entomopathogenic fungi, namely, Beauveria bassiana (Balsamo) Vuillemin, Metarhizium anisopliae sensu lato (Metchnikoff) Sorokin and Lecanicillium lecanii (Zimmerman) Zare and Gams was tested against the bark beetle Pityogenes scitus Blandford under the laboratory conditions. An insecticide – cyclone 505 EC, was also used as positive control in the experiment. Each fungal suspension contained 1.0×109 spores of fungi in 1 ml. In treated branches, B. bassiana and M. anisopliae caused higher percentage of mortalities, that is, 58.33% and 48%, respectively, after 10 days of treatment and 85% and 71%, respectively, after 20 days of treatment. In petri plate assay, B. bassiana, M. anisopliae and L. lecanii caused 100%, 100% and 73.33% of mortality respectively.
    [Show full text]
  • Control of Fungal Diseases in Mushroom Crops While Dealing with Fungicide Resistance: a Review
    microorganisms Review Control of Fungal Diseases in Mushroom Crops while Dealing with Fungicide Resistance: A Review Francisco J. Gea 1,† , María J. Navarro 1, Milagrosa Santos 2 , Fernando Diánez 2 and Jaime Carrasco 3,4,*,† 1 Centro de Investigación, Experimentación y Servicios del Champiñón, Quintanar del Rey, 16220 Cuenca, Spain; [email protected] (F.J.G.); [email protected] (M.J.N.) 2 Departamento de Agronomía, Escuela Politécnica Superior, Universidad de Almería, 04120 Almería, Spain; [email protected] (M.S.); [email protected] (F.D.) 3 Technological Research Center of the Champiñón de La Rioja (CTICH), 26560 Autol, Spain 4 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 2JD, UK * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Mycoparasites cause heavy losses in commercial mushroom farms worldwide. The negative impact of fungal diseases such as dry bubble (Lecanicillium fungicola), cobweb (Cladobotryum spp.), wet bubble (Mycogone perniciosa), and green mold (Trichoderma spp.) constrains yield and harvest quality while reducing the cropping surface or damaging basidiomes. Currently, in order to fight fungal diseases, preventive measurements consist of applying intensive cleaning during cropping and by the end of the crop cycle, together with the application of selective active substances with proved fungicidal action. Notwithstanding the foregoing, the redundant application of the same fungicides has been conducted to the occurrence of resistant strains, hence, reviewing reported evidence of resistance occurrence and introducing unconventional treatments is worthy to pave the way towards Citation: Gea, F.J.; Navarro, M.J.; Santos, M.; Diánez, F.; Carrasco, J.
    [Show full text]
  • The Entomopathogenic Fungi Lecanicillium Sabanerum Sp. Nov. a Natural Control Agent of Parthenolecanium Sp
    The entomopathogenic fungi Lecanicillium sabanerum sp. nov. a natural control agent of Parthenolecanium sp. (Hemiptera: Coccidae) in Bogotá, Colombia Chiriví-Salomón, J.S.1, Sanjuan, T.1,2, Restrepo, S.1 1Laboratorio de Micologia y Fitopatología, Universidad de Los Andes, Colombia. 2Laboratorio de Taxonomía y Ecología de Hongos, Universidad de Antioquia, Colombia Abstract Parthenolecanium sp. is a scale insect that causes a candelabrum-like symptom in branches and a progressive terminal defoliation in trees of Ficus soatensis var bogotensis, an ornamental urban tree from Bogotá. Traditional pesticides were forbidden due to possible negative effects to human health, fauna and flora of the location. Natural epizootics of entomopathogenic fungi were observed in a residential zone of Bogota. Six districts were sampled to identify the entomopathogenic fungi. Environmental conditions were recorded from each sample site. Morphological characterization was developed for mycosed insects and isolates. Six nuclear loci were amplified: small subunit ribosomal RNA nu- rSSU, large subunit ribosomal RNA nu-rLSU, translation elongation factor 1-alpha- like (tef1), RNA polymerase I (B) subunit (Rpb1), RNA polymerase II (B) subunit (Rpb2) and internal transcribed spacer 1 5.8S ribosomal (nrITS). A phylogeny using Maximum Likelihood was performed for nrITS amplified sequences to identify the fungal specie, and a phylogenetic tree was constructed to place fungus in the Cordycipitaceae family. Lecanicillium sabanerum sp. nov. was proposed as a natural control agent of Parthenolecanium sp. and was placed in Cordycipitaceae family with bootstraps of 95 and 100 according to nrITS tree and phylogenetic tree, respectively. The influence of particulate matter concentration and other characteristics observed in the field on the incidence of entomopathogenic fungi in the city was discussed.
    [Show full text]
  • Pathogenicity of Lecanicillium Muscarium Against Ricania Simulans
    Bulletin of Insectology 63 (2): 243-246, 2010 ISSN 1721-8861 Pathogenicity of Lecanicillium muscarium against Ricania simulans 1 2 3,1 2 4 2 5 Şaban GÜÇLÜ , Kibar AK , Cafer EKEN , Hüseyin AKYOL , Reyhan SEKBAN , Birol BEYTUT , Resül YILDIRIM 1Department of Plant Protection, Faculty of Agriculture, Atatürk University, Erzurum, Turkey 2Black Sea Agricultural Research Institute, Gelemen-Samsun, Turkey 3Graduate School of Natural and Applied Sciences, Ardahan University, Ardahan, Turkey 4Atatürk Tea and Horticulture Research Institute, Rize, Turkey 5Provincial Directorate of Agriculture, Section of Plant Protection, Rize, Turkey Abstract Lecanicillium muscarium (Petch) Zare et Gams is a widely occurring entomopathogenic fungus. The effect of L. muscarium against Ricania simulans (Walker) (Rhynchota Ricaniidae) was studied under laboratory and field conditions. In laboratory stud- ies, six isolates of L. muscarium were assessed against nymphs of R. simulans, at a single dose (1 x 107 conidia/ml) on tea leaflets. Mortality percentage caused by L. muscarium isolates after a seven-day period varied from 50.95 to 74.76% and median lethal time (LT50) values ranged from 2.34 to 3.90 days. In a field experiment, L. muscarium strain Lm4 was assessed against nymphs 7 and adults of R. simulans, at a single dose (1 x 10 conidia/ml) on kiwifruit plants. The LT50 values for nymphs and adults of R. simulans were 4.18 days and 6.49 days, respectively. The results of the field study indicated that R. simulans nymphs were more susceptible to the fungus than adults. L. muscarium strain Lm4 could be considered as an environmentally friendly alternative for biocontrol of R.
    [Show full text]
  • Studies on Diversity of Soil Microfungi in the Hornsund Area, Spitsbergen
    vol. 34, no. 1, pp. 39–54, 2013 doi: 10.2478/popore−2013−0006 Studies on diversity of soil microfungi in the Hornsund area, Spitsbergen Siti Hafizah ALI1,2, Siti Aisyah ALIAS1,2*, Hii Yii SIANG3, Jerzy SMYKLA4, Ka−Lai PANG5, Sheng−Yu GUO5 and Peter CONVEY2,6 1 Institute of Biological Science, Faculty of Science, University Malaya, 50603 Kuala Lumpur, Malaysia 2 National Antarctic Research Center, IPS Building, University Malaya, 50603 Kuala Lumpur, Malaysia 3 Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia 4 Zakład Bioróżnorodności, Instytut Ochrony Przyrody PAN, al. Mickiewicza 33, 31−120 Kraków, Poland; present address: Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Rd., Wilmington, NC 28403, USA 5 Institute of Marine Biology and Center of Excellence for Marine Bioenvironment and Biotechno− logy, National Taiwan Ocean University, 2 Pei−Ning Road, Keelung 202−24, Taiwan (R.O.C.) 6 British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom * corresponding author < [email protected]> Abstract: We assessed culturable soil microfungal diversity in various habitats around Hornsund, Spitsbergen in the High Arctic, using potato dextrose agar (PDA) medium. Thermal growth classification of the fungi obtained was determined by incubating them in 4°Cand 25°C, permitting separation of those with psychrophilic, psychrotolerant and mesophilic char− acteristics. In total, 68 fungal isolates were obtained from 12 soil samples, and grouped into 38 mycelial morphotypes. Intergenic spacer regions of these morphotypes were sequenced, and they represented 25 distinct taxonomic units, of which 21 showed sufficient similarity with available sequence data in NCBI to be identified to species level.
    [Show full text]